Integration, the VLSI Journal 64 (2019) 143-151

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

ELSEVIER

SoC interconnection protection through formal verification )

Check for
updates

Jiaji He?, Xiaolong Guo ", Travis Meade ¢, Raj Gautam Dutta ¢, Yigiang Zhao ?, Yier Jin>*

2 School of Microelectronics, Tianjin University, Tianjin, Tianjin, 300072, China
b Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
¢ Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA

ARTICLE INFO ABSTRACT

Keywords:

Formal verification
Intellectual property
Hardware Trojan detection
SoC security

The wide adoption of third-party hardware Intellectual Property (IP) cores including those from untrusted ven-
dors have raised security concerns for system designers and end-users. Existing approaches to ensure the trust-
worthiness of individual IPs rarely consider the entire SoC design, especially the IP interactions through SoC
bus. These methods can hardly identify malicious logic (or design flaws) distributed in multiple IPs whereas
individual IPs fulfill security properties and can pass the security testing/verification. One possible solution is
to treat the SoC as one IP core and try to verify security properties of the entire design. This method, however,
suffers from scalability issues due to the large size of SoC designs with multiple IP cores integrated. In this paper,
we present a scalable SoC bus verification framework trying to verify the security properties of SoC bus imple-
mentation where the bus protocol plays the role of the golden reference. More specifically, finite state machine
(FSM) models will be constructed from the bus implementation and the trustworthiness will be verified based on
the property set derived from the bus protocol and potential security threats. Along with IP level formal verifica-
tion solutions, the proposed framework can help ensure the security of large-scale SoCs. Experimental results on
ARM AMBA Bus demonstrate that our approach is applicable and scalable to prevent information leakage and
denial-of-service (DoS) attack by verifying security properties.

1. Introduction

With the rapid development of modern integrated circuit (IC) fabri-
cation techniques, the complexity of ICs is increasing rapidly. In order
to reduce the time-to-market, circuit designers try to integrate different
Intellectual Property (IP) cores into a single chip to form a system-on-
chip (SoC). To coordinate interactions among different IPs, bus proto-
cols for data and control transfers are used. For example, the Advanced
Micro-controller Bus Architecture (AMBA) [1] from ARM serves as a
leading example among these bus protocols. However, the possibility of
inserting hardware Trojans at the design stage in an IP by an untrusted
third-party vendor has raised security concerns in the SoC design indus-
try [2,3]. To ensure the trustworthiness of a SoC design, two types of
methods, runtime detection and static verification solutions, have been
developed targeting the SoC bus and IPs. In the runtime method, poten-
tial security vulnerabilities are identified during the SoC operation. It
enables a SoC integrator to enhance security of existing bus protocols by
adding additional runtime monitoring circuits or enhancing the existing

* Corresponding author.

protocols. The static solution uses testing and verification techniques to
either validate the security of SoC design and bus protocols, or detect
any design flaws that may impact the security of the SoC operations
before implementation.

As shown in Fig. 1, a SoC designer builds a system using IPs from
third-party vendors and some of the IPs in the SoC are untrusted. To
ensure the security of the design, in this paper, we propose a com-
prehensive verification framework that is scalable for large SoCs. The
interactions between IPs and the system bus will be considered and
checked. Anomalies in normal communications between untrusted IPs
and the rest of the SoC design can be detected. Our method only focuses
on verification of digital circuits. If there are analog parts in the SoC sys-
tem, the analog circuits will not be modeled. FSMs are firstly extracted
from the SoC utilizing gate-level netlist, and the formal model is estab-
lished of the design. Then security specifications are proposed based
on the knowledge of possible attacks through untrusted IPs connected
to the bus. Finally, the formalized model of the SoC is verified against
security properties using an automated model checking tool. If a SoC

E-mail addresses: dochejj@tju.edu.cn (J. He), guoxiaolong@ufl.edu (X. Guo), travim12@knights.ucf.edu (T. Meade), rajgautamdutta@knights.ucf.edu

(R.G. Dutta), yq_zhao@tju.edu.cn (Y. Zhao), yier.jin@ece.ufl.edu (Y. Jin).

https://doi.org/10.1016/j.v1si.2018.09.007

Received 22 May 2018; Received in revised form 30 July 2018; Accepted 20 September 2018

Available online 5 October 2018
0167-9260/© 2018 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.vlsi.2018.09.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2018.09.007&domain=pdf
mailto:dochejj@tju.edu.cn
mailto:guoxiaolong@ufl.edu
mailto:travm12@knights.ucf.edu
mailto:rajgautamdutta@knights.ucf.edu
mailto:yq_zhao@tju.edu.cn
mailto:yier.jin@ece.ufl.edu
https://doi.org/10.1016/j.vlsi.2018.09.007

J. He et al.

Security

Specifications Busihiotacel

IP Vendors
(B
Untrusted _ Secure
IPs o SoC

SoC Designer & Verifier

Fig. 1. Interactive of components in proposed framework.

design satisfies the security specifications, then the security of the SoC
is proved.
The main contributions of this paper are listed as follows.

e Formal security specifications at the SoC level are developed with
consideration of real bus operations and possible Trojans attacks.

e The finite state machine (FSM) of the whole SoC is extracted utiliz-
ing gate-level netlist. All behaviors of the circuit are modeled with-
out performing any abstraction, and we ensure that any malicious
behavior is not lost during modeling process. Our modeling strategy
is scalable for large SoCs.

e We focus on securing the entire SoC from hardware Trojans consid-
ering possible attacks utilizing normal bus communications.

The rest of this paper is organized as follows. In section 2, we dis-
cuss previous work on SoC design protection and verification. Section
3 describes the threat model in our paper and provides background of
the tools used in our framework. In section 4, we explain our method-
ology in details. In section 5, we carry out a series of experiments to
demonstrate our method. The experiment results are shown in section
6. Conclusions and future work are drawn in section 7.

2. Related work

In this section, we will introduce both runtime and static solutions
for hardware system protection.

