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16.1 Overview

Toward further enhancing the effectiveness of postfabrication hardware Trojan
detection solutions and alleviating their limitations, as discussed in previous
chapters, several methods which rely on modifying the current IC design flow have
been developed by the hardware security and trust community. Collectively termed
design for hardware trust [1], these Trojan prevention methods aim to prevent
insertion and facilitate simple detection of hardware Trojans. In contrast to Trojan
detection methods which passively test chips anticipating that the inserted Trojans
will be identified based on their abnormal behavior, Trojan prevention methods
take a proactive step by changing the circuit structure itself in order to prevent the
insertion of Trojans. In order to achieve this goal, the entire IC supply chain needs
to be revisited. The resulting modified IC supply chain emphasizes design security
to counter Trojan threats and provide a solution for trusted IC design.

Among the proposed Trojan prevention methods, the majority aim to comple-
ment side-channel-based Trojan detection methods, by inserting non-functional
circuitry during the chip design stage, to facilitate the construction of side-channel
signatures. Hereafter, we refer to these methods as side-channel fingerprint-based
hardware prevention methods. Some of them can only play an auxiliary role to
Trojan detection methods and help in measuring internal side-channel information
which is otherwise untestable using off-chip testing equipment. Others go further
to not only measure internal side-channel information but also to compare the
measured information with predefined threshold values using a special-purpose
module which is embedded on-chip and which is responsible for deciding whether
abnormality exists within the side-channel signals. Design overhead is the major
concern of side-channel fingerprint-based Trojan prevention methods because
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side-channel measurement and analysis circuits can be rather complex and consume
large on-chip area. Interestingly, for this reason, Trojan prevention methods of
this kind typically select path delay as the basis for constructing a side-channel
fingerprint of a chip, because delay measurement modules are light-weight in terms
of overhead.

Other methods rely on the assumption that attackers will only use rare events
to trigger the inserted Trojans. Such methods attempt to enhance traditional
functional/structural testing methods by increasing the probability of fully activating
inserted Trojans during the test stage. Among them, design obfuscation [2] conceals
the circuit so that attackers cannot calculate the probabilities of real events.
Alternatively, dummy scan flip-flops [3] and the inverted voltage scheme [4] aim to
balance internal signal transition frequencies in order to remove rare events. Along
a different direction and in order to avoid relying on such assumptions, a Design
for Trojan Test (DFTT) methodology [5] is proposed as a general design hardening
scheme.

Lastly, methods that target protection of Intellectual Property (IP) have recently
started to appear in the literature. Realizing the importance of protecting third
party IP, which constitute a significant portion of the design in most contemporary
systems on a chip, the authors in [6, 7] proposed the concept of proof-carrying
hardware (PCH), which is based on a well-developed formal software protection
methodology, namely proof-carrying code (PCC).

16.2 Delay-Based Methods

16.2.1 Shadow Registers

Shadow registers constitute one of the path delay-based Trojan prevention methods
which was first proposed in [8] and then carefully evaluated in [9]. Trojan detection
based on path-delay fingerprints was first proposed in [10] where the authors
showed that with the help of statistical data analysis, this method could effectively
detect hardware Trojans as small as 0.2% of the total on-chip area, even when
considering ˙7:5% process variation. An obstacle preventing wide usage of this
path delay-based Trojan detection method is the difficulty of measuring/observing
delays of internal paths (i.e. from register to register but not connected to primary
input/output). Without internal path delay information, it is almost impossible to
construct the full path-delay fingerprint to which chips-under-test can then be
compared. Shadow-register provides a possible solution to this problem by enabling
a mechanism for measuring internal path delay.

