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Abstract—In recent years, we have seen an advent in software
attestation defenses targeting embedded systems which aim
to detect tampering with a device’s running program. With
a persistent threat of an increasingly powerful attacker with
physical access to the device, attestation approaches have become
more rooted into the device’s hardware with some approaches
even changing the underlying microarchitecture. These drastic
changes to the hardware make the proposed defenses hard to
apply to new systems.

In this paper, we present and evaluate LAHEL as the means
to study the implementation and pitfalls of a hardware-based
attestation mechanism. We limit LAHEL to utilize existing
technologies without demanding any hardware changes. We
implement LAHEL as a hardware IP core which interfaces with
the CoreSight Debug Architecture available in modern ARM
cores. We show how LAHEL can be integrated to system on chip
designs allowing for microcontroller vendors to easily add our
defense into their products. We present and test our prototype
on a Zynq-7000 SoC, evaluating the security of LAHEL against
powerful time-of-check-time-of-use (TOCTOU) attacks, while
demonstrating improved performance over existing attestation
schemes.

I. INTRODUCTION

Embedded systems are pervasive and increasingly intercon-
nected as society adopts an expanding IoT and CPS infrastruc-
ture. Many of these devices run bare-metal firmware with strict
real-time requirements, which leaves little room for integrating
software security solutions hardened against runtime attacks.
An equally robust alternative to protecting systems against
runtime attacks is to ensure the runtime integrity of the
embedded firmware. Devices typically provide two defenses to
ensure integrity: 1) lock-down access to code and data memory
so that the firmware can not be replaced or reused; and 2)
check that the intended firmware is executing using device
attestation.

In this work we focus on the latter and introduce LAHEL,
a lightweight IP-based runtime attestation defense. LAHEL
improves upon the performance, power consumption, design,
and robustness compared to several recently proposed solu-
tions [1], [2], [3], [4], [5].

Whereas previous runtime attestation schemes either inter-
rupt execution via a verifier’s authentication request, or make
calls into dedicated authentication routines upon a control-flow
transfer, LAHEL parallelizes execution and authentication. For
our prototype, LAHEL uses the real-time tracing features
of the Program Trace Macrocell (PTM) available as part of

the CoreSight debug architecture combined with a dedicated
program code verification unit to separate attestation from nor-
mal execution. Parallelization of runtime hash measurements
guarantees equivalent performance to the baseline architecture
without sacrificing security.

LAHEL avoids impractical modifications to the CPU core
by leveraging available CoreSight components and acting as an
AMBA AXI IP core master. An IP-based defense is ideal for
SoC vendors because they often are prevented from modifying
the CPU due to the core’s license agreement. Assuming
dedicated secure functionality is offered directly on the SoC
package, it would suffer inherently from the inability to be
patched in the event of failure. Our prototype LAHEL is built
upon FPGA fabric to show how it can be integrated into SoC
that provide the tracing facilities we utilize. Finally, LAHEL
benefits chip manufacturers by avoiding modifications to the
CPU and the associated non-trivial changes to subsystems on
the critical path such as the front-end, branch-predictor, and
cache subsystem.

LAHEL attests not only dynamic control-flow, but also the
instructions executed within each basic block to ensure secu-
rity against physical attackers attempting to change program
code as a time-of-check-time-of-use (TOCTOU) attack [4].
In approaches such as SMART [1], which statically checks
a region of memory upon an attestation request, or C-FLAT
[2] and LO-FAT [3], which check a program’s control flow
as it occurs, it is possible for a physical attacker to execute
malicious code in between either defenses request for an
attestation quote. LAHEL eliminates this vulnerability by
closing the gap between requesting an attestation quote and
its verification.

In short, the contributions of this work are:
1) We design a novel IP-based attestation defense resilient

against runtime attacks launched by physical attackers.
LAHEL is built as an IP core that can be integrated into
existing SoC designs without changing the CPU core.

2) We show how real-world metrics affect our design
choices in order to obtain a design which is capable
of providing the same security guarantees as existing
mechanisms while also improving on their capabilities.

3) We evaluate LAHEL in terms of area, power, and per-
formance cost to software. We show how the real-time
tracing facilities of the PTM provide no overhead when
active, the effects of reading program code from our



core, as well as the demands of the proposed attestation
scheme in terms of hardware and software design.

4) We evaluate the security of LAHEL against strong phys-
ical attackers capable of launching TOCTOU attacks and
show that it can prevent them.

The remainder of this paper is structured as follows. Section
II establishes an introductory background to the problem
of device attestation, as well as the components we use
in LAHEL. Section III presents the attack model we will
follow in the paper. Section IV introduces the architecture
and implementation of LAHEL. We evaluate our design in
Section V, then discuss some of our observations in Section
VI. We describe related works in Section VII before presenting
concluding remarks in Section VIII.

II. BACKGROUND

A. Device Attestation

Device attestation is a method to determine whether a device
is operating as intended or not. In an attestation mechanism,
a prover P performs a measure of the device. The measure is
then checked and validated by a verifier V , which compares
it to a series of known measures to determine if the device is
operating properly.

The challenge posed by an attestation approach is that of
the design and functionality of P . Being part of the device
under check, P must be resilient against a wide variety of
attacks. An adversary aiming to tamper with the device must
be able to either bypass or feign the functionality of P to
remain undetected. As such, P must be resilient to these
avenues of attack. Previous approaches [1], [2], [3] have
accomplished this task with variable success and different
arrays of compromises [4], [5].