2.1. Runtime methods

Many runtime hardware approaches were developed for providing
secure assurances of IPs and SoC. In Ref. [4], IP sandboxing technique
was utilized to defeat drone jamming-based attacks. A resilient SoC
security architecture was proposed in Ref. [5], and this architecture
implements certain security policies and also ensures trusted informa-
tion flow within the blocks. This solution provides a comprehensive
solution in the secure architecture based SoC protection. However, it
still needs a central security policy checker and security wrappers. Also
there are other techniques such as gate-level information flow track-
ing [6] to ensure the information security of the system bus. Authors
in Ref. [7] gave a solution for hardware runtime formal verification of
security properties on IPs depending on proof-carrying hardware (PCH)
approach. A hardware based SAT solver was developed to perform val-
idating of fabricated hardware. Still, high overhead in runtime PCH
causes scalability issue in practical use.

Further, runtime methods enhance security of bus protocols with
a wrapper or monitor, and require specific design modifications to
achieve particular security purposes. In Ref. [8], correctness of modules
was checked using an IP interface monitor, which was developed using
high-level specifications. The interface monitor cannot detect system-
level malicious behaviors if the modules follow the normal bus proto-
col. Lin et al. [9] designed a monitor for bus compliance testing and
for observing bus signals in a SoC system. Although they verified the

144

Integration, the VLSI Journal 64 (2019) 143-151

data part of the bus transfer against necessary properties systematically,
their method cannot detect malicious behaviors. A security enhanced
communication architecture was designed in Ref. [10] to enhance bus
communications, but this architecture is not applicable to other secu-
rity vulnerabilities. Kim et al. [11] developed a secure bus architecture
by constructing new structures around core modules of a bus, and the
architecture was able to provide runtime protection against hardware
Trojans. Although the secure architecture accomplished protection
without incurring high costs in terms of bus resources and performance,
it can only handle security issues related with one single module.

Even if runtime methods can provide a very satisfactory security
protection, these methods all require hardware modifications of origi-
nal circuits or additional modules in the systems. Moreover, the mod-
ifications usually require the designers of the security solution have a
well understanding of the circuits and systems. Further, implementing
these methods will inevitably introduce area and power overhead of the
original design and will have impact on the performance.

2.2. Static methods

Static methods, which are used prior to design deployment in the
pre-layout stage, neither cause any hardware overhead nor require
modifications to original designs. Among the static methods, there are
many approaches targeted at pre-layout hardware Trojan detection
including feature analysis and formal verification. The feature anal-
ysis Trojan detection methods focus on extracting particular features
from pre-layout design files directly to find anomalies. In Ref. [12], a
HTChecker was proposed to detect hardware Trojans in VLSI design
based on static characteristics of gate-level netlist. Trojan features are
extracted from gate-level netlist in Ref. [13], and the random forest
classifier is utilized to select the best set of Trojan features. The author
in Ref. [14] proposed to apply the inter-cluster distance to distinguish
Trojan gates and genuine gates in a design based on the controllability
and observability characteristics. In Ref. [15], a framework is proposed
to combine flip-flop level and combinational logic level features for
analyzing to achieve both high efficiency and accuracy. Feature anal-
ysis based methods directly detect hardware Trojans in individual IPs,
however, the trustworthiness of the whole system composed of multiple
IPs may not be guaranteed.

Whereas, formal methods do not directly detect HTs but try to evalu-
ate the trustworthiness of IP cores integrated in the SoC systems. Mean-
while, formal verification can develop security properties with the con-
sideration of potential system level threats. Formal verification with
trusted models was used in the Algorithm for Resisting Trojans of [16]
as part of a series of steps to provide complete protection of design from
Trojan payloads, but their methods only focused on individual IPs. In
Ref. [17], security critical objectives were selected to divide the sys-
tem into smaller security sensitive assets, and security properties were
developed and checked accordingly. Although they improved the scal-
ability of formal verification by breaking down the SoC into subsets
of security sensitive assets, some critical information may be lost dur-
ing the decomposition process. A SAT-based formal verification method
was proposed in Ref. [18], and the authors proposed a series of proper-
ties to detect the information-leaking Trojan. However, their methods
cannot detect system level Trojans. Additionally, formal verification has
been widely used for checking functional and security properties on SoC
bus. An abstract model of a commercial field bus was developed in Ref.
[19], and a number of imperfections in the protocol logic itself were
found. An arbiter core of IBM Core Connect bus was verified by Goel et
al. [20] and they found defects of the protocol itself during functional
checking. In Ref. [21], an AMBA AHB protocol model was developed
according to the specification of the protocol, and the non-starvation
property was checked for the master. Guo et al. [22] used a hybrid
approach in PCH framework to alleviate the scalability issue in formal
verification of large designs. However, the above verification still only
focused on the function checking.



J. He et al.

From the discussion above, current formal verification methods
usually focus on single IP verification and do not consider the inter-
connections among various IPs through certain bus protocols. It is
important to take the bus protocols into consideration when verifying
the security of the whole system. Although some methods can detect
system level Trojans or security threats, they only build an abstract
model of the SoC design prior to verification. As a result, some
details of the design including malicious logic may be lost during the
abstraction process. So a comprehensive model containing all logic
operations of the system is required.

3. Background and preliminary

3.1. Threat model

Hardware Trojans can be inserted at many different stages of the
IC lifecycle. In this paper, we consider the rogue agent at third-party
design house who can access the hardware design, and make modifica-
tions to the RTL code and netlist files. Therefore, the availability of gate-
level netlist is required. In practical, soft IPs are available in the form of
RTL code, and firm IPs are in the form of gate-level netlist. While hard
IPs are available in layout format, the gate-level netlist can be extracted
using reverse engineering methods [23]. The proposed Trojan detec-
tion approach targets at detecting digital hardware Trojans that utilize
the bus interface to monitor the triggering signals and perform mali-
cious functions. Since there are many SoC assets that could be targeted
by an attacker, it is highly possible that security threats really exist.
With more third-party IPs integrated in a SoC system, system design-
ers are having less control over the security of the SoC design. As all
the IPs mounted in a SoC have access to the bus, a highly represen-
tative case is that a Trojan hidden in untrusted IPs can be triggered
either by specific data on the bus or by a certain operation. Moreover,
a malicious IP can typically affect system level behaviors through bus
communications, control flow and data transfer. Upon activation, a Tro-
jan may leak sensitive information from the chip, modify functionality,
or cause a denial-of-service to the system. The security properties are
developed by considering possible Trojan attacks and the operations of
bus protocol. These properties must resort to validation of the whole
system behaviors. Accordingly, the correctness of properties indicates
the absence of malicious logic. Please note that the proposed method
in the paper does not provide protection against attacks that are not
described by the set of security properties.