Figure 16.1 shows the basic architecture of the shadow register Trojan prevention
scheme [8]. From this architecture, it can be seen that the basic unit contains one
shadow register one comparator and one result register. The shadow register is
located in parallel with the destination register at which a path ends. Different from
the system clock, shadow registers are controlled by a negative-skewed clock signal
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Fig. 16.1 Trojan prevention architecture with shadow registers [8]

the shadow clock. The frequency and phase of the system clock are kept constant
in order to maintain the functionality of the original circuit even when in delay
testing mode. The shadow clock has the same frequency as the system clock but its
phase is adjustable. In order to perform internal path delay measurement, an off-chip
clock signal generator or an on-chip Digital Clock Manager (DCM) is required. The
precision of the signal generator or DCM decides the accuracy of the measured path
delays. At the beginning of each internal path delay test, the phase of the shadow
clock is reset to the same as that of the system clock so that the value in the shadow
register is the same as the destination register and the output of the comparator
is “0.” Then the shadow clock is negatively skewed step by step according to the
precision of the signal generator or DCM. The adjustment continues until the output
of the comparator is “1” indicating that the value in the shadow register is now
different from the value in the destination register. The output “1” is then stored in
the result register and finally read out through a scan chain (not shown in the figure).

The shadow register architecture significantly improves the observability inside a
chip to make it easier to construct path delay fingerprints both for genuine chips and
for chips-under-test. Although the authors in [9] demonstrated effectiveness of this
Trojan prevention method on a sample target circuit, i.e., an 8x8 Braun multiplier,
this prevention scheme suffers from several inherent limitations. These limitations
and possible solutions are discussed next.

1. The phase adjustment step size of the signal generator or DCM is critical to
the accuracy of the measured delay and also related to the effectiveness of this
method. A high-resolution on-chip DCM is preferable but it would consume large
area and power.

2. The existence of process variation and measurement noise can easily deteriorate
testing results. A popular way of solving this problem is to leverage statistical
data analysis methods to deal with the measured delay information.
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Fig. 16.2 Ring oscillator constructed by three NAND gates

3. As the scale of the original circuit increases, the total number of paths to be
measured also increases. More test vectors should be applied to the design in
order to cover a large number of paths and improve the testing coverage rate,
but at higher testing cost. The continued increase of circuit size and complexity
also means that more shadow registers are required to be inserted in the original
design. These shadow registers are supported by the shadow clock. From a layout
point of view, a design with two clock trees would cost large on-chip area
and the chip performance may deteriorate due to inefficiencies in clock signal
distribution.

4. The question of reading out the information in result registers triggers another
concern regarding this Trojan prevention method. Embedding result registers into
the original scan chain to reuse the scan chain controller is an efficient way to
reduce the area of the prevention scheme, but it forces the chip into scan mode
frequently by stopping the normal operation.

16.2.2 Ring Oscillators

In order to lower the testing cost raised by shadow registers but still leverage path
delays to prevent the insertion of hardware Trojans, some researchers tried not to
measure the existing path delays but insert new paths and measure the delay of
these paths instead. For the following reasons, ring oscillators are among the most
popular choices to construct the extra internal paths:

1. Small area: the area of ring oscillators is much smaller than that of other Trojan
prevention architectures, so the total overhead is lower.

2. Easy insertion: As the architecture of the ring oscillator is very simple, it is easy
for designers to insert ring oscillators inside circuit designs with low impact to
the original design. For the same reason, it is easy to predict the behavior of the
inserted ring oscillators even when considering large process variation.

Figure 16.2 shows a sample ring oscillator constructed with three NAND gates.
Using NAND gates instead of inverters can improve the controllability of the
ring oscillator. For this example, there are three control signals, con1, con2, and
con3, to control oscillation. Only if all three signals are of high voltage could
the ring oscillator start oscillating. Under normal operation, all the inserted ring
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Fig. 16.3 Trivium-based encryption platform

oscillators will be muted to avoid power consumption; while in testing mode,
switching the value of controlling signals allows the testers to turn on the selected
ring oscillators and then read out the oscillation frequency. In addition to ensuring
low power consumption, the added control signals can also prevent attackers from
understanding the details of the inserted ring oscillators.

The main idea behind ring oscillator-based Trojan prevention methods is that
any malicious modifications to the original design would also change parameters
of pre-inserted ring oscillators. These changes include lower power supply voltage,
higher input current, longer delay between NAND gates due to rewiring, etc. One
question raised by this method is how many ring oscillators are needed and where
they should be located inside the chip. The author in [11] uses an example to
answer both questions where the target system contains a Trivium encryption core,
an interpret module, an RS232 transceiver and a JTAG TAP, as shown in Fig. 16.3.