The characteristics exhibited by the implementation of P
define whether an attestation mechanism is static or dynamic.
Static attestation mechanisms are those where P interrupts
normal operation of the device to perform a measure. Dynamic
attestation mechanisms are those where P is capable of
performing measures on the device without interrupting its
operation.

We formally define attestation similar to [6]. We let A be
the possible responses of V . That is, A = {0, 1} with 1
representing the device being tested to be functioning properly
and 0 an attestation failure. Let M be the set of measures
returned by P . The operation of V is given by the mapping
Vk,n : M → A. P generates M ∈ M by performing a
computation over the S of the device, where S can be any
identifiable quality of the device. We alow S to represent the
possible set of states of the device, which may contain illegal
ones on compromised units. Then, P performs the operation
Pk,n : S→M. Then, attestation is defined as follows.

Definition 1: Device Attestation [6]

Let S be a state of a device. Let Pk,n : S → M
be the prover operation of mapping a S to a M. Let
Vk,n : M→ A be the verifier operation of determining
whether M corresponds to a valid state of the device.
Then, we define device attestation to be the operation
of computing Vk,n(M).
We further define an operational device if and only if

∀S ∈ S,M = Pk,n(S) ∈M, Vk,n(M) = 1. (1)

Conversely, a device is deemed compromised or inop-
erable if

∃S ∈ S,M = Pk,n(S) ∈M, Vk,n(M) = 0. (2)

We should note that anyM transmitted by P must be both
unforgeable and non-replayable. If an attacker is capable of
forging a M, then V can be tricked into thinking the device
is functioning properly. Moreover, if V accepts two equal M,
then an attacker can just present the same valid M multiple
times for a successful attestation request. That is to say, given
a particular Si,Sj ,Sl... ∈ S collected at different times, with
Si = Sj = Sl = ..., P must return Mi,Mj ,Ml, ... ∈ M so
thatMi 6=Mj 6=Ml 6= .... For these purposes, we introduce
a pre-shared key k and a nonce n in the formalization above.

B. ARM CoreSight Components

The ARM CoreSight is a series of IP cores that allow for
different mechanisms of debug and trace to be performed in
ARM-based System on Chips (SoCs). SoC vendors are able to
license separate subsystems from the CoreSight components
to provide an infrastructure capable of debugging, monitoring,
and optimizing the performance of their product [7]. CoreSight
allows for execution and data traces to be collected by the CPU
and to be transmitted outside CoreSight implementations are
divided into three components: sources, a link, and sinks.

CoreSight sources are components which capture execution
traces from the CPU or other hardware-related events. The
Program Trace Macrocells (PTM), which captures control-
flow information by tracing waypoint instructions; the System
Trace Macrocell; and the Embedded Trace Macrocells (ETM),
which can collect both control-flow and data-flow information
from a CPU, are examples of sources in the CoreSight
architecture. A system may implement multiple sources, and
multiple sources can be active at the same time.

Traces collected from the sources must be grouped into a
single stream before being processed. This is where the link
comes into play. The link takes traces from different sources
and combines them into a single stream. Trace sources can
be given priority when collected by the link interface, as well
as given a source ID for later identification. The CoreSight
Trace Funnel, which serves as the primary collector for trace
information; and the replicator, which performs a “live copy”
of the capture traces, are examples of link interfaces.



The combined trace streams are then sent to sinks. Sinks
collect information from the funnel and allow it to be routed
out of the SoC through a high speed bus, or store it in a
special memory within the SoC. Examples of sinks include the
Embedded Trace Buffer, an embedded memory that is accessed
through a set of memory mapped registers; the Embedded
Trace Router, which redirects trace output onto the AMBA
AXI bus making it available to any AXI master or through
the ETR itself as if it was an ETB; and Trace Port Interface
Unit, which serves as an off-chip drain for traces.

C. The Xilinx Zynq-7000 SoC

The Zynq-7000 SoC is an FPGA designed and manufac-
tured by Xilinx Corporation which contains a dual core ARM
Cortex-A9 processor surrounded by a few hard peripherals,
such as a DDR controller, and a QSPI controller, as well
as reconfigurable fabric. Xilinx terms the ARM cores as the
processing system (PS) and the FPGA side the programmable
logic (PL). The PL can be reconfigured directly from the PS,
by loading it from an externally connected storage device, or a
standard JTAG probe. The PS and PL can interface with each
other via AMBA/AXI controllers which can be used as either
master or slaves in the bus topology.

The Xilinx Zynq-7000 SoC offers a CoreSight implementa-
tion featuring two Program Trace Macrocells (PTM0, PTM1),
an Instrumentation Trace Macrocell (ITM), an Embedded
Cross Trigger (ECT), a Xilinx Fabric Trace Monitor (FTM),
a CoreSight Trace Funnel (ETF), a CoreSight Replicator, an
Embedded Trace Buffer (ETB), and a Trace Port Interface Unit
(TPIU) [8].

III. ATTACK MODEL

Before describing the general overview of our system, we
first discuss our adversarial model. Our aim is to defend an
embedded IoT device against a malicious attacker. We assume
that the device provides the means of establishing a root of
trust, and that this root of trust is safe from vulnerabilities.
This assumption in line with previous work [1], [2], [3].

The attacker’s goal is to change the functionality of the
device by altering the functionality of its software. An attacker
may accomplish this by maliciously altering control-flow of
the device’s software, or attempting to change the underlying
code. The attacker may attempt to subvert the attestation
mechanism by exploiting its operation. We now discuss ways
this can be done.

