
3390 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

Automatic Code Converter Enhanced PCH
Framework for SoC Trust Verification
Xiaolong Guo, Student Member, IEEE, Raj Gautam Dutta, Student Member, IEEE,

Prabhat Mishra, Senior Member, IEEE, and Yier Jin, Member, IEEE

Abstract— The wide usage of hardware intellectual property
cores from untrusted vendors has raised security concerns for
system designers. Existing solutions for functionality testing and
verification do not usually consider the presence of malicious
logic in hardware. Formal methods provide powerful solutions for
detecting malicious behaviors in hardware. However, they suffer
from scalability issues and cannot be easily used for large-scale
computing systems. To alleviate the scalability challenge, we pro-
pose a new integrated formal verification framework to evaluate
the trust of system-on-chip (SoC) constructed from untrusted
third-party hardware resources. This framework combines an
automated model checker with an interactive theorem prover to
reduce the time for proving the system-level security properties
of SoCs. Another factor contributing to the scalability issue
is the effort required for manual conversion of the hardware
design from register transfer level (RTL) code to a domain-
specific language prior to verification. Consequently, we develop
an automatic code converter for translating VHSIC hardware
description language (VHDL) to Formal-HDL, which is a domain
specific language for representing hardware designs in the lan-
guage of Coq. To demonstrate the effectiveness of our integrated
verification framework and automated code conversion tool,
we evaluate a vulnerable program executed on a bare metal
LEON3 SPARC V8 processor and prove system security with
considerable reduction in verification effort.

Index Terms— Formal verification, hardware security, hard-
ware trojan detection, model checking, proof-carrying hardware,
theorem proving.

I. INTRODUCTION

THE changing landscape of the semiconductor industry
has increased the demand for intellectual property (IP)

cores. Various factors, such as reduced time to market and
lower design cost, have led to the proliferation of the
IP market. Another contributor to this growth is the use of
system-on-chip (SoC) platforms for mobile and Internet of
Things applications. SoC is a monolithic chip containing all

Manuscript received December 31, 2016; revised May 15, 2017 and
July 25, 2017; accepted August 30, 2017. Date of publication October 2,
2017; date of current version November 22, 2017. This work was supported
in part by the National Science Foundation under Grant CNS-1319105 and
Grant CNS-1441667, in part by Semiconductor Research Corporation under
Grant 2014-TS-2554, in part by the Army Research Office under Grant
W911NF-17-1-0477, and in part by Cisco. (Corresponding author: Yier Jin.)

X. Guo and Y. Jin are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
guoxiaolong@ufl.edu; yier.jin@ece.ufl.edu).

R. G. Dutta is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
rajgautamdutta@knights.ucf.edu).

P. Mishra is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
prabhat@ufl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2751615

the essential components for mimicking the functionality of
a computer. It is designed by integrating multiple IP cores
from trusted and untrusted third-party vendors.

An increasing number of the third-party vendors have raised
security concerns in the hardware industry. Consequently,
security researchers in their respective domains have started
putting in considerable effort to ensure the trustworthiness of
the third-party resources. In the hardware security industry,
multiple countermeasures have been developed for the ver-
ification and validation of SoCs at the pre- and postsilicon
levels [1]–[11].

Among all the existing techniques, formal methods (both
automated and deductive) have been most effective in detect-
ing vulnerabilities in hardware [4]–[12]. For example, model
checking is used for detecting malicious logic that corrupts
data in critical registers of the third-party IP cores [11]. In a
model checker, security properties, such as integrity (related to
safety) and availability (related to liveliness), are represented
as traces, and it checks all the possible traces generated by
the system. If all the traces are good, then the system is said
to satisfy the security properties.

However, not all security properties can be expressed
as traces, such as noninterference property [13]. Moreover,
model checkers run into the state space explosion problem
when the system under consideration is very large. Due to
these limitations of model checkers, theorem provers are
being mostly used for the verification of large-scale hardware
designs [5]–[7], [10].

Although these methods have proved effective in securing
the hardware, system-level solutions targeting the entire SoC
(particularly composed of the third-party hardware IPs) are
lacking. Moreover, the existing formal verification frame-
works, such as proof-carrying hardware (PCH), which rely on
an interactive theorem prover for evaluating the trustworthiness
of IP cores, are not scalable to SoC designs [5]–[7]. The
reasons behind the scalability problem are: 1) a significant
manual effort was required for converting hardware description
language (HDL) code to a formal representation and 2) the
lack of efficient methods for constructing machine proofs.
As the size of the design increases, time required for con-
verting HDL programs and proving security properties on the
design grows exponentially. Moreover, any modification of the
design required the repetition of the entire deductive process,
thereby further increasing the verification time.

To solve these problems, we use an integrated automatic
formal verification framework [14], where we combined a
model checker with an interactive theorem prover for proving
security properties on SoC. Integrating these two techniques

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GUO et al.: AUTOMATIC CODE CONVERTER ENHANCED PCH FRAMEWORK FOR SoC TRUST VERIFICATION 3391

overcomes the state-space explosion problem in model check-
ing approaches, and it reduces the time required for construct-
ing machine proofs of the properties in the theorem prover.
Moreover, an automatic tool proposed in [15] for the syntactic
and semantic translation of register transfer level (RTL) code
to a domain-specific language is used for eliminating manual
effort incurred during code conversion. Compared with the
manual translation in previous PCH frameworks [5], [6], [16],
this tool considers all the common VHSIC HDL (VHDL) syn-
taxes and converts the hardware design in VHDL to Formal-
HDL. Thus, the proposed integrated automatic framework and
the automated code conversion tool can reduce effort required
in formal verification of large-scale hardware designs.

The main contributions of this paper are as follows.
1) We developed a VHDL-to-Coq code converter to

automate the code conversion process in the PCH
framework.

2) We combined the interactive theorem prover, Coq, with
the Cadence incisive formal verifier (IFV) model checker
for verifying system-level security on SoC designs. The
method was proposed in [14], which was the first attempt
to verify security properties on large-scale hardware
designs through the combination of both techniques.
In this paper, we have demonstrated its applicability in
an SoC design.