3.2. Model checking

Model checking [24] is an automated method for verifying models
in software and hardware applications. The model checkers are devel-
oped based on either symbolic approaches or satisfiability solving. Sym-

Integration, the VLSI Journal 64 (2019) 143-151

bolic model checking is one of the initial approaches used for hardware
system verification.

UPPAAL [25] is developed based on constraint-solving and on-the-
fly mechanism. It provides a tool box for modeling, simulation, and
verification of real-time systems. In this model checker, the real-time
system is first modeled as a network of timed automata and then the
property is checked using forward reachability analysis. Widely used
for verification of hardware and protocol designs, UPPAAL helps devel-
opers find errors and gain confidence in a design by achieving the goal
of a bug-free system. In this paper, model checker UPPAAL is utilized
to verify the SoC against security properties.

3.3. REFSM

Reverse Engineering Finite State Machine (REFSM) [26] leverages
gate-level netlist to extract a high level description of the control logic.
REFSM performs extraction efficiently through logic registers’ simula-
tion. If a more accurate model is required, external parameters can be
adjusted to take into account extra temporal logic. The state exploration
is performed using a breadth first search over the state space. Once
a state is selected for transition exploration, REFSM uses a modified
3-SAT algorithm to find all possible transitions. These transitions are
partially compressed using a branch and bound method on the deci-
sion tree. An optional FSM decomposition process can be used to break
a large FSM into several Graph Factors. The decomposition process is
implemented using a polynomial time heuristic. The heuristic uses the
information of the registers to make estimations on the final Graph Fac-
tors. In this paper, the decomposition function is turned off to allow
the generation of FSMs that fully emulate the entire FSM interactions
within the SoC design. The abstraction level of our method is down to
behavior level of the design, so any malicious behavior should not be
missed out. In this paper, REFSM is utilized to generate a non-simplified
FSM of the SoC design from gate-level netlist.

4. Methodology

In this section, we will demonstrate how a SoC is formalized from
gate-level netlist and how security properties are specified and mapped
to a design. For the reason that the proposed approach follows the pro-
cess of static formal verification methods and focuses on security ver-
ification of a design before the application stage, there is no overhead
in area and time in runtime. Workload of the method is only caused by
model formalization and property checking in design stage. The advan-
tages of the proposed framework are as follows: 1) The SoC formaliza-
tion method is able to extract behavioral models from gate-level netlist
in the SoC formalization process, and all behaviors are modeled without
any abstraction; 2) Security policies applied in the verification process
are proposed based on the analysis of potential system security vulner-

S

Gate Level FSM Data XML Data

Netlist File BER S File Farset File
Bus Protocol

'
o[ =EEEI »| UPPAAL
Properties

Specifications

Fig. 2. The working procedure of the verification process.



J. He et al.

abilities and interpretation of bus protocols.

As shown in Fig. 2, the framework includes three steps: 1) REFSM
is used to extract the model of a SoC from gate-level netlist; 2) Security
properties are developed by specifying the proper states of the FSM to
state formulae and path formulae; and 3) The extracted model against
security properties is verified in UPPAAL.

4.1. SoC formalization

Suppose a SoC design is in the format of gate-level netlist N, and
the netlist of each individual IPs of SoC, including I/0 interfaces, wires,
and gates (G), is denoted as n € N. The bus interconnect module [1]
belongs to N and is denoted as n;,,,,. The states of I/0 interfaces and
wires are defined as Sig. To extract FSMs from the netlist, a transforma-
tion f is carried out of N with consideration of keeping design details.
The extracted FSM is denoted as M, and the FSM of each individual
IP is denoted as m. The individual FSMs have connections among each
other, then m forms M. In addition, a configuration file is derived from
the bus interconnect module defined as Syn, which contains the syn-
chronization information among FSMs within M. The total states in the
FSMs are denoted as S and individual state is denoted as s. The trans-
formation of netlist to FSMs of each IPs can be given by equation (1)
and transformation of the entire SoC is given by equation (2).

f
n—m

@

NL MAsyn @

Equation (3) shows that N is made up of n;,,,, and netlist of multi-
ple individual IPs, and equation (4) shows that the FSM of the SoC is
composed of many individual FSMs, where k € Z.

3

N :=Nper Ay AN A Lo ATy

M:=mpuUmyU---Um @

Further, m is constructed by using states and transfers between states
as shown in the following equations (5)-(7), where [ € Z, and cons rep-
resents the conditions for the transfers to happen. A transition w is
defined by equation (6), where s, € S represents the source pre-state,
and s, € S represents the target post-state. The corresponding transi-
tion condition of w is shown in equation (7), where sig € Sigandj € Z.

A transfer is driven by changes of signals in circuit.

m:=w; AWy A ... A®; 5)
cons

W 3= Spre = Spost (6)

cons := sigy ASigy A ... /\sigj @)

Considering specific gates in the design, behavior B of a specific gate
g € G is described as a collaboration of input value gin, type of gate
gtype, and corresponding output value gout, and is denoted as equation
(8). Compositions of B for G produces corresponding states, which is
denoted as equation (9), where i € Z, gin and gout are both binary vec-
tor, and gtype belongs to an enumerable gate library.

()

. 8ope
B := gin—— gout

BiAByA...AB;—s )

146

Integration, the VLSI Journal 64 (2019) 143-151

4.2. Security specification

The main purpose of a model checker is to verify whether a model
satisfies required specifications. The informal specifications, which are
written in natural language, should be translated to a formal language
prior to verification. For UPPAAL, the properties should be specified in
Timed Computation Tree Logic, which consists of state formulae and
path formulae. State formulae describe individual states, and path for-
mulae quantify over paths or traces of the model [27]. As shown in
Figs. 1 and 2, after receiving the required information, the SoC designer
and verifier can agree upon a set of security properties that the SoC sys-
tem and IPs should satisfy.