A. Code-Reuse Attacks

Code-reuse attacks (CRAs) are a powerful exploitation
mechanism where benign code in a device is used for ma-
licious purposes. CRAs are preformed by combining short
instruction sequences, called gadgets, from various points in
code to generate a new malicious program. These sequences
usually end in a control-flow instruction which is used to
branch into the next gadget in the series. The usable set of
gadgets in a program is called a gadget catalog.

Before launching a CRA, an attacker must examine the bi-
nary for potentially useful gadgets, building the gadget catalog.
Then, an attacker uses a memory vulnerability to corrupt code
pointers in order to change the application’s intended control-
flow. Common targets for corruption are return addresses
stored in the stack, as used in return-oriented programming
(ROP) attacks, or vtable pointers, as used in jump-oriented
programming (JOP) attacks.

Of importance in a CRA is the ability of the attacker to build
a usable gadget catalog. CRAs can be mitigated by reducing
an attacker’s ability to find potential gadgets. Control-Flow
Integrity (CFI) defenses aim towards this goal, by enforcing
an application’s control-flow graph. However, traditional CFI
defenses operate under the assumption that application code
is immutable, meaning that they can not be readily utilized
under our attacker model.

B. Time-of-Check-Time-of-Use Attacks

A Time-of-check-time-of-use (TOCTOU) attack is a type
of attack which is possible on defenses where distinct time
periods are used for checks and usage of a particular entity,
such as code. An attacker can use the delay between checks
and usage to deploy a payload. These mechanisms have been
used before to break into devices such as cellular phones and
gaming consoles [9].

Under a TOCTOU attack, an attacker waits for the checking
mechanism to finish authenticating software. Then, after the
check finishes, the attacker switches the software’s code or
data altering the device’s functionality. This type of attack is
commonly performed by using so-called modchips on devices.
Zeitouni et al developed attacks against static attestation mech-
anisms in [4], proposing ATRIUM as a solution. In this work,
we revisit ATRIUM and other dynamic attestation mechanisms
and analyze its scalability issues. Our aim with LAHEL is to
eliminate these scalability problems while still achieving equal
levels of security.

IV. LAHEL ARCHITECTURE AND IMPLEMENTATION

To fulfill the task of dynamic attestation, the proposed
LAHEL will attest code dynamically as it is executed by
the CPU in order to prevent TOCTOU attacks. A further
goal for LAHEL is that it must be efficient both in terms of
power consumption and performance overhead. We also avoid
modifying commercially available CPU IPs as to provide a
solution that works with off-the-shelf components.

For this purpose, LAHEL leverages the Program Trace
Macrocell (PTM) IP available in commercial ARM processors.
As previously discussed, the PTM allows for high-speed, low-
power debugging of instruction and data traces. We utilize
the PTM in order to obtain an instruction trace as the CPU
executes code. The instruction trace is forwarded to the TPIU,
allowing us to read and decode it from the programmable logic
using the EMIO interface. The attestation core utilizes the
decoded instruction trace to check program code as well as
control flow.



We aim for the attestation mechanism to be local. That is,
the resulting prototype can attest the device it runs on and
notify a remote party of any detected failures. This allows
us to reduce storage demands on the device, as well as
simplifying the protocol of communication between the device
and a remote verifier to only include a periodic heartbeat,
alongside reports of device status. The heartbeat protocol in
our implementation is based in the one presented in [10].

A. Architecture Overview

We present a high level overview of LAHEL in Figure
1. LAHEL makes use of the TrustZone extension in the
ARM architecture to provide a root of trust to perform local
attestation using a hardware module. The root of trust provides
system bootstrapping and low-level handling of the hardware.
As the CPU executes code, our IP core collects instructions
in conjunction with the execution trace. When enough in-
structions are collected LAHEL prepares them to be verified.
Because the verification operation and instruction fetching are
disjoint operations, the two can be done in parallel. This
parallelism allows for the CPU to keep executing instructions
with LAHEL’s core receiving them alongside new program
traces.

ACPTPIU in

Control-Flow
Checker Code Verifier

Applications Processor Core

ARM
Cortex-A9
L1 I/D$

Snoop CU

L2 $

¶ ·

¸

¹

to DDR controller

Fig. 1. High level overview of LAHEL. Our IP core interfaces with the TPIU,
¶, to extract control-flow information. TPIU traces are decoded and forwarded
to the control-flow checker and code verifier. Program code is read through
an AMBA AXI master connected to the Snoop Control Unit, ·, which reads
code from the L2 cache ¸, forwarding any misses to the DDR controller, ¹.

LAHEL utilizes the obtained control-flow information and
program code to securely check whether the application is
behaving normally. A mismatch to the expected behavior
raises an interrupt. The root of trust determines the cause of
failure, creates a failure report and sends it to a trusted party,
and finally attempts to restore the device to known working
behavior.

Once integrated, LAHEL is deployed in a two step process.
First, an offline phase is performed in order to collect basic
block and control flow information. Basic block information

is obtained and securely stored in the device. The encoded
control-flow metadata is stored within the unit itself. At this
point, the device is ready for the second phase: on-field
deployment. The device is connected to a network and the
initial handshake with the remote verifier occurs. As the device
operates, it self attests and responds to heartbeats from the
remote verifier. Using the on-board metadata, if any faults are
detected the device notifies the remote verifier with the fault
condition so that proper action can be taken.

B. Bootstrapping System

The Cortex-A9 cores in the Zynq-7000 SoC boot in secure
mode by default. We utilize this behavior to set up the PTM,
ETF, TPIU, and our IP core and isolate them from the rest of
the system before dropping execution privileges to the normal
world. This hardware-enforced separation prevents normal
world software from reconfiguring the components necessary
to achieve our security requirements.