3) We describe the method for decomposing the hardware
design and the security specification into submodules
and subspecifications, respectively. These submodules
and subspecifications are verified using the model
checker. In the Coq platform, we combine the subspec-
ifications to prove the security property. Following this
strategy, our approach can verify large systems and, thus,
help alleviate the scalability issue.

The rest of this paper is organized as follows. In Section II,
we discuss previous work on malicious logic detection using
formal techniques and mention the existing tools that convert
hardware design written in an HDL. In Section III, we intro-
duce the threat model and provide some relevant background
on formal languages for specifying security properties, theo-
rem provers, and model checkers. We explain our integrated
framework, semantic translation of VHDL language, and elab-
orate on the proof construction procedure, and the automatic
PCH framework in Section IV. In Section V, we provide the
implementation details of the code converter and demonstrate
its applicability by translating hardware designs described in
VHDL to Coq language. Section VI presents the demonstra-
tions of both our integrated verification framework, and final
conclusions are drawn in Section VII.

II. RELATED WORK

Currently, formal methods have been extensively used for
the verification and validation of security properties at pre-
and postsilicon stages [4]–[11]. In [4], a multistage approach
was adopted for identifying suspicious signals using assertion-
based verification, code coverage analysis, redundant circuit
removal, equivalence analysis, and sequential Automatic Test
Pattern Generation. The PCH framework has been effective in
ensuring the trustworthiness of soft IP cores [5]–[7], [9], [10].

Fig. 1. Working procedure of the PCH [9].

This method was inspired from the proof-carrying code
approach [17]. Drzevitzky [10] proposed the first PCH frame-
work for dynamically reconfigurable hardware platforms. They
used runtime combinational equivalence checking to verify the
equivalence between the design specification and the design
implementation. However, instead of using security properties,
the approach verified safety policies on the design. Another
PCH framework was proposed for security property verifica-
tion on soft-IP cores [5]–[7], [9]. In this framework, the Coq
proof assistant [18] was used to represent security properties,
hardware designs, and formal proofs, as shown in Fig. 1. Coq,
as a formal proof management platform, provides a formal
language to write theorems, algorithms, and mathematical
definitions together with an interactive proof environment.
Details of the Coq can be found in Section III. However,
this framework was not scalable to large SoC designs because
of the extremely high conversion and verification efforts in
proving security properties on large designs.

There are several methods for reducing complexity in
verifying large systems in both hardware and software.
In [19] and [20], algorithms were developed to improve
the efficiency of proving safety through storing information
from previous verification. But it was limited to Boolean
systems. In [21], a highly efficient method for mining formal
specifications automatically was developed, and this method
was used for localizing errors in digital circuit. A scalable
model checking technique was developed in [22] for verifying
message passing interface systems and identifying potential
deadlocks. However, all the above-mentioned methods are
either limited to a specific system or not designed for security
purpose. Our framework is the first attempt to apply an
integrated (model checking and deductive reasoning) approach
for verifying security properties on SoC designs.

In semiconductor industry, automated tools, such as equiva-
lence checker and model checker, have been consistently used
for functional verification of hardware designs [23]. Using
these tools, a model represented as a transition system is
verified against a set of behavioral specification stated in
temporal logic. Recently, model checkers have been used for

3392 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

detecting malicious signals in the third-party IP cores [4], [11].
However, these tools suffer from the state space explosion
problem, and hence cannot be used for verifying large designs
individually.

Some efforts have been made to combine theorem
provers with model checkers for the verification of hardware
systems [24], [25]. These methods try to overcome the limita-
tions of both techniques. Some of the popular theorem provers,
such as higher order logic and prototype verification system
have integrated model checkers. These tools have been used
for the functional verification of hardware systems. However,
to the best of our knowledge, this combined technique has not
been extended toward the verification of security properties on
the third-party soft IP cores.

In [14], we have combined a model checker with an
interactive theorem prover for verifying security properties
on SoCs. Through the proposed method, we were able to
significantly reduce the time required for security verifications
on SoCs. However, a verification expert had to manually
translate a hardware design to formal equivalent description,
which required lot of effort.

A language translation tool called VeriCoq was developed
in [26], which converted hardware designs represented in
Verilog to Coq. However, VeriCoq required flattening the
hierarchical design, which made deductive verification in Coq
very challenging. Moreover, Bidmeshki and Makris [26] did
not provide the details of the supported Verilog syntaxes the
VeriCoq can support, and the demonstration in this paper
was not sufficient to show the applicability of the VeriCoq
tool to any general hardware design. Thus, we developed the
VHDL-to-Coq code converter, which can convert general
VHDL designs to Coq equivalent codes by supporting all
common VHDL syntaxes [15]. We use this tool to improve
our proposed integrated PCH framework.

III. BACKGROUND

A. Attack Model and Assumptions

Malicious logic is inserted by an adversary at the design
stage of the supply chain. We assume that the rogue agent
at the third-party IP design house can access the HDL code
and insert a hardware Trojan or backdoor to manipulate critical
registers of the design. Such a Trojan can be triggered either by
a counter at a predetermined time, by an input vector, or under
certain physical conditions. Upon activation, it can leak sensi-
tive information from the chip, modify functionality, or cause
a denial-of-service to the hardware. In this paper, we only
consider Trojans, which can be activated by a specific “digital”
input vector.

We assume that the verification tools (e.g., Coq and
Cadence IFV) used in our integrated framework produce cor-
rect results. The existence of proofs for the security theorems
indicates the genuineness of the design. However, the frame-
work does not provide protection of an IP from Trojans whose
behaviors are not captured by the set of security properties.
Furthermore, we assume that the attacker has intricate knowl-
edge of the hardware to identify critical registers and modify
them for carrying out the attack.

B. Formal Specification Languages

Specifications are used for representing (using natural lan-
guage or experimental data) the security properties of a system
at a high level of abstraction. In formal specification, these
properties are translated from nonmathematical description to
a mathematical format using logic. This conversion helps to
overcome any ambiguity in the security specifications. There
are many formal specification languages, including proposi-
tional logic, temporal logic, and so on.