All masters and slave IPs integrated on bus must obey the bus pro-
tocol and follow certain sequence of operations. The composition of
states is given by equation (10), where s; € my, s, € my, ..., s € my
and k € Z.

S=8] ASy A ASk (10)

Hardware Trojans in untrusted IPs may pass the functional testing
and verification, and can get activated through interactions among IPs
when mounted on the bus. Thus a malicious state set Sp,q € S exists
in the formal model accordingly. The components in the state set Sp4
are states related with the Trojans’ trigger and malicious payload. Then
the security specification is designed as whether there exits at least one
Path, which is denoted as equation (11), that makes Sp,4 reachable as
shown in equation (12), where p € Z. The states in the state set Sp,q
should be reached in a particular order following the Path to activate
the Trojans and then perform certain malicious function.

Path := cons; A consy A ... A cons,, 11
path
§— Sbad (12)

5. Implementations

In this section, the effectiveness of our framework for SoC system
protection is validated using practical cases.

5.1. Attack vectors

Typically, a SoC design can suffer from different types of attacks,
such as information leakage and DoS. While some of the threats come
from one single malicious Trojan-infected IP, other threats arise as a
collaboration of several system-level malicious IPs [5]. These attacks
are very hard to detect because the Trojans hidden in untrusted IPs all
act like non-malicious circuits and follow the normal bus operation. Fol-
lowing are two typical cases for a representative SoC implementation.
The first is the information leakage attack performed by one single mali-
cious Trojan-infected IP, and the second is the DoS attack performed by
several system level malicious IPs.

5.1.1. Information leakage attack

Information leakage attack is one of the most common attacks for
SoC designs. A hardware Trojan can be inserted in one of the slave mod-
ules. The Trojan is triggered by monitoring normal bus operation and
the trigger condition is a specific set of data transmitted on bus. Once
triggered, the Trojan can leak data which belongs to other modules.
This kind of attack is very hard to detect using normal method because
the Trojan’s behavior follows the normal bus protocol and leaks infor-
mation anonymously.

5.1.2. Denial of service attack
Denial of service attack can cause system failure at key points. A typ-
ical case is that a hardware Trojan can be inserted in one of the master



J. He et al.
Slave A Slave B Slave Trojan
(O Bus Interconnect
Master A Master Trojan
Fig. 3. Untrusted IPs mounted on bus.
Interconnect
Master 0 Slave 0
aster Asbiter - ave
AW — AW
AR —t> | Address > AR
W — - J g
R »w 1l | R
Master 1 - Write Data Slave 1
AW — ///i »! AW
AR G AR
w Read Data -
R R

Fig. 4. Shared access mode of AXI interconnect.

modules. The Trojan’s trigger can be hidden in one of the slave modules.
Once the Trojan is activated, it will continuously occupy the system bus
and block other master modules from using the system bus, thus caus-
ing the system’s malfunction or denial of service. Although there are
some strategies that can help preventing this type of DoS attack, such
as round-robin arbitration [28] in AMBA bus systems, the Trojan can
still cause denial of service in masters with lower priority settings [29].

5.2. Modeling process

A SoC design testbed is built upon six IPs, which are two masters,
AXl interconnect, and three slaves. As shown in Fig. 3, one of the slaves,
whose name is Slave Trojan, is infected with a hardware Trojan and this
Trojan will leak secret information after activated. Also one of the mas-
ters, whose name is Master Trojan, is infected with a hardware Trojan
and this Trojan will block other masters from using the bus once trig-
gered. The bus protocol in the SoC design is the Advanced eXtensible
Interface (AXI) which is one of the most widespread AMBA interface
[1], and AXI4 bus protocol is the latest version of AXI bus. A bus sys-
tem with third-party IPs based on the AXI4-Lite interface is established
and the AXI interconnect is configured in the shared access mode [29],
as shown in Fig. 4. In the shared access mode, the write channel and
the read channel are shared and connected to all slaves so that slaves

State

State

FSM Data Set

State

Integration, the VLSI Journal 64 (2019) 143-151

Table 1

Model parameter counts for the bus system.
Modules Gates States Transitions
Master A 1926 1244 14141
Master Trojan 2102 1244 14141
AXI Interconnect 1359 81 290
Slave A 1542 768 66880
Slave B 1513 768 66880
Slave Trojan 1512 768 66880

can access all data on the bus channel. Also, addresses provided by the
masters are broadcast to all slaves.

The details of modeling process are shown in Fig. 5. The first step is
to get gate-level netlist for the entire SoC design. The system is devel-
oped utilizing RTL code according to AXI4-Lite interface specifications.
The SoC design is synthesized to gate-level netlist using Design Com-
piler and the SAED_EDK3228 CORE Digital Standard Cell Library from
Synopsys. During the synthesis process, the original hierarchy of the
design is retained. The hardware Trojan showed in Fig. 3 is inserted at
RTL and also synthesized into gate-level netlist. The synthesis results
and gate counts for these modules are shown in Table 1. The Master
A interface has 1926 gates, while the Master Trojan interface has 176
more gates than Master A. The difference in the gate count is caused
by the Trojan in the master module, because the function of the two
masters is identical except for the address range and Trojan insertion.
Slave A interface has 1542 gates and Slave B interface has 1513 gates,
while Slave Trojan interface has 1512 gates. The difference in the gate
count between Slave B and Slave Trojan is also caused by the Trojan in
the slave module.

After the synthesis process, FSMs are extracted from the netlist using
REFSM tool [26], the details of this process are shown in Fig. 5. The
data structure of a state transition is composed of three parts: pre-state,
post-state and conditions. pre-state stands for the source state of a tran-
sition, while post-state stands for the target state. Each state in FSMs
are mapped to corresponding states of SoC circuit and conditions imply
the conditions which trigger transitions between different states. In the
extracted FSMs, a state is actually a reflection of one specific circuit
status, and the running hardware will lead to state changes in FSMs.
Accordingly, circuit’s behaviors, such as receiving data or triggering
the Trojan, are mapped to one or a sequence of state transitions. For
each slave module, there are over 700 states and 60,000 transitions.
Also there are over 1000 states and 10,000 transitions for the master
modules. The interconnect module is designed to be a combination of
connections between masters and slaves. The interconnect module has
the arbiter integrated inside in the experiment.