We restrict program tracing to the areas covered by the
normal world. For this purpose, we modified the linker script
to declare a section of memory to store the secure world code,
and a section of memory to store the normal world code.
The Zynq-7000 memory controller allows configurations of
TrustZone regions on 64MiB regions. A region this size is
sufficient to hold both code and data for the secure bootstrap-
ping process, while the other regions are used for regular code
and data

CoreSight components will only send data whenever a full
packet is filled. Since we wish to obtain trace data as fast as
possible, we configure the TPIU interface to be 8 bit wide.
This allows the smallest packet, an atom, to be sent when
filled. Wider packets, such as i-sync packets, are sent one
byte at a time.

C. Capturing and Decoding Instruction Traces

As previously mentioned, we configured the TPIU to in-
terface to be 8 bit wide. We expose the TPIU to the pro-
grammable logic using the EMIO interface. We only utilize
three of the four TPIU signals in our design. This is because
the TPIU clock output is a double data rate clock running
at half the frequency of the input clock. ARM stating the
TPIU data output to be sampled at both the rising and falling
edges. However, both the TPIU data and TPIU input clock
are synchronized. As such, we are able to drive our data
capture with the input clock, simplifying our design. We also
enable branch broadcasting in the PTM. This has the effect of
generating a branch packet whenever a waypoint instruction
generates a control-flow event, whenever a branch instruction
is taken. If a branch instruction is not taken, the behavior is
recorded within an atom packet. The PTM will not send the
atom packet until it is full, or until a different event triggers
the system.



Since we target single-threaded systems, we disable format-
ting in the TPIU output1. TPIU data is only valid whenever the
tpiu_ctl is low. Furthermore, the TPIU may send multibyte
packets which need to be reassembled. For this purpose, we
utilize a state machine that captures TPIU data and decodes
resulting PTM stream.

The state machine waits for the initial i-sync packet
indicating the start of a trace. Embedded in the i-sync
packet is the start address of the trace which we store in a
ring buffer for processing by the program code verification
subsystems. We also store this address in the state machine.
After the i-sync packet, the TPIU will send either atoms or
branch packets depending on the control-flow transitions of the
software. When receiving a branch packet, we utilize the stored
address to decompress it. We store the newly decoded address
as well as send it to a ring buffer for storage and processing.
Because branch broadcasting is enabled, atom packets only
contain information about branch instructions that were not
taken. We decapsulate the atom packet and obtain a count of
the number branch instructions that are not taken and store
this total in the ring buffer. Since addresses in the ARM
architecture are always even value, we differentiate the branch
not taken counts from addresses by storing n × 2 + 1 in the
ring buffer, where n is the number of control-flow instructions
that were not taken.

Due to the amount of data going into the ring buffer, we
do not store repeated atom packets. We store repeated branch
addresses since these may be due to indirect control-flow. We
are unable to identify whether the branch was caused by an
indirect control-flow instruction or not when branch broadcast-
ing is enabled. When branch broadcasting is disabled branch
packets are only generated whenever an indirect control-flow
transfer occurs. Control-flow transfers due to direct branches
are encoded within atom packets. However, the PTM will not
send an incomplete packet, meaning that code verification will
be delayed until a few basic blocks are executed.

1) Example Trace Decoding: We utilize the micronench-
mark in Listing 1 as a way to test our trace decoding facilities.
The microbenchmark presents a tight loop which iterates 2048
times. The microbenchmark continuously subtracts the value
1 from a register, first initialized to 2048, while setting the
flags register. We repeat this process until the register reaches
the value of 0. This results in the loop terminating and all
subsequent branch instructions not being taken. Consequently,
we expect our trace to be mainly composed of 2048 branch
packets, and one to three atom packets signaling a branch not
taken. The captured trace is shown in Figure 2.

1 uint32_t i = 2048;
2 enable_ptm();
3 __asm__ volatile(
4 "1: subs %[input], %[input], #1" "\n"

1With formatting enabled we need to wait for 16B to be received from
the TPIU interface. The last byte contains the least significant bit of all odd
bits in the received stream. Not only would our hardware need to wait for the
entire stream to be received, it would also need to apply an extra decoding
step causing further delays on verifying control flow and obtaining execution
addresses.

5 /* decrement register */
6 " bne 1b" "\n"
7 /* if not zero, loop */
8 " bne 1b" "\n"
9 /* branch never taken */

10 " bne 1b"
11 /* branch never taken */
12 :
13 : [input] "r"(i)
14 : );

Listing 1. Microbenchmark used to obtain a sample trace.

00 00 00 00 00 80 08 f0 0e 10 00 21 86 87 12 09

09 09 09 09 09 09 09 09 · · ·
09 09 09 09 09 09 09 9e e7 07 01 00

Fig. 2. Trace result for microbenchmark. We see an a-sync packet followed
by a i-sync packet indicating the start of the trace. An atom packet
proceeds this, followed by a series of branch packets, an atom packet,
a branch packet, and the end of trace.

We start with an a-sync packet. This packet is constituted
by at least five 00 bytes followed by one 80 byte. We then
encounter an i-sync packet (08 f0 0e 10 00 21) de-
tailing the address at which the trace started. This is followed
by an atom packet, 86, and a series of branch packets 87 12.
These packets come from the end of the enable_ptm()
function. The ensuing branch packets are generated by our
loop.

D. Checking Program Code

We connect an AMBA AXI master to the Accelerator Co-
herency Port in the Zynq-7000 SoC. This allows us to directly
access the Snoop Control Unit (SCU). Accesses initiated by
the AXI master are serviced by the SCU. The SCU can read
directly from the L2 cache within the processor cores. If the
requested instructions are not in the cache, the SCU forwards
requests over the DDR controller, resulting in the instructions
being fetched from memory.