In the Coq proof assistant [18], behavioral specifications are
written using the Gallina specification language. This language
can also be used to represent the hardware design. In case
of an automated tool, such as a model checker, specification
language, such as the Property Specification Language, is used
for specifying the properties or assertion of hardware designs.
The directives of the PSL language, assert, assume, and cover,
are understood by a verification tool, such as the Cadence IFV.
By using the assert construct, a user can check at run time or at
simulation time if a certain condition holds and reports a
warning or an error if it does not hold. To put constrains on
inputs of the design, assume is used and cover is used for
specifying scenarios.

The PSL language is divided into four layers: 1) Boolean
layer; 2) temporal layer; 3) verification layer; and 4) modeling
layer [27]. The Boolean layer is composed of Boolean expres-
sions that either hold or not hold over a given clock cycle.
The temporal layer allows to relate the Boolean expression
with time. This layer is further divided into: 1) foundation
language (FL) and 2) optional branching extension (OBE).
The FL is used to describe linear properties in which there
is only a single successor for a current state. Therefore,
FL is often used to describe traces/path. In the FL, the linear
temporal logic and the sequential extended regular expression
are used to represent the behavioral specifications of the
system. Alternatively, OBE is based on computational tree
logic and can describe multiple traces (i.e., successor states)
at a time. The verification layer consists of directives, which
describe how the temporal properties should be used by the
verification tool. That is, the verification layer specifies the
semantics for PSL directives and operators in the temporal
layer. It also helps the verification tool to understand the
difference between properties, which use assert, assume, and
cover directives. The modeling layer provides a means to
the model behavior of design inputs, and to declare and give
behavior to auxiliary signals and variables.

The alphabets of Boolean expressions in the Boolean layer
include Boolean variables, logical connectives, relational oper-
ators, and bitwise operators. A formula (φ) in the Boolean
layer over Boolean variable (v) is given as follows:

φ ::= true | v | (φ1 ∧ φ2) | ¬φ.

Here, ∧ and ¬ are conjunction and negation operators,
respectively. The rest of the Boolean connectives, ∨ (dis-
junction), → (implication), and ↔ (equivalence), can be
derived from ∧ and ¬. The PSL language also supports suffix
implication operators, �→ and �⇒, for linking two regular
expressions.

GUO et al.: AUTOMATIC CODE CONVERTER ENHANCED PCH FRAMEWORK FOR SoC TRUST VERIFICATION 3393

C. Interactive Theorem Prover

Theorem provers are used to prove or disprove the properties
of systems expressed as logical statements. Over the years,
several theorem provers (both interactive and automated) have
been developed for proving the properties of hardware and
software systems. However, using them for the verification
of large and complex systems requires excessive effort and
time. Irrespective of these limitations, theorem provers have
currently drawn a lot of interest in the verification of security
properties on hardware. Among all the formal methods, they
have emerged as the most prominent solution for verifying
large designs. A recent application of an interactive theorem
prover in order to ensure the trustworthiness of soft IP cores
is called PCH [5], [10].

Coq is an interactive theorem prover/proof assistant, which
enables the verification of software and hardware programs
with respect to their specification. In Coq, programs, proper-
ties, and proofs are represented as terms in the Gallina speci-
fication language. By using the Curry–Howard Isomorphism,
the interactive theorem prover formalizes both program and
proofs in its dependently typed language called the Calcu-
lus of Inductive Construction. Correctness of the proof of
the program is automatically checked using the inbuilt type
checker of Coq. For expediting the process of building proofs,
Coq provides a library consisting of programs called tactics.
However, using tactics does not significantly reduce the time
required for certifying large (consisting of hundred thousand
lines of code) software and hardware programs.

D. Model Checking

Model checking [28] is a method for verifying and validat-
ing models in software and hardware applications [12], [23].
In this approach, a model (Verilog/VHDL code of
hardware) M with an initial state s0 is expressed as a
transition system, and its behavioral specification (assertion)
φ is represented in a temporal logic. The underlying algorithm
of this technique explores the state space of the model to find
whether the specification is satisfied. This can be formally
stated as, M, s0 |� φ. If a case exists where the model
does not satisfy the specification, a counterexample in the
form of a trace is produced by the model checker [29]. The
application of model checking techniques, including sym-
bolic approaches based on the reduced order binary decision
diagrams (ROBDDs) and satisfiability (SAT) solving, to
SoC has had limited success due to the state-space explosion
problem. For example, a model with n Boolean variables can
have as many as 2n states, and a typical soft IP core with 1000
32-bit integer variables has billions of states.

Symbolic model checking (SMC) using ROBDD is one of
the initial approaches used for hardware systems verification.
Unlike explicit state model checking where all states of the
system are represented using global state graph, the SMC
represents states of the transition system using ROBDD. The
ROBDD is a unique, canonical representation of a Boolean
expression of the system. Subsequently, the specification to
be checked is represented using a temporal logic. A model
checking algorithm then checks whether the specification

is true on a set of states of the system. Despite being a
popular data structure for symbolic representation of states
of the system, ROBDD requires finding an optimal ordering
of state variables, which is an NP-hard problem. Without the
proper ordering, size of the ROBDD increases significantly.
Moreover, it is memory intensive for storing and manipulating
BDDs of system with a large state space.

Another technique called bounded-model checking (BMC)
replaces BDDs in symbolic checking with SAT solving [30].
In this approach, a propositional formula is first constructed
using a model of the system, the temporal logic specification,
and a bound. Then, the formula is given to an SAT solver to
either obtain a satisfying assignment or to prove there is none.
Although BMC outperforms BDD-based model checking in
some cases, the method cannot be used to test properties (spec-
ification) when bound is large or cannot be determined.

To overcome the limitations of the model checking and the
theorem proving approaches, we propose to combine these
two techniques to verify security properties on SoCs designs.
Specifically, we have combined an industrial model checker
Cadence IFV with Coq for verifying hardware designs written
in VHDL in this paper.