Three ring oscillators are inserted into the encryption platform: one in the RS232
Transceiver, one in the interpret module and a third in the JTAG TAP. The location
selection covers both the datapath and the control logic and emphasizes the security
weakness of input/output modules in the target platform. The expectation is that by
carefully selecting insertion locations, one can lower the number of ring oscillators
needed and increase the efficiency of the Trojan prevention scheme. However,
this kind of location selection is solely based on designers’ experience and their
understanding of the target circuit, and could have limitations that attackers may
use to circumvent the entire protection scheme. For example, the insertion of ring
oscillators in the RS232 transceiver and JTAG TAP may be able to detect any
modifications trying to leak information through the RS232 channel and prevent
any malicious change in the control logic of scan chain. Yet malicious addition of a
simple shortcut between the plaintext input and the RS232 output channel can easily
evade this prevention method and leak the plaintext, as the latter is not protected by
any of the three ring oscillators [12].
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Another Trojan prevention scheme using ring oscillators, different from the
method mentioned earlier, is to construct ring oscillators from gates of the original
design by inserting multiplexors (MUXs), NAND gates, and inverters. Rather than
inserting ring oscillators into the design in order to detect additional malicious
circuitry in an indirect way, this method highly improves the sensitivity of the
constructed ring oscillators because any modifications will directly change the
internal architecture and result in a significant frequency change for the constructed
ring oscillators. At worst, the insertion of malicious circuitry may mute the ring
oscillators. The designers can also adjust the coverage rate (the percentage of the on-
chip area which is part of the constructed ring oscillators) to control area overhead
of the proposed method. To fully present the tradeoff between hardware security
level and area overhead, a 4-bit carry look-ahead adder is chosen as the sample
circuit in the 2010 CSAW Embedded System Challenge hosted by the Polytechnic
University of NYU [13]. Contest organizers proposed three circuit hardening levels
by constructing two, four, and six ring oscillators inside the adder. Among them,
the low protection level (two ring oscillators) with two MUXs and two inverters
covers 62% of the original design’s gates (16 of 26 gates). The medium protection
level (four ring oscillators) with four MUXs and four inverters covers 85% of
the original design’s gates (22 of 26 gates). The hard protection level (six ring
oscillators) with six MUXs and six inverters covers 92% of the original design’s
gates (24 over 26 gates). Figure 16.4 shows the gate level architecture of the 4-bit
carry look-ahead circuit and one sample ring oscillator constructed by an additional
Inverter, an additional MUX and three gates from the original design (an XOR, an
AND, and an OR gate). When the ring oscillator control signal RO is “0,” the circuit
performs its normal functionality. When it is set to “1,” however, the ring oscillator
starts oscillating. Testers can then measure the frequency of the constructed ring
oscillators to decide whether the chip is genuine or not.

It is easy to construct internal ring oscillators in small-scale circuits such as the
one shown in Fig. 16.4, but for more complex circuits, designers will have to rely on
algorithms to automate the insertion process, hence such automation tools should
also be developed. Research in this domain is still in progress and more efficient
algorithms may be proposed in the future.

Although both ring oscillator insertion and ring oscillator construction are
lightweight in terms of overhead, one concern with both methods is the ability
to read out the frequency of these internal ring oscillators. Adding pins for each
ring oscillator could be a straightforward solution, which can leverage the high
precision of external test equipment to measure frequency. Considering the large
number of ring oscillators, however, it is not an economic way to use or reuse
valuable pin resources. In contrast, most current solutions use on-chip frequency
measuring modules to accomplish this task. Counters are among the most popular
frequency measuring modules. Figure 16.5 shows a sample measuring module
which includes two separate counters, Clock Counter and RO Counter [14]. The
global RST signal is used to reset both counters. The Clock Counter has its clock
pin connected to the system clock and counts the cycles of the system clock while
the RO Counter is connected to the output of the ring oscillator. The output of
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Fig. 16.4 Gate level circuit of 4-bit carry look-ahead adder and an inserted ring oscillator

Clock Counter is compared to a predefined threshold value N to decide the ON/OFF
state of RO Counter. At the testing stage, the ring oscillator is enabled. Both
counters start to count, but at different frequencies; one based on the system clock
frequency and the other based on the frequency of the connected ring oscillator.
When the output of Clock Counter is equal to N , the RO Counter stops counting
and its output over N is a measure of a relative frequency to the system clock.
Though quite compact, the added frequency measuring modules still increase the
overhead of this Trojan prevention method.