We designed our AMBA master to read in bursts of 16B, as
this corresponds to the size of our code checking algorithm.
Once the read completes, we determine if any control-flow
instruction is found within it. If the block contains one, any
instruction after the basic block is replaced with padding.
We send the padded basic block to the hash engine for
compression. If the block contains no control-flow instruction
we add no padding and send a signal to the verification engine
to chain the next basic block.

We also report whether a control-flow instruction is indirect,
in which case we compute its address and forward it to the
control-flow checking submodule. This is used as the source
address when verifying control flow. Section IV-E describes
why we only track indirect branches in control-flow.

E. Checking Control-Flow

As part of our attestation mechanism, we also verify the
program’s control-flow. Most of the previous hardware-based
CFI approaches use some form of code instrumentation to
ensure the application is executing correctly [11], [12], [13].



Since we are unable to add new instructions having no access
to the CPU core we employ data returned by the TPIU decoder
to monitor control-flow.

The TPIU decoder provides us with the target address of a
control-flow instruction if control-flow was altered, or a series
of atoms in the case it was not. We use a mechanism similar
to the one proposed in [14] with a few crucial differences. The
work in [14] does not postulate how control-flow metadata is
stored. We now examine a few possibilities.

We utilize the Bristol/Embecosm Embedded Benchmark
Suite (BEEBS) [15] as a dataset to examine control-flow be-
havior. The BEEBS suite are designed to test the performance
of deeply embedded systems targeting energy consumption.
Programs in the suite include image encoders, implementation
of compression and cryptographic algorithms, and graph nav-
igation routines, among others. Because of its wide coverage,
we believe the BEEBS suite is representative of code running
on embedded devices.

We first note that direct calls have the offset to the target
address encoded in them. Attackers wishing to redirect control-
flow using these instructions as targets must overwrite the
instruction stream. Since we handle modifications to program
code as a separate mechanism (Section IV-D), we do not need
to track these instances.
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Fig. 3. Distribution of unique indirect control-flow transfer address pairs in
the BEEBS benchmark suite compiled for the ARMv7-A architecture. We
only include the integer subset of the benchmarks in our analysis. Root of
trust routines are not included in this plot.

We use cflow [16] to find an estimate of the control-flow
graph of the code. We then use the compiled code to find the
number of return sites on every function. With this informa-
tion, we find the number of unique {source,destination} pairs.
We also look for other indirect control-flow transfers, such as
those generated by indirect calls to functions. Our results are
shown in Figure 3. Here, we plot the number of unique indirect
control-flow transfers versus the code size of the binary. We do
not count any bootstrapping code, as this belongs in the root
of trust, which is assumed to be secure. Our largest benchmark
is measured at 36 376B for miniz, while the most indirect
control-flow transfers is measured at 289 on pico_jpeg. For
the following analysis we will round up these numbers to the
next power of two (36376→ 65536, 289→ 512).

Using these figures, we can generalize that a 16 bit source
address can target any given 16 bit target address. We can
reduce this number in the ARM architecture under the Aarch32
model, since instructions must be 32 bit aligned. As such,
we effectively reduce control-flow transfers from a 14 bit
source address to a 14 bit target address. We can then create
a 228×1 memory to hold control-flow transfers. The memory
is addressable using the concatenation of the source and target
addresses in the control-flow transfer, and preconfigured with
values indicating valid control-flow transitions. Whenever an
indirect control-flow transfer occurs the system checks the
contents of the memory. If the address contains a 1, the transfer
is valid and the check succeeds, otherwise the check fails and
the control-flow subsystem triggers an error. However, this
approach is largely wasteful. Of the 256Mbit memory we
created we only utilize 1.19× 10−5% of its capacity to store
512 control-flow transfers.

We can attempt to improve this model by using a different
hardware construct. We observe that for our benchmark suite,
no more than 512 control-flow transfers need to be stored.
We can then employ a content-addressable memory (CAM)
capable of holding 512 different entries. Lookups to this
CAM are done using the source-target address pairs. The
CAM itself does not need to store any information regarding
control-flow data. Returning whether the control-flow transfer
is stored is sufficient. This reduces the memory requirements to
28×512 = 14 336 bit. However, it introduces the overhead of
a CAM. We implemented this CAM to test for overhead on our
FPGA obtaining ≈ 13.47% and ≈ 16.37% flip-flop and LUT
utilization, respectively, with an estimated power consumption
of 70mW.

Instead of these approaches, our design reduces complexity
and space by utilizing a Bloom filter [17], [18]. A Bloom filter
is a probabilistic data structure which has the property of being
space efficient while allowing to test whether an element is a
member of a set. For a Bloom filter with m bits, n stored
elements, and k different hash functions with no significant
correlation with each other, the optimal number of bits per
element for a false positive probability p is given by

m

n
= − log2 p

ln 2
, (3)

and the corresponding number of hash functions is approxi-
mately

k = − log2 p. (4)

If we size our Bloom filter to contain the same number of
memory elements as the previously described CAM, we obtain
a false positive rate of 1.437 × 10−4% with 20 independent
hash functions. If we size our memory to the next available
power of 2, we decrease the false positive rate by over one
order of magnitude while increasing our hash function count to
22. In this event, each hash function needs to output a 14 bit
number. Using the hashing algorithm described in [19], our
Bloom filter utilizes a total of ≈ 3.94% of the LUTs in our



FPGA, with ≈ 6.63% of the available DSP slices. It exhibits
a power consumption of 28mW.