IV. METHODOLOGY

The existing PCH framework uses an interactive theorem
prover for verifying security properties on soft IP cores, which
triggers a large design overhead [5], [6], [16]. Moreover,
PCH requires flattening of the hardware design before trans-
lation of the HDL code to the formal language. Design
flattening increases the verification effort and adds to the risk
of introducing errors during the code conversion process.

Meanwhile, model checkers, such as Cadence IFV, cannot
be used for verifying systems with large state space either
because of the space explosion problem. As the number
of state variables (n) in the system increases, amount of
space required for representing the system and the time
required for checking the system increases exponentially
[T(n) = 2O(n)].

To overcome the scalability issue and to verify an SoC,
we introduce the integrated formal verification framework
(see Fig. 2), where the security properties are checked against
SoC designs. In this framework, the theorem prover is com-
bined with a model checker for proving formal security
properties (specifications). Moreover, the hierarchical structure
of the SoC is leveraged to reduce the verification effort.

The entire working procedure of the proposed framework
is shown in Fig. 4. In the integrated framework, the top
level/module of hardware design, represented in an HDL,
is first translated to the Coq equivalent codes in Gallina.
Then, the security specification is stated as a formal theorem
in Coq. In the following step, this theorem is decomposed
into disjoint lemmas (see Fig. 3) based on submodules.
These lemmas are then represented in the PSL specification
language and are called subspecifications.1 Subsequently, the

1Note that in Fig. 4, the theorem decomposition and lemmas representation
are done by an Interpreter, which are out of the scope of this paper and will
be discussed in our future work.

3394 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

Fig. 2. Integrated formal verification framework.

Fig. 3. Security specification (φ) decomposed into lemmas.

Cadence IFV verifies the submodules against the correspond-
ing subspecifications. Submodules are functions, which have
less number of state variables and are connected to primary
output of the design. These functions are always from the
bottom level of SoC and have no dependence relationship with
each other.

The HDL code of a large design consists of many such
submodules. If the submodules satisfy the subspecifications,
we consider the lemmas are proved. Checking the truth value
of the subspecifications with a model checker eliminates the
effort required for proving the lemmas and translating the
submodules to Coq. Upon proving these submodules, we then
use Hoare logic to combine the proof of these lemmas to prove
the security theorem of the entire system in Coq.

A. Semantic Translation

The developed semantic translation method is based on the
Formal HDL of [16]. Using this method, the HDL code of

the SoC and the informal security properties are translated
to Gallina. During the translation process, the syntax and
semantics of the HDL are represented in Coq. To preserve
the hierarchical design of the SoC, we use the module func-
tionality of Coq. In this paper, semantic translation is made by
an automatic RTL-to-Formal code converter developed in [15].
In Section IV-B, the details of the tool will be provided.

Gallina is also used to represent the security proper-
ties (theorems) in Coq. PSL is used for representing the
security lemmas written in Coq. PSL uses HDL operators,
temporal operators, and regular expressions to represent the
properties (assertions/specifications) of the hardware design.
An industrial model checker, such as Cadence IFV, can inter-
pret PSL properties and use them to verify the HDL code of
the design.

B. Distributed Proof Construction

Proof construction procedure limits the scalability of
the PCH framework to large designs [5]. Consequently,
we improve scalability by combining a model
checker (Cadence IFV) with a theorem prover (Coq).
In Coq, the proof construction process follows Hoare-logic
style reasoning, where the trustworthiness of the designs,
represented in the HDL code, is determined by ensuring that
the code operates within the constraints of the precondition
and the postcondition. The precondition of the formal
HDL code is the initial configuration of the design and the
postcondition is the security theorem. The security theorem
will be divided into lemmas. Then, lemmas are translated to
the PSL specification language, so-called subspecifications.
Similarly, the HDL code is decomposed into submodules.
A model checker then determines whether the submodule
satisfies the corresponding subspecification. If it is satisfied,
then we can state that the lemmas are proved. Such lemmas
are combined at the end to prove the system-level security
theorem.

In the mentioned procedure, the decomposition method is
applied to reduce the time complexity of verification sig-
nificantly. As mentioned earlier, limited by the state-space
explosion problem, model checker can only provide compre-
hensive verification to small-scale circuit. Meanwhile, in the
scenario of utilizing theorem prover to large system, interactive
proving leads to high manual workload. Using the proposed
integrated framework, an SoC design can be decomposed into
top module and submodules. Model checker is utilized to
check submodules, which are all in simple and small scale,
while Coq is used in verifying top module only, so that
fewer interactive proofs are required. Therefore, compared
with the previous PCH framework, the new approach reduces
verification complexity from exponential to linear.

Application scenario of model checker, such as IFV,
is checking simple and small circuit. When the system
becomes larger, the time complexity of IFV will be extremely
high for the reason that the proof engine of IFV will traverse
all the possible states in a module. In some cases, pruning strat-
egy will be utilized to reduce complexity. However, pruning
can let Trojan bypass the checking, considering that Trojans
are always hidden deeply in the circuit. On the other hand,

GUO et al.: AUTOMATIC CODE CONVERTER ENHANCED PCH FRAMEWORK FOR SoC TRUST VERIFICATION 3395

Fig. 4. Automatic PCH framework.

theorem prover, such as Coq, has the capability of verifying
large system instead of traversing states, but interactive prov-
ing process leads to too much manually workload. So we inte-
grate them together, and decompose the SoC into submodules
and top module. Then, IFV is utilized to check submodules,
which are all in simple and small scale. Correspondingly, Coq
is used in verifying top module only, and fewer interactive
proofs are required.

C. Automatic PCH Framework

As mentioned in the previous sections, extending PCH
method to the large-scale design, such as SoCs, was difficult
due to the time required for verification. Therefore, a scalable
framework for the formal verification of SoC security was
required to be developed to alleviate this challenge.