All previously introduced hardware Trojan prevention methods try to prevent
Trojan insertion by measuring internal path delays. None of them, however, pays
attention to the security of the inserted testing circuit itself. As a result, the overall
effectiveness of these methods may be lower than expected. The limitations of
unsecure protection circuits have already been pointed out by various researchers,
who have demonstrated the weakness of these methods by presenting success-
ful hardware Trojan attacks that these prevention methods are unable to detect
[11, 12, 14–17]. In fact, the focus of the embedded systems challenge at CSAW
2010 [13] was to find possible security limitations of the ring-oscillator Trojan
prevention method. Reports from this competition conclude that currently proposed
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hardware prevention methods are far less secure than initially believed. More than
200 Trojan designs were submitted to this competition, and many of them succeeded
by tampering with the Trojan prevention method.

16.3 Rare Event Removal

Besides the side-channel fingerprint-based Trojan prevention method, other re-
searchers are trying to develop functional/structural Trojan prevention methods.
In [18], the author conjectures that attackers will only choose rarely occurring
events as triggers and proposes the idea of Trojan vectors which can trigger low-
frequency events to enhance the detectability of traditional structural testing. Here
the basis for launching Trojan attacks is the event probability because attackers
will choose low-frequency events to trigger the inserted Trojans. Consequently, if a
design hardening scheme increases the difficulty of calculating the event frequency
and/or makes rare events scarce, attackers will have to randomly pick trigger events
and the probability of the inserted Trojans being activated during the testing phase
will increase, thereby deterring attackers from inserting Trojans inside the design.
Design obfuscation [2], dummy scan flip-flops [3], and the inverted voltage scheme
[4] are three representatives of functional/structural Trojan prevention methods.

Design obfuscation, by definition, means that a design will be transformed to
another one which is functionally equivalent to the original, but in which it is
much harder for attackers to obtain complete understanding of the internal logic,
making reverse engineering much more difficult to perform. In [2, 15], the authors
propose a Trojan prevention method that obfuscates the state transition function to
add an obfuscated mode on top of the original functionality (called normal mode).
Figure 16.6 shows the obfuscated functionality and normal functionality after the
state transition function of the original design is obfuscated. As shown in the figure,
the transition arc K3 is the only way the design can enter normal operation mode
from the obfuscated mode. Thus, only one input pattern is able to guide the circuit
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Fig. 16.6 Trojan prevention by design obfuscation [15]

into its normal mode. This special input pattern is called the initialization key
sequence. Without knowing this key sequence, attackers are unlikely to get into
normal mode by randomly picking input patterns, and the event probabilities derived
from simulations cannot reflect their real probabilities if only running in normal
operation (in order to prevent attackers from finding the initialization key sequence,
the size of the obfuscation state space is designed to be very large). After design
obfuscation, any inserted hardware Trojans can be divided into two groups, one
with all (or part) of the trigger states from obfuscation mode and the other with all
trigger states from normal mode. For the former group of Trojans, because the state
space in obfuscated mode is unreachable in normal operation, these Trojans will
never be triggered at all. For the later group of Trojans, while they are valid, the
real event probabilities are likely different from what the attackers expect based on
simulation, so it is not necessarily true that these events indeed occur rarely. These
two groups of Trojans are labeled as invalid Trojans and valid Trojans in Fig. 16.6.

The design obfuscation method is easy to implement because it can leverage
commercial EDA tools. An algorithm is proposed to automate the whole obfuscation
process [2]. However, in many cases, the underlying assumptions of this hardware
Trojan prevention method based on design obfuscation may not hold entirely true.
One assumption here is that attackers will only use rare events to trigger the Trojan.
This assumption omits the always-on hardware Trojans, and the definition of “rare”
is rather arbitrary. Note that the other two Trojan prevention methods which we
introduce later, namely dummy flip-flop insertion and inverted voltage, also suffer
from this problem. Another assumption is that attackers have no knowledge of the
obfuscation mechanism but only try to analyze the obfuscated version of the code to
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Fig. 16.7 Transition probability analysis on original circuit (a) and with dummy flip-flop (b) [3]

find rare events. This method assumes that attackers do not choose triggers from the
space between exhaustive input patterns and ATPG patterns (plus rare events), even
though this space is very large. If any of these assumptions are not valid in reality,
the effectiveness of this entire Trojan prevention method will be diminished.