The issue with this approach is that our storage element
is about 25% of the size required to store the largest of our
benchmarks. To solve this particular predicatment, compres-
sion algorithms such as Golomb-Rice coding [20], [21] can
be employed to reduce the amount of memory consumed. We
forgo compression on the Bloom filter as compression assumes
a sparsely populated memory (which holds during our testing
but may not be true for some other cases), and in order to
simplify the underlying logic. Using Equation (3) we see that
we can generate an 8KiB storage element for the bloom filter
and still achieve a 0.459% false positive rate. We discuss the
implications of this number in Section V.

F. Asynchronous Events

Interrupt handling results in an asynchronous control-flow
event, where the currently executing instruction finishes then
control-flow is redirected to an interrupt handler. In the ARM
architecture interrupts can be nested. That is, an interrupt
with higher priority will preempt the execution of a handler
for an interrupt with lower priority. Fortunately for us, the
PTM generates an i-sync packet whenever control-flow
changes due to an interrupt. We process this i-sync packet
to extract the address of the interrupt handler. The PTM does
not give us the address of the next instruction that would
have been executed. However, the AXI master performing
code attestation reads from the ring buffer atom packets
and branch packets, deducing which basic blocks are being
executed. Upon detection of the i-sync packet generated by
the PTM, we are able to determine the basic block which
was executing once the interrupt triggered. We utilize this
behavior to estimate possible return sites for the interrupt
handler. We should note that interrupt service routines are
allowed to change the return address. Notable cases are as
results of scheduling or thread creation. These events are not
applicable to our platform given that we target single threaded
embedded devices.

V. EVALUATION

A. Control-Flow Evaluation

Because our control-flow checks are based on a probabilistic
data structure, there is a real possibility that control-flow is
violated and the LAHEL core does not detect it. With a false
positive rate of 0.459% and a total of 512 indirect branches
stored in the Bloom filter, we see that each indirect branch
has ≈ 2.35 return sites that will trigger a false positive. These
invalid return addresses depend on the hash functions used in
the Bloom filter, as well as the control-flow behavior of the
program, as this determines the actual contents of the Bloom
filter.

An attacker may attempt to find locations where these false
positives are triggered. If using a cryptographically secure
hash function to index the bloom filter the process becomes
unfeasible. However, the hash function we utilized does not
exhibit this property and we are left with an attacker who

is able to find collisions with some effort. We argue that in
the event of a collision, the number of viable targets make
a code-reuse attack very limited in scope. Code-reuse attacks
work utilizing a gadget catalog, with a gadget being a small
unit of code that an attacker can use for malicious purposes
(e.g. setting a value in a register before jumping to a location
which uses that value for nefarious purposes).

Our control-flow policy has the limitation that it does not
keep state. That is, multiple valid return sites are allowed for
function returns. An attacker with the ability to corrupt the
return address of a function can redirect control to a different
place other than the current caller. This is called a control-
flow bending attack [22]. During our testing we were unable
to identify a source of collisions that would result in a “good”
gadget catalog to perform a code reuse attack. The available
gadgets were either too disjointed or too few to significantly
alter the behavior of the program in a way that did not result
in a hard crash.

B. Program Verification Evalualion and TOCTOU Resiliency

Previous attestation mechanisms utilize a hash function for
the purpose of verifying the code being executed. In our sce-
nario, the code being verified is organized in basic blocks and
is fetched through the acceleration coherency port. ATRIUM
[4] stores the computed hashes locally before sending them to
a verfier on an attestation request. The specifics of the storage
capabilities, the frequency at which the hashes are generated,
and the frequency of the incoming attestation requests are
not specified. The higher the hash generation frequency, and
a lower frequency of attestation requests yield for a larger
storage requirement. LiteHax [5] aims to subvert the storage
requirement problems by streaming the control-flow and data-
flow hashes to the verifier as they are generated. This puts
greater pressure on the network, as it must have the necessary
throughput and reliability to transmit the hash information.

We now consider a hash function h as a collision-resistant
one way compression function. The former characteristic
means that for two inputs it is infeasible to generate h(x) =
h(y) for x 6= y. The latter specifies that given a digest d, it
is infeasible to find x such that h(x) = d. Hash functions
used in attestation serve one purpose: to securely generate
a measure of the device without the need to transfer large
amounts of data. For example, in SMART [1] the prover
securely generates a digest of a range of program code and
sends it to a remote verifier as a response to an attestation
request. In doing so, the amount of information transferred
over the network is reduced: instead of transmitting the code
being verified, a representation of that code is sent instead in
the form of the computed hash. In the case of ATRIUM, basic
blocks are hashed and the resulting digest is stored in a secure
memory.

We examine the compiled BEEBS binaries and extract basic
block information. We count the number of instructions per
basic block and determine averages showing our results in
Figure 4. We note that basic blocks contain three instructions
as an average. This gives us insight into the compression
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Fig. 4. Average instruction count per basic block in BEEBS. We exclude outliers in our plots, which we define to be 2.5 standard deviations away from the
mean value of instructions per basic block for a particular benchmark. Benchmarks exhibit an average of three instructions per basic block. This implies that
under the ARM ISA a basic block is 12B (96bit) in size.

characteristics we desire of our hash function. For a remote
attestation mechanism with the characteristics of ATRIUM,
hashes are collected with the objective of sending them at
a later time to a remote verifier. An attacker is prevented
from tampering with the hashes by saving them in a secure
storage. However, the hash functions which we consider to be
cryptographically secure today produce a digest of at least
128 bit. Specifically, SHA-3, used in LiteHax, generates a
digest of 224 bit, and BLAKE2’s digest in ATRIUM is of
512 bit. This is considerably larger than the measured average
block input of 96 bit. Considering that we must store these
hashes in a secure place for either ATRIUM or LAHEL, and
that the storage demands for this storage is higher than that of
program code itself we must question whether it is desirable
for the approach to actually hash basic blocks.