The next stage is to model FSMs as the input of UPPAAL. In gen-
eral, manually drawing schematic through graphical user interface is
used to facilitate modeling in UPPAAL. However, this manual modeling
approach suffers from scalability problems when there are too many
states and transitions, so a parser is developed to map all FSMs into
XML files which UPPAAL can read. Note that a stand-alone command
line verifier of UPPAAL verifyta [27] is leveraged to improve the data

A transition in FSM:
<Pre-State, Post-

State State, Condition>
Gate Level |
Netlist

XML Data Set
(A transition in XML:
<source, target, label>)

Fig. 5. Data structure and parsing in formalization process.



J. He et al.

processing capability. UPPAAL can take XML file as input with specific
data format as shown in Fig. 5. In the format, template indicates the
module, which is one formal model of an IP, and a transition in the
template means a FSM state transition. Furthermore, the pre-states are
mapped as source, the post-states are mapped as target, and the conditions
are mapped as transitions in UPPAAL and tagged with different labels.
These labels help to distinguish different kinds of transitions, such as
guard, synchronization, update or broadcast [25]. Finally, all the mod-
ules are assembled together as a group using the broadcast feature of
UPPAAL.

5.3. Property development

According to the formal models, security properties are developed in
natural language first, then formal specifications are constructed with
the knowledge of FSMs of the SoC and AXI4-Lite bus protocol.

5.3.1. Information leakage Trojan detection

For the information leakage attack, Master A first reads data from
Slave A and then writes the data to Slave B, and the data contains sensi-
tive information which should not be leaked to other slaves. The Trojan
is triggered by a specific write address, and Slave Trojan steals the data
that belongs to Slave B and will not give out any response signal. Prop-
erties are developed to prevent information leakage attack. In natural
language, the property is stated as “Information written to Slave B should
never be leaked to other IPs”. During the property development and ver-
ification process, the first verification should be carried out to check
whether there is any risk in the design, and the second step is supposed
to be locating where the risk comes from. If there are more than one
Trojan infected slave modules in the system, the source of the risk can
still be located by printing out the search paths, denoted as equation
(11), by UPPAAL, because the Trojans are not identical on either of
triggering conditions or of payload functions.

Slave B first recognizes that the address in the address channel
belongs to its own address range, then Slave B begins to receive data
from the data channel. During this operation, Slave B reaches a data
receiving related state in its FSM. At the same time, Slave Trojan also
recognizes the address in the address channel and the Trojan in Slave
Trojan gets activated, then the Trojan steals the data from the bus that
belongs to Slave B. Because Slave Trojan can pass the normal functional
checking, then it should follow the normal bus protocol, thus Slave
Trojan also reaches a similar data receiving state in its FSM. However,
in order to prevent information leakage, the above two states cannot
be reached at the same time. More specifically, only one slave is per-
mitted to receive data from the data channel when one write address
is sent to the address channel. Therefore, the above security property
can be constructed as equation (13). In this expression, state formula
slaveX selected represents the state of slave X that is ready to receive
data from the data channel. The path formula E <> ¢ represents that
there at least exits a path that satisfies ¢.

E <> (slaveT selected and slaveB_selected) 13)

In the SoC model of UPPAAL, states are labeled with the name of
modules and binary values. More specifically, before the binary values,
Par, Pm, Pmt, Pa, Pb and Pt represent Arbiter, Master A, Master Trojan,
Slave A, Slave B and Slave Trojan modules in UPPAAL, respectively.
Further, in the established model, the state relevant to data receiving
is numbered as 00111100000. As all the modules in the system follow
the same AXI4-Lite interface, the same binary value id00111100000
is utilized to represent the ready state of receiving data for all three
slaves. Then the security property discussed in (13) is elaborated as the

following equation (14).
E <> (Pt.id00111100000 and Pb.id00111100000) 14

If the property given in equation (13) is violated, another set of
security properties is utilized to identify the source of attacks. From

148

Integration, the VLSI Journal 64 (2019) 143-151

the description of attacks and the stealthy nature of Trojans, Slave
B provides response after receiving data from Master A while Slave
Trojan does not. This response given by a slave X is mapped to a
state, slaveX response, of the FSM. When the state slaveX selected is
reached, the behavior of response is equivalent to the judgment “the
state slaveX response is reachable from slaveX selected”. Hence, the above
security property is formally stated as equation (15).

slaveT selected — slaveT response
(15)
slaveB_selected — slaveB_response

In this expression, the path formula ¢ — y represents that when
the state formula ¢ is true, then the state formula y will also be
true. Also, the states slaveX selected and slaveX_response are numbered as
id00111100000 and id00011100001, respectively. The corresponding
security properties discussed in equation (15) are elaborated as equa-
tion (16).

Pt.id00111100000 — Pt.id00011100001
a1e)
Pb.id00111100000 — Pb.id00011100001

5.3.2. Denial of service attack detection

In the normal operations of a SoC system, the master modules are
granted permission by arbiter only when the masters need to access the
bus. During a DoS attack, Master Trojan keeps requesting the permis-
sion from Arbiter, and blocks other masters from using the bus for an
indefinite period of time. However, there are possibilities that the nor-
mal operated master uses the bus for a certain period of time, which
could cause a high false positive rate if only one master’s behavior is
considered. To address this issue, all master modules in the system are
taken into account in developing the system-level security properties. In
natural language, the property is that “The bus permission should never
be given to only one specific master continuously while other masters are
requesting permission”. During the property development and SoC ver-
ification, the first step is to check whether there exists a master that
keeps requesting permission from the arbiter, and the next step is to
check whether other masters require the permission simultaneously.