In [3], the authors first model the internal net transition probability using
geometric distribution and calculate the value based on the number of clock cycles
needed to generate a transition on a net. A Trojan prevention (or more accurately, a
Trojan activation) methodology is then proposed which can increase the probability
of generating a transition in functional Trojan circuits, if any exist, and analyze the
transition generation time. In order to increase the activity of nets with low transition
probability, extra flip-flops (called dummy flip-flops) are inserted into the original
design. These dummy flip-flops are inserted in a way that does not change the
design’s original functionality. Figure 16.7 shows the procedure to calculate the net
transition probability with and without dummy flip-flops. In Fig. 16.7a, the sample
circuit contains seven AND gates located in three levels with eight inputs and one
output. If it is assumed that, for each input, the probabilities of that input being “1”
and “0” are equal, then due to the characteristics of AND gates, the probability of
a “0” output is 255/256 while the probability of a “1” output is only 1/256, which
is rather low. In Fig. 16.7b, a dummy flip-flop and an OR gate are inserted in one
branch of the final AND gate and the probability of a “1” output is increased to
17/512, 8.5 times that of the original circuit.

This dummy flip-flop-based Trojan prevention method can help Trojan detection
and Trojan prevention in two ways:

1. Power-based side-channel analysis: Due to the insertion of dummy flip-flops and
related AND/OR gates, the activity of Trojans under ATPG-generated testing
patterns will increase to consume more power during the testing stage. The
increased ratio of Trojan power consumption to total power consumption will
lead to an easy detection of inserted Trojans and will finally prevent attackers
from inserting Trojans even if they know the design is protected by the dummy
flip-flop protection scheme.

2. Functional testing: The inserted dummy flip-flops can balance the transition
probabilities of internal nets so that the probability that the inserted Trojan is fully
activated increases. The rare occurrence assumption, which attackers rely on to
evade traditional functional testing, can be invalidated and erroneous responses
may be observed at a primary output.



16 Design for Hardware Trust 375

Trojan
Trigger

Trojan
PayloadP1

P4

P3

P2

P

Trojan
Trigger

Trojan
PayloadP1'

P4'

P3'

P2'

P’ ≈(1-P)

Trojan
Trigger

Trojan
PayloadP1"

P4"

P3"

P2"

P” ≈ (1-P)

a

b

c
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In [4], the authors proposed a supply voltage inversion method to magnify Trojan
activity without inserting extra gates. The key idea here is that reversing a gate’s
power supply and ground changes the function of the gate to make low probability
outputs occur more frequently. Figure 16.8 shows how this method can help to
detect the inserted Trojan by switching the majority value and minority value of
any internal gate [4]. The trigger of the sample Trojan is a four-input AND gate
and P1; P 2; P 3; P 4 are the probabilities of the four inputs being set to the non-
controlling value 1, respectively. So the probability that output equals to its minority
value 1 is approximately P D P1 � P 2 � P 3 � P 4. If the supply voltage to the
Trojan trigger is inverted while the supply of the Trojan payload remains the same,
the Trojan structure will be changed to that of Fig. 16.8b where the AND gate is
converted into a NAND gate with the majority value being 1. Now the probability
of triggering the Trojan is P 0 � .1 � P /. Figure 16.8c shows the case when the
supply voltage of both the Trojan trigger and payload are inverted and the payload
gate is converted to OR gate but the Trojan activation probability does not change.