For our purposes, we store a shadow copy of the valid
program code instead of its internal hashes and compare
against it during execution. This has two advantages: our
storage requirements are smaller than the one requiring a hash
engine, and our root of trust is able to restore the firmware
from a known working copy in case the LAHEL detects the
firmware has been modified. As such, in the event of detecting
a change in program code the root of trust will generate and
send a report a remote trusted party then proceed to reprogram
the device to a known valid base state.

As described in [4], the execution model of SMART yields
a timing signature which reveals when the CPU is accessing
program code for an attestation request. LAHEL eliminates
this side channel by obtaining the instruction stream from the
SCU which reads data directly from the L2 cache and forwards
any misses to DRAM. During our testing we traced the signals
from the AXI master and measured response latency. We noted
a delay corresponding to the access time in L2. This is due
to the instruction stream executed by the CPU was moved
into cache when it performed instruction fetches. An attacker

wishing to execute malicious code using the attack presented
in [4] would need to force L2 misses when LAHEL attempts
to access the cached instruction stream.

VI. DISCUSSION

Our sample implementation revolves around the Xilinx
ZYNQ 7000 SoC which contains a Cortex-A9 processor in
a dual-core configuration. The Cortex-A9 implements the
ARMv7-A architecture with a superscalar, variable length,
out-of-order pipeline and dynamic branch prediction [23].
This type of core may not be applicable for some embedded
applications we target with our defense. Our implementation
both suffers and benefits from having an applications class
processor. An applications class processor enables us access
to a fully featured Memory Management Unit. As such, we
are able to separate the CoreSight components from being
accessed by the running software preventing it from disabling
the trace functionality.

Note that the superscalar out-of-order pipeline affect the
way the CoreSight components behave. This results in an
influx of data from the TPIU into our subsystem at unexpected
times. We used the microbenchmark in Listing 2 during testing
of the TPIU interface. We captured the traces shown in Figure
5 using an instance of the Integrated Logic Analyzer [24]. We
observe that the TPIU reports four consecutive branch packets,
followed by two cycles where the TPIU reports no data. On
a simple pipelined processor we expect to receive the branch
packet every few cycles, as the subtract operation and the nop
instructions make their way through the pipeline. Instead, due
to the out-of-order and superscalar nature of the Cortex-A9
we see the reflected behavior.

1 1: subs r0, r0, #1
2 ;; r0 - 1 --> r0, set flags
3 nop; nop; nop; nop
4 nop; nop; nop; nop
5 nop



6 bne 1b ;; branch if non-zero result

Listing 2. Microbenchmark used to test bandwidth on the TPIU interface.
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Fig. 5. ILA capture during the execution of the microbenchmark in Listing
2. We observe bursts of consecutive branch packets during execution with a
two cycle gap in between due to the out of order nature of the test CPU.

We should note that the PTM never generates branch
packets or atom packets due to branch prediction. Only after
branch instructions are committed does the PTM generate the
necessary packets. As such, we never see the effects of the
branch predictor in the TPIU.

A. Migrating to the Cortex-M

The Cortex-M line of microcontrollers are more suited to
embedded devices than the application-class processors found
in the Cortex-A line. Unfortunately, as far as we are aware
there is no publicly available platform with a Cortex-M which
we are able to utilize to implement our prototype. The closest
we are able to find are the ARM DesignStart FPGA platforms,
but these consist of encrypted unmodifiable bitstreams that
provide a Cortex-M core and peripherals [25].

The Cortex-M line, however, still provides the CoreSight
components as an optional part of the implementation. During
our research we found that microcontroller vendors provide the
Embedded Trace Macrocell (ETM) as part of their offering,
and about half of the ones we encountered provide a TPIU
interface. The ETM offers the same functionality as the PTM
with the additional benefit that it can also perform data
traces. As such, a LAHEL implementation targeting these
platforms can potentially be extended to perform data tracing.
Furthermore, with the advent of the ARMv8-M architecture
we are given an embedded version of the security extensions
(TrustZone-M) [26]. The root of trust in LAHEL can be
bootstrapped from a TrustZone-M environment, while also
locking away the debug peripherals from being accessed by
the program.

B. Scaling to Real-Time and Multitasking Operating Systems

Our current implementation of LAHEL targets embedded
devices running single threaded applications. However, we
believe our system can be extended to include support for real-
time and multitasking systems. The TPIU can be configured
to issue formatted packets. This allows us to use multiple
trace sources concurrently. By enabling the formatter we can
include trace IDs in the PTM, and switch these trace IDs
dynamically. Then, by modifying the scheduler in a real-time
or multitasking operating system, we can set new trace IDs
in the PTM and thus we are able to differentiate control-flow
events in different programs.

However, when enabling the formatter, the trace must be
first decapsulated by waiting for a 16B TPIU frame to arrive
at our decoder. Once decapsulated, we can then decode the
trace and check control-flow and program code. For operating
systems that use virtual to physical address translation in
programs, our core must be further aware of which physical
frames are occupied by a running application. Hence, mecha-
nism to perform translation from virtual to physical addresses
for the core must also be provided, potentially introducing
further delays in our system.

VII. RELATED WORKS

In this section we provide a brief description of proposed
attestation mechanisms with emphasis on the changes made
to the hardware and software stack.