Considering the PCH working procedure of Fig. 1, it is
desired to maximize the steps that can be executed automati-
cally. The software tools we develop will help facilitate these
processes as shown in Fig. 4. By using Cadence IFV, parts
of hardware designs can be verified automatically. On the
Coq side, there is a proof checker provided by Coq plat-
form. So the proofs can be checked in minutes or seconds.
Meanwhile, in previous PCH methods, code conversion was
done manually, which increases the workload and the risks
of human error. Hence, an automated code converter, which
would be discussed in Section V, is applied to simplify this
conversion process. By automating the working procedure,
scalability issue on code conversion can be solved in the
enhanced PCH framework.

V. AUTOMATIC RTL-TO-FORMAL CODE CONVERTER

As discussed in Section IV-A, semantic translation is
required to convert the SoC designs to its Coq equivalent
representation. As such, we have developed an automatic

Fig. 5. Code conversion from VHDL to Formal-HDL through IRs.

code converter for translating VHDL to Formal-HDL in [15].
By using the converter, the hardware design constructed using
VHDL syntaxes is first converted to an intermediate represen-
tation (IR). Then, the IRs are translated to Formal-HDL as
shown in Fig. 5.

In this section, the working procedure of the tool is dis-
cussed in detail. Then, the applicability of this converter is
demonstrated on three hardware designs.

A. VHDL to Intermediate Representations

Our converter extends the work of [31], where a tool
was developed to translate VHDL to counter automata. Their
tool supported the following syntaxes of the VHDL lan-
guage: entity, generic, architecture, signals, process, direct
assignment, and if-else statement. The tool developed in this
paper incorporates additional syntaxes, such as component
instantiations, user-defined types, ranged types, constants,
2-D array, and case statements.

The IRs are constructed using variables V , functions T ,
and behavioral rules B . The expressions E can be
formed by using V , arithmetical (+,−,×, ÷, ⊕), relational
(=,
=, >,<, ≤, ≥), and logical (¬,

∨
,

∧
). Let C be the

subset of E containing all Boolean valued expressions. Then,
a behavioral rule b ∈ B can be written as

c → v := e (1)

where c ∈ C , v ∈ V , and e ∈ E . Equation (1) signifies that
under a list of enabling conditions c, a variable v is assigned to
a new value, defined by an expression e. As shown in Fig. 5,
most of the VHDL codes will be parsed to IRs in the form
of (1).

3396 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

B. Formal-HDL Representations

As shown in Fig. 1, the first step in verifying the security
properties of IP cores is converting the code written in HDL
into a domain specific language, so that the proof assistant can
recognize and construct proofs.

The Formal-HDL of [16] can represent basic circuit units,
combinational logic, sequential logic, and module instanti-
ations. In [32], Formal-HDL is further updated to include
component instantiations to preserve the design hierarchy of
the SoC. In the following, we show the code conversion
details of hardware designs from VHDL to Coq equivalent
expressions.

1) Data Types: To represent a single regular logical value
in hardware, a value type is defined as an enumeration,
which includes three elements—hi , lo, and x , where hi stands
for high voltage or logical value 1, lo stands for low volt-
age or logical value 0, and x stands for all other unknown
values. To define binary logical values and vectors, a bus
type is defined as a function in Formal-HDL, which takes
one parameter, a timing variable t , and returns a list of signal
values with data type value. Since the Formal-HDL can be
applied to only synchronous hardware, the variable t indicates
the global clock cycle.

2) Structural Syntax: As the most important behavior,
the updates of wire and flip-flop/latch are distinguished as
blocking assignment and nonblocking assignment such as
in VHDL. Then, the keyword assign of the Formal-HDL
is used for blocking assignment, while update is used for
nonblocking assignment. During the blocking assignment,
the bus value is updated in the current clock cycle, and in
the nonblocking assignment, the bus value is updated in the
next clock cycle.

To facilitate clock-edge specifications and synchronizations
among signal assignments, processes are used in VHDL.

In Formal-HDL, these behaviors are characterized using the
following logical syntax, and constructed using propositional
logic symbol

∧
.

3) Logical Syntax: To represent logical interactions between
signals, arithmetic, relational, and logic operations are defined
in Formal-HDL. For example, the logic operator exclusive OR

is defined as a type with two input and one output

exor : expr → expr → expr. (2)

The key word expr stands for expressions and is the parent
type of all the logic operations.

Another commonly used form of syntax is conditional
statements. According to two assignment types, conditional
statements are designed as blocking if statements adoif and
nonblocking if statements doif. The example of a nonblocking
if statement is shown in List V-B3.

4) Module Structure: For hardware infrastructure,
the Formal-HDL supports hierarchical designs where
basic functional blocks and low-level modules are instantiated
in a high-level structure (note that processors often follow
the hierarchical structure because of their high complexity).
Like the enti ty in VHDL, keywords Module Type are defined
for circuit module definitions. And the other submodules’
instantiations inside a top module are defined by using
keywords Declare Module. Meanwhile, in each module,
circuit details are described by using the keyword Fixpoint,
which is a special syntax provided in Coq for generic primitive
recursion. The input parameter of Fixpoint is defined as an
inductive type, which explains how the inhabitants of the
type are built by giving names to each construction rule.
This specific inductive type is treated as an interface, which
provides the rule of how the entities are connected. To make
it clear, an example describing two submodules in a top
module is shown in List V-B4.

C. Automatic Code Converter Development
In this section, we show the development of a Python-based

automatic code converter, and show the results of converting

GUO et al.: AUTOMATIC CODE CONVERTER ENHANCED PCH FRAMEWORK FOR SoC TRUST VERIFICATION 3397

three VHDL design—Advanced Encryption Standard (AES)
Encoder, Data Encryption Standard (DES), and RS232—to
their Formal HDL equivalent expressions.

For parsing VHDL to IRs, we use the translator from [31].
Furthermore, we extend the tool to support more VHDL
syntaxes, such as constants, component instances, choices
in expressions, and user-defined types. For translating IRs
to Formal HDL, mapping is built. For instance, as shown
in (1), the conditions, variables, and expressions are described
using if-then-else statements in Formal HDL. Fig. 5 shows the
format of IRs and Formal HDL codes during the conversion
of a small VHDL program.