One problem of supply voltage inversion in CMOS logic is that the degraded
gate potential of one stage of CMOS gates degrades the gate potential on the
next stage and the signal might stop propagating after a few stages. To avoid this
degradation problem, the authors in [4] modified this method to apply inverted
voltage to alternate stages in the original circuit.
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Fig. 16.9 SoC design with DEFENSE logic [19]

In [19], the authors proposed infrastructure logic to perform online security
checks during normal operation, focusing on the System-on-Chip (SoC) domain.
A reconfigurable logic called design-for-enabling-security (DEFENSE) is added
to the SoC platform to implement real-time abnormality monitoring. Figure 16.9
shows the architecture of a hardened SoC chip with DEFENSE. The basic module of
DEFENSE logic is the Signal Probe Networks (SPN) – Security Monitor (SM) pair.
Here a signal probe network is a distributed pipelined MUX network configured
to select a subset of user defined important signals and transport them to Security
Monitors, programmable transaction engines configured to implement an FSM to
check user-specified behavioral properties of the signals from SPNs. The Security
and Control Processor (SECOPRO) reconfigures SPNs to dynamically reselect
monitoring signals. All the configurations are encrypted and stored in secure flash
memory so that their function is not visible to reverse engineering.

When signal abnormality is detected, the signal control module enables SECO-
PRO to override the value of any suspicious signals and restore the whole system
back to normal operation. The core exhibiting illegal behavior may also be isolated.
While effective, the overhead of this method remains is a concern because high
coverage of on-chip signals requires a large number of nets to be monitored. Fairly
sizeable on-chip area will also be occupied by the DEFENSE logic.
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16.4 Design for Trojan Test

The authors in [5] developed a general hardening scheme which follows the
paradigm of the widely accepted structural fault testing methodology, Design for
Test (DFT). As the target of this method is to prevent attackers from inserting
hardware Trojans into circuit designs, it has been termed DFTT. Despite the naming
similarity, the DFTT methodology has some key differences from DFT. For DFT
methods, test vectors are generated based on the assumption that the CUT (circuit-
under-test) is genuine, with no inserted malicious circuits, because the purpose of
DFT is to detect manufacturing faults. However, for DFTT, the goal is to generate
test vectors with the objective of detecting maliciously inserted circuits.

The central idea of DFTT methods is that any effective hardware Trojans must
impose a specific structure on the infected circuit, which the attacker leverages to
leak internal information. While this structure is not known to circuit designers,
scrutiny of all active logic on-chip with the help of local probing cells may be
sufficient to reveal its existence and, thereby, expose the hardware Trojan. This
method is robust because even if attackers have a complete picture of how this
scrutiny works, it is still difficult to evade. Performing DFTT on the original design
is known as hardening a design. Figure 16.10 shows the three basic steps of DFTT,
which are explained later.

16.4.1 Step I: Code Evaluation

DFTT coding rules are first developed through which the original Hardware
Description Language (HDL) code is converted to DFTT-compliant code.

16.4.2 Step II: Sensitive Path Selection

An assumption is made here that the attacker’s purpose is to insert an additional
structure in the original design to reliably steal internal sensitive information. For
this purpose they would attempt to evaluate the relative merit of internal signals
(such as the encryption key in a cryptographic chip) before inserting Trojans. Hence,
the DFTT tool (developed in parallel with the DFTT methodology to automate
the whole DFTT procedure) isolates paths in which sensitive signals, or other
signals which are auxiliary to sensitive signals, flow from primary inputs to primary
outputs.
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16.4.3 Step III: Inserting Probing Points

Based on the sensitive paths chosen in Step II, probe cells are inserted into the
DFTT-compliant code. This step is similar to the insertion of scan flip-flops (SFFs)
when performing DFT, but the probe cell is slightly different from a normal SFF
because of the emphasis on two key characteristics: genuineness and integrity [5].

After the design is hardened using the DFTT methodology, the subsequent testing
process is similar to that used in DFT. DFT-style trigger-response pairs generated
by DFTT tools are loaded into the CUT. Assuming that there are no manufacturing
faults within the design, any mismatch between the CUT’s response sequence and
the genuine response sequence reveals that internal logic has been modified. Reverse
engineering or other related testing methods can then be performed to further
analyze the suspicious chips.
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16.5 Proof-Carrying Hardware

In [20], the authors raised a limitation of existing Trojan detection methods, namely
the fact that they all try to scrutinize ICs for the presence of Trojans in the post-
silicon stage. Far less is known or has been researched regarding this problem in
pre-silicon stages. Unfortunately, the same problem exists in the design for hardware
trust domain. All the previously introduced Trojan prevention methodologies are
based on the assumption that any inserted Trojans will be detected relatively easily
in the post-silicon stage if it is simple for designers to measure side-channel signals
or hard for attackers to find true probability of internal events. None of these
methods have tried to protect third-party hardware IP from hardware Trojan threats.