Eldefraway et al. propose SMART [1] as means of providing
software attestation in embedded devices. SMART is a static
attestation mechanism that implements an on-chip prover
which responds to requests from a remote verifier. The prover
is implemented in software and embedded inside a ROM in
the microcontroller. The software uses an on-board shared
key to hash a verifier-specified portion of software running
from an external memory. Although the shared key is memory
mapped, SMART adds hardware to ensure it is only accessible
whenever the prover ROM code is executing. Furthermore,
newly introduced hardware also ensures that the ROM code
executes from its proper entry point. This is done to prevent
leakage of the key through a code-reuse attack. Although these
precautions are taken, a device protected by SMART can still
be subject to exploitation through a code-reuse attack outside
the attestation ROM as this code is not protected by the ROM
mechanism, and control flow is not checked [2]. Furthermore,
as demonstrated in [4], an attacker with physical access to the
device can multiplex the data bus in order to execute malicious
code while the attestation ROM only sees the intended code
being executed.

C-FLAT [2] and LO-FAT [3] as means to counter the
control-flow vulnerabilities found in SMART. The prover in
C-FLAT and LO-FAT perform static attestation by aggregating
the execution path of a program, including branches and func-
tion returns. These are built into a stream of hashes indicating
how the program executed. To service attestation requests
from a remote verifier, the prover sends the collected hashes
which the verifier uses to ensure the application has executed
correctly. The prover relies on a TrustZone environment to
protect its code and collected data. Branch instructions in
the normal world are replaced with trampolines to the secure
world which allows the prover to run. As these approaches
check control-flow only, an attacker with access to the device
is capable of changing code within basic blocks as long
trampoline targets are not changed [4]. Furthermore, because
the prover is executed at the behest of the software being
attested, an attacker can ultimately leave the prover to collect
no control-flow information of compromised code.

Zeitouni et al. propose ATRIUM as means to counter the
weaknesses in SMART and C-FLAT [4]. ATRIUM borrows



ideas from C-FLAT and SMART in that both control-flow
and program code are checked. However, unlike previous
approaches, ATRIUM directly taps into the CPU pipeline
to extract instructions as they are executed by the CPU
storing them in a buffer. This allows ATRIUM to perform
dynamic attestation on the device. The ATRIUM subsystem
decodes these instructions to check for control-flow, sending
a signal to a loop encoder. Control-flow information is kept
by the ATRIUM core. Furthermore, whenever a full basic
block is collected, instructions within it are hashed with a
BLAKE2b engine. If the instruction buffer is filled while
hashing is taking place, the core halts execution in the CPU
until the attestation operations are finished. Vendors wishing
to implement ATRIUM require direct access to the CPU
core to add the necessary components. Under the current
licensing model, this is unlikely to happen without the aid of
the IP vendors. Furthermore, ATRIUM does not specify the
necessary requirements for storage of hashes and execution
traces. Lastly, timing critical functions are affected by halting
CPU execution resulting in missed events, or delayed response.

LiteHax [5] extends the ATRIUM model by also adding
data-flow tracking. Much like ATRIUM, LiteHax requires
access to the CPU’s pipeline, not only to track execution but
also to track data loads and stores. Control-flow, and the results
from loads and stores are independently buffered and hashed.
Much like ATRIUM, LiteHax performs dynamic attestation on
the device as it is capable of gathering the necessary measures
for attestation without interrupting the device’s functionality.
During testing, authors tuned the storage requirements of the
buffers and to meet those of OpenSyringePump [27]. This
allows for not having to halt execution during the attestation
process. Partial attestation reports are streamed to a remote
verifier for further analysis and verification. Unfortunately, this
requires the hardware to be tuned for the specific application.
This is readily doable in soft IPs and made-for-application
microcontrollers, but not approachable for general-purpose
mass-market devices. Furthermore, the work does not provide
analysis on the frequency on which the verifier receives the
partial attestation reports, or the necessary network conditions
for the verifier to receive a reliable report.

Wahab et al propose an instrumentation mechanism to
perform data flow analysis in a program using the CoreSight
infrastructure in [28]. The authors instrument a program with a
newly created system call to request tracing of an application.
Similar to our approach, the proposed mechanism uses the
reconfigurable logic in the Zynq-7000 SoC to trace the running
application. The authors employ this mechanism to detect a
double-free vulnerability in a test application, as well as the
reconstruction of an application’s control flow graph. Unlike
our approach, however, the software must be instrumented
with the system calls to start and stop tracing over function
calls, which requires binary rewriting if source code is not
available.

HardBlare [29] uses the CoreSight system present in ARM
cores for information tracking. The authors developed a static
analysis pass in LLVM which propagates dependencies to

the ARM back-end of the compiler which are stored in the
final executable. During execution, an IP core processes trace
information generated by the PTM, which propagates the
tag information generated during the instrumentation pass.
Authors use this mechanism as a way of performing Dy-
namic Information Flow Tracking (DIFT). Similar to LAHEL,
HardBlare does not require modifications to the processor
core, only employing new peripherals in the SoC to perform
information tracking.

VIII. CONCLUSION

In this paper we presented LAHEL as a way to demonstrate
that dynamic attestation is possible in current CPUs without
the need to change them. We demonstrated that a dynamic
attestation mechanism can be created using the trace structures
of the CoreSight Debug Architecture. We also discussed the
implications of using cryptographically secure hash functions
as means of data compression when dealing with program
code. As future work, we plan on devising means to reduce
the necessary TPIU traffic while still being able to maintain
trace consistency during the attestation process.
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