A structural block diagram of the automated code converter
is given in Fig. 6. The VHDL2Coq module is the access
point of the program, and it reads a VHDL file and creates
Coq file. The VHDL_Process module then generates Formal
HDL codes based on the IRs produced by a parser. The
parser is named VHDL_Parser, which contains lex, yacc, and
VHDL_Syn for parsing VHDL to IR. The parsetab is used to
accelerate the lexical analysis in parsing process. Optimization
and simplification are done in CoqFile and Optimize stages.
In the entire block diagram, VHDL_Syn is the most impor-
tant part of the code converter. We develop this module to
define the conversion of each element in the VHDL syntax.
Later, we summarize all the syntaxes that are required to be
converted. To deal with the syntax in the VHDL language,
we used an object-oriented model to represent the VHDL_Syn.
Each syntax element will be emulated as a class. And all the
elements are inherited from a super class called VHDL_Object,
which defines the common behaviors of all VHDL syntax.

To test the proposed automatic RTL-to-Formal code con-
verter, we have applied the converter to three VHDL appli-
cations from [33]—AES core for encoding [34], Basic data
encryption standard Crypto Core [35], and RS232 Commu-
nication Controller [36], and then the integer unit (IU) of
LEON3. The example has been tested on a desktop with 64-bit
Intel i7-3370 CPU and 16-GB RAM.

The results of the experiments are summarized in Table I.
Lines of codes for each testbench, which stands for manu-
ally workload of developers, are shown in the first column.

Fig. 6. Code conversion from VHDL to Formal-HDL through IRs.

The second column gives the number of registers used in
the design. The next column provides the number of lookup
tables applied to this circuit on a field-programmable gate
array. Finally, the last column provides the time-consuming
in conversion. And we can get the conclusions that: 1) time-
consuming is increased with the scale of VHDL design and
2) time-consuming is acceptable for converting VHDL design
to Coq equivalent expressions.2

VI. CASE STUDY

To demonstrate the effectiveness of the proposed integrated
verification framework supported by the automatic code con-
verter, we consider a 32-bit LEON3 processor implementing
the SPARC V8 architecture. This processor core is written in
VHDL. The IU of the core, a seven-stage pipeline, is con-
sidered for verification (see Fig. 7). In order to prove the
presence/absence of malicious logic that can trigger illegal
data writing, we will check the signals connecting the IU to
the register file.

In this experiment, we consider a hardware Trojan embed-
ded in the processor, which may manipulate internal data.
Execution of the call instruction is a necessary condition that
triggers the Trojan. In order to understand the attack easier,
we bring in the following assembly code of the subroutine,
vulnerable_function, which is working with the assumption
that the Trojan has been triggered. The payload of this Trojan
can write a specific value to the register, which is used to store
the return address. Then, the data overwriting can cause the
redirection of the program counter.

2In previous PCH framework, several days are required in this conversion
manually.

3398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

TABLE I

TIME CONSUMED FOR CONVERTING THE VHDL DESIGN TO FORMAL HDL EXPRESSIONS

Fig. 7. Block diagram of IU of LEON3 core [37].

This code is assembled and executed on a bare metal
LEON3 processor. We only consider those scenarios where
the call instruction is followed by a corresponding return
instruction. Due to this constraint, if a return address is
overwritten, then the callee will not be able to return to the
caller. When a callee is invoked using the call instruction by
a caller in LEON3, the return address of the caller is saved
in the i7 register of callee’s register window (we consider the
default setting of eight register windows from w0-w7).

In the examined subroutine, the vulnerable instruction is call
0 × 206b4 〈strcpy@plt〉, which corresponds to the strcpy()
function of the C library. This function is used to copy input
to a buffer. When the input is longer than the size of the stack
allocated buffer, the space reserved for a register window on
the stack is overwritten. Upon returning from the function,
if this portion of memory is loaded into the register file,
the return address is corrupted.

To detect such a vulnerability, we first measure the time
required for the normal execution of the vulnerable_function.
After executing the retl instruction, this subroutine returns to
the main function of the program. During the execution of the
subroutine, we continuously monitor the register where the
return instruction is stored. If an attempt is made to overwrite
the register, we detect it and report it.

In our experiment, we consider the return address is stored
in the i7 register of the w7 register window. The corresponding

address of the register i7 in w7 is “01111111.” The write
address signal, rfi.waddr, of the IU of the processor is used
for writing the value of the return address into the i7 register
when the write enable signal, rfi.wren, is “1.” Based on this,
the informal security specification can be stated as rfi.wren
and rfi.waddr signals should not be equal to “1” and
“0111 1111,” respectively, at the same time after the caller
saves the return address. That is, the register i7 containing
the value of the return address of the caller should not be
overwritten at any clock cycle when the write enable signal
rfi.wren is “1.” This specification can be also expressed as

∀t ∃ t0, tn, ti ∈ t : (t0 < ti < tn)

∧ (r f i.wrent0 → r f i.waddrt0)

∧¬ (r f i.wrenti → r f i.waddrti)

where t0 is the time when the return address is written into
the i7 register, tn is the time when the return instruction is
executed (used for returning to caller), and all time between
t0 and tn is given as ti . The specification is stated in Coq
starting from t = 1 in the following theorem.

The symbols hi and lo represent the high voltage and the
low voltage in the circuit, respectively. The function bv_eq
compares two binary codes and returns the result lo when there
is a match between the codes and hi, otherwise. Similarly,
we have written theorems for anytime between t0 and tn . Note
that the time increases at steps corresponding to the clock
cycles of the LEON3 processor.

In ico.data_0 t = sethi_0_g0, the sethi instruction and its
operands are stored. Signals, rstn, holdn, and irqi, representing
reset, hold, and interrupt, are not considered in our experiment.