Recently, research on how to combat the threats of hardware Trojan on third party
IP has emerged. Pertinent efforts attempt to exploit a well-developed body of work
in the software domain, known as PCC. Originally developed by Necula et al. [21]
in 1996, PCC provided a new way of determining whether code from a potentially
untrusted source is safe to execute. This was accomplished by establishing a formal,
automatically verifiable proof that the questionable code obeys a set of formalized
properties. Such a proof may demonstrate, for example, that a given set of machine
instructions follows the predefined type-safety rules of a particular programming
language. The proof is then combined with the code, which allows the recipient to
automatically check the code against the proof. Only if the check process finishes
with no errors can the recipient know that the code is safe to run.

The idea of expanding this methodology to the hardware trust domain first
appeared in [6]. The authors made a case for the necessity of PCH based on the
increasing prominence of FPGAs and reconfigurable devices; if hardware itself
becomes just as instantaneously reprogrammable as software, then the capability
to establish the trustworthiness of unknown circuitry is inherently desirable. The
authors further elucidate the novelty of their approach by contrasting it with other,
more common security practices such as formal verification or model-checking.
They argued that PCH, in contrast to these, is unique in that it requires very little
of end users, who need only perform a straightforward validation check of the
proof. The burden of demonstrating security instead falls on the producers, who
must construct the proof when they provide the original IP core. This new approach
was also differentiated from simple checksum-hashing of FPGA bitstreams because
the latter does not take into account the actual functionality of the code being
transmitted.

As a first step toward provable hardware security, the authors proposed a
technique for presenting proofs of combinational equivalence for digital logic
functions implemented in FPGA bitstreams. This approach required an agreed-upon
specification function S.x/ for each logic function and an implementation I.x/ ex-
tracted from the FPGA netlist. From these two inputs, a proof would automatically
be generated to show that the implementation I.x/ was combinationally equivalent
to the specification S.x/. The consumer could then check this proof against I.x/

and S.x/ to quickly see that the implemented function agrees with its specification.
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The specific technologies employed to achieve this result include standard FPGA
CAD tools, a satisfiability (SAT) solver, and a SAT trace checker. From the netlist
output of the CAD synthesis tools, each logic function must be proven against
its specification. For each such function, then, the authors propose to create a
structure called a “miter” which is formed by taking the XOR of S.x/ and I.x/

as M.S.x/; I.x//. As the output of the miter can only be true if there exists some
boolean vector x for which S.x/ ¤ I.x/, a proof that M(S(x), I(x)) is unsatisfiable
therefore demonstrates that S.x/ and I.x/ are equivalent.

When the SAT solver finds that M.S.x/; I.x// is indeed unsatisfiable, a trace is
output to show how this unsatisfiability result was achieved. It is precisely this trace
that constitutes the correctness proof under the PCH system. When traces for all
relevant functions have been extracted, they are sent along with the bitstream to the
consumer. The consumer may then regenerate a miter for each logic function from
its netlist implementation and check this against the corresponding proof trace. If
all functions check against their traces, then the hardware is accepted as safe.

This work represented a first step toward proof-based security. It is clear
that many types of Trojans could be prevented under such a system because
modifications to the combinational behavior of an FPGA bitstream’s logic functions
would be immediately detectable. Nevertheless, the expressiveness of this approach
is limited by the need to specify exact Boolean functionality. In software PCC,
security policies have generally specified a broader definition of “safe” behavior
without necessarily stipulating precisely what a program must compute.

In response to this limitation, other researchers have sought ways of expanding
PCH to encompass a more abstract notion of security-related properties. The authors
in [7] present Proof-Carrying Hardware Intellectual Property (PCHIP) to guarantee
proofs about a circuit’s HDL representation, rather than the FPGA bitstream. PCHIP
bears a superficial resemblance to more traditional formal verification methods in
that it uses a domain-specific temporal logic to codify properties, but its ultimate
goal is the transmission and efficient validation of proofs of these properties, which
standard formal verification cannot accomplish.