As a normal operation, a master first requests permission from the
arbiter and then the arbiter decides whether to give the master access
to the bus. During functional testing, the Trojan is not activated, and
Master Trojan only requests permission when needed according to the
normal function. However, when the Trojan in Master Trojan module
is activated, Master Trojan module keeps requesting permission from
Arbiter. If Master Trojan has a high priority settings, Arbiter will not
permit the requests from other master modules, like Master A, thus
causing a DoS or malfunction of the entire SoC. In order to prevent
such attack, security properties needs to be developed to check whether
there are infinite loops that involve between the request-permission
pair of Master Trojan module and Arbiter. The above security property
is constructed as equation (17). In this expression, the state formula
masterX_request represents the state that master X is requesting permis-
sion from Arbiter, and masterX permission represents that Arbiter gives
the permission to master X. The path formula E[]¢ represents that there
is at least an execution path in which ¢ holds for all states in the path.
The deadlock indicates that whether there is any infinite loop in the
model.

E[] deadlock imply
a7
(masterX request and masterX_grant)

Restricted by the expression ability of the query language [25]
of UPPAAL, the property demonstrated in equation (17) is decom-
posed into several specific formal properties. In the established
model, the state when Arbiter gives out permission signal is denoted
as idar11010010. The permission signal receiving states in Mas-
ter A and Master Trojan are denoted as Pm.idm10010000000 and



J. He et al.

Pmt.idmt10010000000, respectively. The decomposed security proper-
ties are given in the equation (18). The reachability of each permission
signal receiving state is checked first, then the loop between permission
request and response is checked to determine the trustworthiness of the
modules.

Par.idar11010010 — Pm.idm10010000000

Pm.idm10010000000 — Pm.idm10010000000
a18)
Par.idar11010010 — Pmt.idmt10010000000

Pmt.idmt10010000000 — Pmt.idmt10010000000

If the property given in equation (17) is violated, it means that
there exists a situation where one master keeps occupying Arbiter. The
next step is to check whether there are any other masters trying to
request the permission at the same time. The supplementary property
is demonstrated in equation (19). In this expression, the state formula
master request represents the state that a master is requesting the per-
mission from Arbiter, and A <> ¢ represents that in the whole system,
the state ¢ is reachable. After verifying this property in UPPAAL, traces
for state transitions are printed out for checking according to the bus
protocol, and the relevant states can also be verified.

A <> master_request (19)

6. Experimental results

After a design is formalized and properties are proposed, the model
checker verifier of UPPAAL verifyta [27] is utilized for verification on
a server. The server is equipped with 4 CPU cores and 8 GB memory,
using Linux Red Hat distribution as the operating system. Totally, 5
properties are designed for information leakage Trojan detection, 4
properties are designed for DoS attack detection. The results are shown
in Table 2. Note that in Table 2, Slave T represents Slave Trojan and
Master T represents Master Trojan.

6.1. Information leakage Trojan detection results

Three properties are designed for identifying the Trojan’s existence
and two properties are designed for Trojan localization. Property details
and experimental results are given in Table 2. For Trojan detection
properties, satisfaction of property in the first line of Table 2 means
that the data receiving state can be reached at the same time for Slave
Trojan and Slave B. In the second and third line, properties are not sat-
isfied, which implies that the data receiving state cannot be reached at
the same time for Slave A and Slave B, and for Slave A and Slave Trojan.
These results show that: 1) an attack occurred, and 2) either Slave Tro-
jan or Slave B is the malicious IP. To validate the satisfaction of these
properties, the system states given in Table 3 are checked. During the
information leakage attack, Slave Trojan’s state is the same with Slave

Integration, the VLSI Journal 64 (2019) 143-151

Table 3
System states.
Attacks Modules States ID
Information leakage Slave A Pa.id00000000000
Slave B Pb.id00111100000
Slave Trojan Pt.id00111100000
Denial of service Arbiter Par.idar11010010
Master A Pm.idm10010000000
Master Trojan Pmt.idmt10010000000

B, meaning that both Slave Trojan and Slave B are in the data receiving
state. While Slave A’s state proves that Slave A is indeed not in the data
receiving state.

Next, two Trojan localization properties are checked after Slave B
and Slave Trojan reach the data receiving state at the same time. The
satisfaction result implies that the response state is reached in Slave
B while the dissatisfaction result demonstrates the response state is
unreachable in Slave Trojan. So the conclusion is that the attack is
caused by Slave Trojan because of Slave Trojan’s malicious behav-
ior. Our method can also print out the states of signals under certain
conditions, so to validate the results of Trojan localization, the rel-
evant signals when the attack occurred are checked. s00 axi awvalid
indicates that Master A is signaling a valid write address and control
information. slave_axi wvalid indicates that valid write data is avail-
able. s00_axi awaddr represents the write address. Additional, the write
address allocated to Slave B in bus system is 0111. By analyzing the
value of those signals in equation (20), it is confirmed that the data was
supposed to be written to Slave B legally when the attack occurred. In
other words, information of Slave B is leaked under attack.

s00_axi_awvalid = 1

slave_axi wvalid = 1 (20)

s00_axi_awaddr = 0111

6.2. Denial of service attack detection

Four properties are proposed for denial of service attack detection,
and one manual check is performed. Property details and experimental
results are given in Table 2. Two sets of properties are designed to check
whether there exists an infinite loop that Master A or Master Trojan
keeps occupying the bus. Within each set of the properties, first we
check the normal operation that the arbiter gives permission to either
masters, then we check the loop between the master request and arbiter
permission. In the experiments, all paths that involve the master request
and arbiter permission states are checked. From the results, it is possible
that Master Trojan constantly requests permission from Arbiter, and
it is confirmed that the Trojan’s trigger is involved in this situation

Table 2
Security Property Checking results.
Attacks Properties Formal Property Results Time(sec)
Information leakage Concurrent data read by Slave T and B E <> (Pt.id00111100000 and Pb.id00111100000) Satisfied 97.82
Concurrent data read by Slave A and B E <> (Pa.id00111100000 and Pb.id00111100000) Not Satisfied 100.04
Concurrent data read by Slave T and A E <> (Pa.id00111100000 and Pt.id00111100000) Not Satisfied 98.42
Slave T’s response exists after data receiving Pt.id00111100000- > Pt.id00011100001 Not Satisfied 99.43
Slave B’s response exists after data receiving Pb.id00111100000- > Pb.id00011100001 Satisfied 101.69
Denial of service Loop between Master A request and Arbiter permission Par.idar11010010 - > Pm.idm10010000000 Satisfied 88.70
Pm.idm10010000000 - > Pm.idm10010000000 Non-loop N/A?
Loop between Master T request and Arbiter permission Par.idar11010010 - > Pmt.idmt10010000000 Satisfied 87.07
Pmt.idmt10010000000 - > Pmt.idmt10010000000 Loop N/A?
Master A permission state reachability A <> Pm.idm10010000000" Not Satisfied N/A?