As the VHDL code of the IU has a lot of procedures (shown
in Fig. 8) and functions, we allocate their verification task to
the Cadence IFV. We verify the procedure, regaddr, using the
model checker for the corresponding informal specification—
when the input signal cwp equals to “111,” and reg equals to
“01111,” the output signal rao will be “01111111.” An exam-
ple specification (assertion) in the PSL language is shown

GUO et al.: AUTOMATIC CODE CONVERTER ENHANCED PCH FRAMEWORK FOR SoC TRUST VERIFICATION 3399

Fig. 8. Submodules in the IU of LEON3.

as follows:

assert({(cwp_i f v [1 : 3] = “111”)

∧ (reg_ifv [1 : 5] = “01111”)}
�→ (rao_ifv [1 : 8] = “01111111”)).

Here, the cwp_ifv register stores the value of the current
window pointer w7, the reg_ifv register stores the address
of the i7 register, the rao_ifv register contains the address
of the i7 register of the w7 register window, and the
�→ operator means that when the regular expression at the
left-hand side holds, then the expression at the right-hand side
also holds at the same clock cycle. The assertion states that
when registers cwp_ifv and reg_ifv have the values of “111”
and “01111,” respectively, the output register rao_ifv has the
value “01111111.”

The above-mentioned PSL specification in the VHDL lan-
guage is given as follows.

We state the above-mentioned PSL specification as the
following lemma.

When the model checker proves that the code satisfies the
specification, we can be assured that the proof of the lemma
exists. By combining the proofs of all the lemmas, we were
able to prove the theorem, IU_Cycle_1. Following this proce-
dure, we were able to reduce the effort required for proving the
security theorem in Coq. For instance, the Cadence IFV took
only 0.03 s of CPU time for verifying the Procedure regaddr
against the ASSERT_SubModule_regaddr specification. For
the IU, there are 34 procedures and 22 functions in the source
HDL codes. Hence, 56 submodules are obtained from decom-
position. Considering that scale of each submodule is similar,
an approximate runtime of the model checking procedure is
1.68 s. If the Procedure regaddr or other submodules were

verified by an interactive theorem prover, such as Coq, it will
take more time to complete the verification process.

Meanwhile, at the theorem prover side, we have applied
the developed code conversion tool on the top module of the
IU design excluding submodules (note that the equivalence
checking is performed on VHDL code directly so no code
conversion is required for submodules). The code conversion
process was carried out on the same desktop as used in
Section V. In total, the time consumed in conversion is 3.982 s.

VII. CONCLUSION AND DISCUSSION

In this paper, an automatic integrated formal verification
framework is proposed to protect a large-scale SoC design
from malicious attacks. Given that an interactive theorem
prover (e.g., Coq) requires significant effort to manually
verify the design and that a model checker suffers from
scalablity issues, we combine these two techniques together
through the decomposition of the security property as well as
the design in such a way that the model checker can verify
those submodules, which have much less state variables.
Meanwhile, a VHDL-to-Coq code converter is developed to
automate the code conversion process in the PCH framework.
Two important steps are involved in construction of this tool:
1) translation of VHDL program to IR and 2) conversion
of IR to Formal-HDL. Consequently, we automated the
procedure for translating the design from HDL to Gallina
and reduced the amount of effort required for proving the
security theorem in Coq.

In the future, we plan to use our approach for detecting
sophisticated hardware Trojans with the assistance of auto-
matic tool chains. We will deliver open-source, prototype
versions of the formal verification software package to the
hardware security community and the formal verification com-
munity. Specifically, the generation of proofs and the library
of security properties will be performed in the future. Further-
more, for decomposition, work such as detection sensitivity
will be carried out.

REFERENCES

[1] M. Banga and M. S. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in Proc. IEEE Int. Symp. Hardw.-Oriented Secur.
Trust (HOST), Jun. 2010, pp. 56–59.

[2] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in Proc. IEEE Int. Workshop Hardw.-Oriented Secur. Trust,
Jun. 2008, pp. 51–57.

[3] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using Boolean functional analysis,” in Proc.
CCS, 2013, pp. 697–708.

[4] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans
in third-party digital IP cores,” in Proc. HOST, 2011, pp. 67–70.

[5] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Trans. Inf.
Forensics Security, vol. 7, no. 1, pp. 25–40, Feb. 2012.

[6] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assurance
by proof-carrying based signal sensitivity tracing,” in Proc. IEEE Int.
Symp. Hardw.-Oriented Secur. Trust (HOST), Jun. 2013, pp. 99–106.

[7] Y. Jin, “Design-for-security vs. design-for-testability: A case study on
DFT chain in cryptographic circuits,” in Proc. IEEE Comput. Soc. Annu.
Symp. VLSI (ISVLSI), Jul. 2014, pp. 19–24.

[8] F. M. De Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang,
“Backspace: Formal analysis for post-silicon debug,” in Proc. Int. Conf.
Formal Methods Comput.-Aided Design, 2008, p. 5.

3400 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

[9] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-silicon
security verification and validation: A formal perspective,” in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[10] S. Drzevitzky, “Proof-carrying hardware: Runtime formal verification
for secure dynamic reconfiguration,” in Proc. Int. Conf. Field Program.
Logic Appl., Aug. 2010, pp. 255–258.

[11] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proc. DAC,
New York, NY, USA, 2015, pp. 112-1–112-6.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with BLAST,” in Proc. Model Checking Softw., Portland,
OR, USA, May 2003, pp. 235–239.

[13] J. A. Goguen and J. Meseguer, “Unwinding and inference control,” in
Proc. IEEE Symp. Secur. Privacy, Apr./May 1984, p. 75.

[14] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Scalable soc trust
verification using integrated theorem proving and model checking,” in
Proc. IEEE Symp. Hardw. Oriented Secur. Trust (HOST), May 2016,
pp. 124–129.

[15] X. Guo, R. G. Dutta, and Y. Jin, “Automatic RTL-to-formal code
converter for IP security formal verification,” in Proc. 17th Int. Workshop
Microprocess. SOC Test Verification (MTV), 2016, pp. 35–38.

[16] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted
microprocessor IP,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2013, pp. 824–829.