PCHIP introduces a new protocol, shown in Fig. 16.11, for the design and
acquisition of hardware intellectual property IP cores. Under this system, a hardware
IP consumer commissions a vendor to construct a module according to both a
standard functional specification and a set of formal security properties stated in
a temporal logic. These properties are markedly different from the specification in
that they do not necessarily describe the functional behavior of the module; rather,
they delimit the acceptable boundaries of this behavior so that the consumer can rest
assured no undesired functionality exists. It is then the IP vendor’s task to construct
a formal proof that his module complies with these properties. Just as in PCC and
PCH, the resulting proof is then transmitted back to the consumer along with the IP
cores.

Unlike PCH, however, the properties allowed in PCHIP are much more abstract.
In [7], the authors described a formal semantics for a carefully codified syntax of
an HDL using the Coq proof assistant [22]. In the context of this semantic model
they were able to then craft a temporal logic describing the behavior of signals in
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Fig. 16.11 IP core design and aciqusition protocol [7]

synchronous circuits. Security-related properties could be specified in this logic as
trees of complex predicates and quantifiers, as opposed to simple Boolean function
specifications allowed in PCH. PCHIP provides a set of rules to be applied to HDL
code in order to generate a set of propositions in Coq that represent that code’s
behavior in the already established semantic model. These propositions are then
referred to in the proofs that must be constructed for each security-related property.

Figure 16.12 shows how proof-checking proceeds when the consumer receives a
circuit’s IP code and its corresponding Coq proofs. The code is first passed through
a “verification generator” to regenerate all the propositions describing the circuit’s
behavior, since it is not known whether those included in the received proof actually
match the vendor’s untrusted code. However, because they are generated according
to the same set of rules on both the vendor’s side and the client’s, it is guaranteed that
the resulting propositions will also be the same. Were this not so, then proofs would
not be able to refer to them consistently. The regenerated semantic description is
then recombined with proofs and security properties, and is checked by the Coq
interpreter. If the proofs are found to be valid, then the module is accepted as
trustworthy.

The authors of PCHIP argue that the security-related properties expressible in
their system can effectively prevent certain types of Trojans by prohibiting the kinds
of malicious behaviors Trojans might engage in. Nevertheless, their work leaves a
number of important questions that future research might address, especially with
regard to the generation of security-related properties. These questions also ask how
many of these properties need be standardized, whether there is significant overlap
in the kinds of guarantees that consumers of different modules would like to have
proven, to what extent proof construction and management can be automated, etc.
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Fig. 16.12 Automated design verification [7]

16.6 Summary

This chapter introduced Trojan prevention methodologies which have been pro-
posed in recent years in the field of design for hardware trust. While these methods
have proven effective either in simplifying detection of inserted hardware Trojans
or in preventing the insertion of Trojans themselves, they do have limitations which
one should also be aware of and which point the directions of interest for future
research in this area. For side-channel fingerprint-based Trojan prevention methods,
area overhead is a key concern because of the complex control logic needed for
propagating internal measurements to primary outputs. Other methods, including
design obfuscation, dummy flip-flops, and inverted voltage, can only be used if the
fundamental assumption that attackers will only choose rare events to trigger the
Trojan is valid. Furthermore, a concern with all these methods is the security of
the hardening scheme itself, as it is likely that attackers will first compromise the
hardening scheme before tampering with the original circuit. In this direction, DFTT
is the first method that provides an excellent mechanism for protecting the hardening
scheme.

Formal methods such as the PCH and PCHIP paradigms constitute an excellent
starting point for future research in the field of pre-silicon Trojan prevention in
third party IP. Both methods move the burden of demonstrating IP core security
onto the producer in order to accelerate the IP security validation process during
its implementation. In the foreseeable future, it is likely that such protocols will
become an industry standard in the area of trusted IP acquisition.
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Finally, in the domain of hardware trust, contemporary research has almost
exclusively focused on digital circuits. However, the extensive use of analog
electronics in sensors and actuators, as well as Radio-Frequency (RF) electronics
in telecommunications, will certainly attract the interest of both potential attackers
and the hardware security and trust community. The first signs of activity in this
area have appeared in [23], where the problem of Trojans in wireless cryptographic
ICs was studied, so it is very likely that Trojan prevention methods for analog/RF
circuits will also be necessitated in the near future.
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