2 Checking time not applicable.
b Under the condition where the DoS attack happens.

149



J. He et al.

after printing out the searching path. These results show that: 1) a DoS
attack happened, and 2) the normal operation of Master A module is
not influenced when Master Trojan is not triggered. The system states
when the DoS attack happens are shown in Table 3. The Arbiter is in the
state granting the permissions to master modules, while both Master A
and Master Trojan are in the state waiting for permission.

Then we apply the same conditions in our model and check whether
Master A can get the permission from Arbiter when the DoS attack hap-
pens. To validate the results of DoS attack, the relevant signals when the
attack happens are checked. More specifically, txn donel and txn done2
indicate that Master A and Master Trojan are permitted, respectively.
m_axi_awvalidl and m_axi awvalid2 represent the permission request in
Master A and Master Trojan, respectively. The states are demonstrated
in equation (21). By analyzing the value of those signals, there exist con-
flict between Master A and Master Trojan, and the permission is only
issued to Master Trojan. More specifically, during normal bus opera-
tions, if the DoS attack happens, Master A will never enter a bus per-
mission state during the attack. A DoS Trojan is detected in the SoC
system.

txn_donel =0

txn_done2 = 1
2D
mgxiwvalidl =1

myxiwvalid2 = 1

6.3. Discussions

Our method focuses on verification of the SoC system before the
implementation stage and no hardware modification of the original
circuit is needed. Compared with the state-of-the-art formal verifica-
tion based techniques, our method performs better in several aspects:
scalability, flexibility, and physical overhead. The proposed approach
is scalable for large SoC designs, and the scalability is guaranteed by
the model methods and verification strategies. In future work, we may
explore proper algorithms that are able to distinguish and remove nor-
mal states before the verification process, thus alleviating potential
state explosion issue. As the interactions between different IPs at sys-
tem level are considered and all vulnerabilities along with hardware
designs are mapped to states in our model, this paper provides a flex-
ible solution to address a wide range of threats in design stage. When
facing other types of potential hardware Trojan threats, the behaviors
of Trojans’ trigger conditions and payload functions will be analyzed
first according to the bus protocols. Security properties will then be
developed to specify the Trojans’ malicious logic utilizing the states in
the formalized model. Finally, the security properties are verified for
Trojan detection.

At the meantime, there is still room for further improvements in
our framework. In detail, the success in detecting the security vulner-
abilities relies on several aspects. First is the integrity of the security
properties. For a security threat, there exist several aspects that can be
utilized for property development. Theoretically, any security proper-
ties that have been verified should be comprehensive enough for judg-
ing whether there are any threats. However, for threats that are not
included in the properties, the method may not find the vulnerabilities.
Second is the checking engine and verification strategy, the UPPAAL
verification tool resorts to a width first strategy, so every time when
the property satisfies, the tool returns a path for the results. The success
of Trojan detection is based on the verification of well defined secu-
rity properties. In our paper, we have covered almost every aspects of
the mentioned vulnerabilities. We also set the tool to search and ver-
ify every possible paths until all paths that satisfies the property are
returned. Third is that some of the properties can not be fully expressed
using query language, we should exploit other formal language in the
future for better expression ability.

150

Integration, the VLSI Journal 64 (2019) 143-151

7. Conclusion and future work

In this paper, a formal verification approach is proposed to protect
the entire SoC system from threats of untrusted third-party IPs. FSMs
are firstly extracted from gate-level netlist of a SoC, then security prop-
erties are constructed by analyzing possible attacks from Trojans in IPs
and bus protocols. Finally, a model checker is used to verify whether
these properties are satisfied. For demonstrating the effectiveness of our
method, we consider a SoC with an AMBA bus and Trojans in some of
the slave and master modules. Results show that our framework can
detect and localize information leakage attack and DoS attack launched
by hardware Trojans hidden in IPs of a SoC. As future work we intend
to build a security property library to detect assorted hardware Trojans
in various bus protocols.

Acknowledgment

This work is partially supported by the National Natural Science
Foundation of China under Grant No. 61832018 and the China Schol-
arship Council under Grant No. 201606250061.

References
[1]1 Amba specifications, https://www.arm.com/products/system-ip/amba-

specifications, (Accessed 21 May 2018).

G. Mosensoson, Practical approaches to soc verification, in: Proceedings of DATE

User Forum, Citeseer, 2002, pp. 05-08.

H. Salmani, M. Tehranipoor, Analyzing circuit vulnerability to hardware trojan

insertion at the behavioral level, in: Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), 2013 IEEE International Symposium on, IEEE,

2013, pp. 190-195.

J. Mead, C. Bobda, T.J. Whitaker, Defeating drone jamming with hardware

sandboxing, in: Hardware-Oriented Security and Trust (AsianHOST), IEEE Asian,

IEEE, 2016, pp. 1-6.

A. Basak, S. Bhunia, T. Tkacik, S. Ray, Security assurance for system-on-chip

designs with untrusted ips, IEEE Trans. Inf. Forensics Secur. 12 (7) (2017)

1515-1528.

J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, R. Kastner, Information flow

isolation in i2c and usb, in: Proceedings of the 48th Design Automation

Conference, ACM, 2011, pp. 254-259.

X. Guo, R.G. Dutta, J. He, Y. Jin, Pch framework for ip runtime security

verification, in: Hardware Oriented Security and Trust Symposium (AsianHOST),

2017 Asian, IEEE, 2017, pp. 79-84.

M.T. Oliveira, A.J. Hu, High-level specification and automatic generation of ip

interface monitors, in: Proceedings of the 39th Annual Design Automation

Conference, ACM, 2002, pp. 129-134.