[17] G. C. Necula, “Proof-carrying code,” in Proc. 24th ACM SIGPLAN-
SIGACT Symp. Principles Programm. Lang. (POPL), 1997,
pp. 106–119.

[18] INRIA. (2010). The Coq Proof Assistant. [Online]. Available:
http://coq.inria.fr/

[19] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in Proc. Int. Conf. Formal Methods
Comput.-Aided Design (FMCAD), 2011, pp. 135–143.

[20] A. R. Bradley, “Sat-based model checking without unrolling,” in Proc.
Int. Workshop Verification, Model Checking, Abstract Interpretation,
2011, pp. 70–87.

[21] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. 47th Design Autom. Conf., 2010,
pp. 755–760.

[22] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. de Supinski,
M. Schulz, and G. Bronevetsky, “A scalable and distributed dynamic
formal verifier for MPI programs,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal. (SC), Nov. 2010, pp. 1–10.

[23] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating-point hardware,” Intel Technol. J., vol. 3,
no. 1, pp. 1–14, 1999.

[24] S. Berezin, “Model checking and theorem proving: A unified frame-
work,” Ph.D. dissertation, SRI Int., Menlo Park, CA, USA, 2002.

[25] P. Dybjer, Q. Haiyan, and M. Takeyama, “Verifying haskell programs
by combining testing, model checking and interactive theorem proving,”
Inf. Softw. Technol., vol. 46, no. 15, pp. 1011–1025, 2004.

[26] M.-M. Bidmeshki and Y. Makris, “VeriCoq: A verilog-to-Coq converter
for proof-carrying hardware automation,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 29–32.

[27] C. Eisner and D. Fisman, in Proc. Model Checking Softw., Portland, OR,
USA, 2006.

[28] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[29] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. Model Check-
ing Softw., Portland, OR, USA, 2000, pp. 154–169.

[30] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Adv. Comput., vol. 58, pp. 117–148, Dec. 2003.

[31] A. Smrčka and T. Vojnar, “Verifying parametrised hardware designs via
counter automata,” in Proc. Haifa Verification Conf., 2007, pp. 51–68.

[32] X. Guo, R. G. Dutta, and Y. Jin, “Hierarchy-preserving formal verifiation
methods for pre-silicon security assurance,” in Proc. 16th Int. Workshop
Microprocess. SOC Test Verification (MTV), 2015, pp. 48–53.

[33] OpenCores. Opencores Projects. Accessed: Sep. 19, 2017. [Online].
Available: http://www.opencores.org

[34] AES Core Modules. Accessed: Sep. 19, 2017. [Online]. Available:
http://opencores.org/project,aes_128_192_256

[35] Basic DES Crypto Core. Accessed: Sep. 19, 2017. [Online]. Available:
http://opencores.org/
project,basicdes

[36] RS232. RS232/UART Interface. Accessed: Sep. 19, 2017. [Online].
Available: http://opencores.org/project,rs232_interface.

[37] Gaisler Research. LEON3 Synthesizable Processor. Accessed:
Sep. 19, 2017. [Online]. Available: http://www.gaisler.com

Xiaolong Guo (S’14) received the double bachelor’s
degrees from the Beijing University of Posts and
Telecommunications (BUPT), Beijing, China, and
the University of London, London, U.K., in 2010,
and the M.S. degree from BUPT in 2013. He is
currently pursuing the Ph.D. degree in electrical and
computer engineering with the University of Florida,
Gainesville, FL, USA.

His current research interests include the design
of scalable verification methods for hardware intel-
lectual property protection, trusted system-on-chip

verification, cyber security, formal methods, program synthesis, and secure
language design.

Raj Gautam Dutta (S’17) received the
B.Tech. degree in electronics and communication
from Visvesvaraya Technological University,
Belgaum, India, in 2007, and the M.S. degree
in electrical engineering from the University of
Central Florida, Orlando, FL, USA, in 2011,
with an emphasis on control systems, where he
is currently pursuing the Ph.D. degree with the
Electrical Engineering and Computer Science
(EECS) Department.

His current research interests include the
development of security solutions for semiconductor soft intellectual property
cores by using formal verification techniques, the design of attack detection
and mitigation software for autonomous systems, and the synthesis of
controllers for multiagent systems.

Prabhat Mishra (S’00–M’04–SM’08) received the
Ph.D. degree in computer science and engineering
from the University of California at Irvine, Irvine,
CA, USA.

He is currently a Professor with the Department of
Computer and Information Science and Engineering,
University of Florida, Gainesville, FL, USA. His
current research interests include the design automa-
tion of embedded systems, energy-aware computing,
hardware security and trust, system validation and
verification, and postsilicon debug.

Dr. Mishra has been recognized by several awards, including the NSF
CAREER Award, the IBM Faculty Award, three best paper awards, and the
EDAA Outstanding Dissertation Award. He is an ACM Distinguished Scien-
tist. He serves as the Deputy Editor-in-Chief of the IET Computers Digital
Techniques. He also serves as an Associate Editor of the ACM Transactions
on Design Automation of Electronic Systems, the IEEE TRANSACTIONS ON
VLSI SYSTEMS, and the Journal of Electronic Testing.

Yier Jin (M’13) received the B.S. and M.S. degrees
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2005 and 2007, respectively,
and the Ph.D. degree in electrical engineering from
Yale University, New Haven, CT, USA, in 2012.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA. He
proposed various approaches in the area of hardware
security, including the hardware Trojan detection
methodology relying on local side-channel informa-

tion, the postdeployment hardware trust assessment framework, and the proof-
carrying hardware intellectual property (IP) protection scheme. His current
research interests include the areas of trusted embedded systems, trusted
hardware IP cores, hardware–software coprotection on computer systems,
the security analysis on Internet of Things (IoT), and wearable devices with
a particular emphasis on information integrity and privacy protection in the
IoT era.

Dr. Jin received the DoE Early CAREER Award in 2016 and the best paper
awards from DAC’15, ASP-DAC’16, and HOST’17.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