H. Lin, C. Yen, C. Shih, J. Jou, On compliance test of on-chip bus for soc, in:

Proceedings of the 2004 Asia and South Pacific Design Automation Conference,

IEEE Press, 2004, pp. 328-333.

J. Coburn, S. Ravi, A. Raghunathan, S. Chakradhar, Seca: security-enhanced

communication architecture, in: Proceedings of the 2005 International Conference

on Compilers, Architectures and Synthesis for Embedded Systems, ACM, 2005, pp.

78-89.

L.W. Kim, J.D. Villasenor, et al., A trojan-resistant system-on-chip bus architecture,

in: Military Communications Conference, 2009. IEEE, IEEE, 2009, pp. 1-6.

H. Shen, Y. Zhao, Htchecker: detecting hardware trojans based on static

characteristics, in: 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), 2017, pp. 1-4, https://doi.org/10.1109/ISCAS.2017.8050674.

K. Hasegawa, M. Yanagisawa, N. Togawa, Trojan-feature extraction at gate-level

netlists and its application to hardware-trojan detection using random forest

classifier, in: 2017 IEEE International Symposium on Circuits and Systems (ISCAS),

2017, pp. 1-4, https://doi.org/10.1109/ISCAS.2017.8050827.

H. Salmani, Cotd: reference-free hardware trojan detection and recovery based on

controllability and observability in gate-level netlist, IEEE Trans. Inf. Forensics

Secur. 12 (2) (2017) 338-350, https://doi.org/10.1109/TIFS.2016.2613842.

X. Chen, Q. Liu, S. Yao, J. Wang, Q. Xu, Y. Wang, Y. Liu, H. Yang, Hardware trojan

detection in third-party digital intellectual property cores by multilevel feature

analysis, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 37 (7) (2018)

1370-1383, https://doi.org/10.1109/TCAD.2017.2748021.

A. Waksman, S. Sethumadhavan, J. Eum, Practical, lightweight secure inclusion of

third-party intellectual property, IEEE Design Test 30 (2) (2013) 8-16.

J. Portillo, E. John, S. Narasimhan, Building trust in 3pip using asset-based

security property verification, in: VLSI Test Symposium (VTS), 2016 IEEE 34th,

IEEE, 2016, pp. 1-6.

J. Rajendran, A.M. Dhandayuthapany, V. Vedula, R. Karri, Formal security

verification of third party intellectual property cores for information leakage, in:

VLSI Design and 2016 15th International Conference on Embedded Systems

(VLSID), 2016 29th International Conference on, IEEE, 2016, pp. 547-552.

[2]

[3]

[4]

[5

[6

[7

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]


https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref2
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref3
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref4
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref5
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref6
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref7
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref8
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref9
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref10
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref11
https://doi.org/10.1109/ISCAS.2017.8050674
https://doi.org/10.1109/ISCAS.2017.8050827
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/TCAD.2017.2748021
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref16
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref17
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref18

J. He et al.

[19]

[20]

[21]

[22]

[23]

A. David, W. Yi, Modelling and analysis of a commercial field bus protocol, in:
Real-time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on,
IEEE, 2000, pp. 165-172.

A. Goel, W.R. Lee, Formal verification of an ibm coreconnect processor local bus
arbiter core, in: Proceedings of the 37th Annual Design Automation Conference,
ACM, 2000, pp. 196-200.

A. Roychoudhury, T. Mitra, S. Karri, Using formal techniques to debug the AMBA
system-on-chip bus protocol, in: Proceedings of the Conference on Design,
Automation and Test in Europe, 2003, pp. 828-833.

X. Guo, R.G. Dutta, P. Mishra, Y. Jin, Scalable soc trust verification using
integrated theorem proving and model checking, in: Hardware Oriented Security
and Trust (HOST), 2016 IEEE International Symposium on, IEEE, 2016, pp.
124-129.

R. Torrance, D. James, The state-of-the-art in ic reverse engineering, in: CHES, vol.

5747, Springer, 2009, pp. 363-381.

151

[24]
[25]
[26]

[27]

[28]

[29]

Integration, the VLSI Journal 64 (2019) 143-151

E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT press, 1999.

Uppaal, http://www.uppaal.org/, (Accessed 21 May 2018).

T. Meade, S. Zhang, Y. Jin, Netlist reverse engineering for high-level functionality
reconstruction, in: Design Automation Conference (ASP-DAC), 2016 21st Asia and
South Pacific, IEEE, 2016, pp. 655-660.

A tutorial on uppaal 4.0 (2006), http://www.it.uu.se/research/group/darts/
papers/texts/new-tutorial.pdf, (Accessed 21 May 2018).

E.S. Shin, V.J. Mooney III, G.F. Riley, Round-robin arbiter design and generation,
in: Proceedings of the 15th International Symposium on System Synthesis, ACM,
2002, pp. 243-248.

Axi interconnect, https://www.xilinx.com/support/documentation/ip_
documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf, (Accessed 21
May 2018).


http://refhub.elsevier.com/S0167-9260(18)30289-X/sref19
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref20
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref21
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref22
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref23
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref24
http://www.uppaal.org/
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref26
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://refhub.elsevier.com/S0167-9260(18)30289-X/sref28
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf

	SoC interconnection protection through formal verification
	1. Introduction
	2. Related work
	2.1. Runtime methods
	2.2. Static methods

	3. Background and preliminary
	3.1. Threat model
	3.2. Model checking
	3.3. REFSM

	4. Methodology
	4.1. SoC formalization
	4.2. Security specification

	5. Implementations
	5.1. Attack vectors
	5.1.1. Information leakage attack
	5.1.2. Denial of service attack

	5.2. Modeling process
	5.3. Property development
	5.3.1. Information leakage Trojan detection
	5.3.2. Denial of service attack detection


	6. Experimental results
	6.1. Information leakage Trojan detection results
	6.2. Denial of service attack detection
	6.3. Discussions

	7. Conclusion and future work
	Acknowledgment
	References


