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Abstract— Using silicon measurements from 40 chips
fabricated in Taiwan Semiconductor Manufacturing Com-
pany’s (TSMC’s) 0.35-µm technology, we demonstrate the oper-
ation of two hardware Trojans, which leak the secret key of
a wireless cryptographic integrated circuit (IC) consisting of
an Advanced Encryption Standard (AES) core and an ultraw-
ideband (UWB) transmitter (TX). With their impact carefully
hidden in the transmission specification margins allowed for
process variations, these hardware Trojans cannot be detected
by production testing methods of either the digital or the analog
part of the IC and do not violate the transmission protocol
or any system-level specifications. Nevertheless, the informed
adversary, who knows what to look for in the transmission power
waveform, is capable of retrieving the 128-bit AES key, which
is leaked with every 128-bit ciphertext block sent by the UWB
TX. Moreover, through physical measurements and MATLAB
simulations, we show that the attack facilitated by these hardware
Trojans is robust to test equipment and communication channel
noise. Finally, we experimentally evaluate the effectiveness of a
popular hardware Trojan detection method, namely, statistical
side-channel fingerprinting via trained one-class classifiers, in
detecting the hardware Trojans introduced in our fabricated IC
population.

Index Terms— hardware Trojan detection, side-channel finger-
printing, wireless cryptographic integrated circuit (IC).

I. INTRODUCTION

HARDWARE Trojans are malicious modifications intro-
duced in a manufactured integrated circuit (IC), which

can be exploited by a knowledgeable adversary to cause
incorrect results, steal sensitive data, or even incapacitate a
chip [1]–[4]. The problem of hardware Trojans has recently
caught the attention of multiple governments and industry
across the globe, who are realizing the repercussions of
inadvertent deployment of hardware Trojan-infested ICs in
sensitive applications and are investing in understanding the
risk and developing appropriate solutions. Indeed, traditional
IC test methods fall short in detecting hardware Trojans,
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as they are mainly geared toward identifying modeled defects;
therefore, they cannot reveal unmodeled malicious modifica-
tions, especially when the latter are carefully hidden within
the margins allowed for process variations and do not visibly
alter the functionality of the IC.

Among the various hardware Trojan detection methods
proposed by researchers over the last few years, statistical
analysis of side-channel measurements has received the lion’s
share of attention. The underlying premise of this approach is
that hardware Trojans will distort the side-channel parametric
profile of an IC, even if they do not alter its functionality.
While for a well-designed hardware Trojan this distortion is
minute and carefully hidden within the design margins allowed
for process variation, it is systematic; therefore, statistical
analysis should be able to identify the presence of additional
structure in the side-channel parametric profile of an IC and,
thereby, reveal its presence. Accordingly, assuming availability
of a small, representative set of trusted Trojan-free ICs,
classifiers can be trained to discern between Trojan-free and
Trojan-infested chips.

Starting with the global power consumption-based method
presented in [5] and the path delay-based method introduced
in [6], constructing fingerprints of ICs based on side-channel
parameters and using these fingerprints to statistically assess
whether an IC is contaminated by a hardware Trojan or not
became a popular direction. Indeed, numerous researchers in
the hardware security and trust area developed this idea further
by using various side-channel measurements, including power
supply transient signals [7], [8], leakage currents [9], [10],
regional supply currents [11], and temperature [12], as well as
multiparameter combinations thereof [13], [14].

While all of these methods targeted digital circuits, a similar
method using side-channel fingerprinting to detect hardware
Trojans in analog/radio-frequency (RF) ICs, and more specifi-
cally, in wireless cryptographic ICs was also proposed in [15].
As pointed out therein, the analog/RF domain is an attractive
attack target, since the wireless communication of these chips
with the environment over public channels simplifies the
process of staging an attack without obtaining physical access
to the I/O of the chip. On the other hand, signals in an
analog/RF IC are continuous and highly correlated to one
another; hence, the likelihood of a modification disturbing
these correlations is very high. As a result, side-channel-based
hardware Trojan detection methods are very effective in this
domain, as shown using simulations of a Trojan-free and two
Trojan-infested versions of a wireless cryptographic IC in [15].
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Fig. 1. Experimental platform, die photograph, and circuit specifications.

The vast majority of hardware Trojan detection methods
reported in the literature so far, whether for digital or
analog/RF ICs, have only been assessed in simulation or
emulation via Field Programmable Gate Arrays (FPGAs).
Very few custom silicon implementations of hardware Trojans
and evaluations of relevant detection solutions using actual
measurements exist, mostly employing toy examples of digital
hardware Trojans. The work presented herein seeks to fill
this gap in the analog/RF domain by designing, fabricating,
and characterizing a wireless cryptographic IC containing
two hardware Trojans capable of leaking the encryption key.
Indeed, silicon measurements are essential in order to convinc-
ingly assess the effectiveness of hardware Trojan operation
and detection methods based on side-channel fingerprinting,
especially in the analog/RF domain. Our approach follows
the same general principles for leaking secret information and
the same hardware Trojan detection method, as introduced in
[15], although our design is slightly different. Accordingly,
our results corroborate the findings of [15] through actual
silicon measurements, as opposed to simulation-based results.
Furthermore, we demonstrate experimentally the robustness of
this hardware Trojan attack to both measurement and channel
noise. To the best of our knowledge, this is the first silicon
demonstration of working hardware Trojans in a wireless
cryptographic IC and the first evaluation of side-channel-based
statistical analysis methods for detecting them.

The remainder of this paper is structured as follows.
In Section II, we introduce the chip that we designed and
fabricated for the purpose of this paper. Specifically, we
describe the Trojan-free and the two hardware Trojan-infested
versions of an Advanced Encryption Standard (AES) + ultra-
wideband (UWB) wireless cryptographic IC. In Section III,
we discuss the mechanism through which the key is leaked
by the two hardware Trojans, as well as issues pertaining to
the robustness of the attack. Then, in Section IV, we discuss
how these hardware Trojans evade detection by traditional
manufacturing test methods. In Section V, we demonstrate the
effectiveness of side-channel fingerprinting in revealing the
presence of a hardware Trojan based on statistical analysis
of transmission power using one-class classifiers. A short
discussion follows in Section VI with conclusions drawn in
Section VII.

II. WIRELESS CRYPTOGRAPHIC IC

The wireless cryptographic IC used in this paper consists of
a digital part and an analog part. The digital part, which occu-
pies over 99% of the design, is an AES core followed by an
output buffer. The analog part is a UWB transmitter (TX) [16],
which is very small and easy to integrate on-chip. Our exper-
imental platform, which is shown in Fig. 1, supports one
Trojan-free and two Trojan-infested operation modes of the
wireless cryptographic IC. As described in detail later in this
section, in the two Trojan-infested operation modes, the added
hardware Trojans leak the AES encryption key by hiding it in
the wireless transmission power amplitude/frequency margins
allowed for process variations, while ensuring that the circuit
continues to meet all of its functional specifications.

The chip was designed in TSMC’s 0.35-μm process and
was fabricated through MOSIS, with all 40 chips received
functioning correctly. The area of the die is 9 mm2 and
the design includes approximately 110 K gates. The digital
part runs at a frequency of up to 48 MHz and consumes
66.42 mW while the UWB TX has a data rate of up to 96 Mb/s
and consumes 14.72 mW. The chip specifications are listed
in Fig. 1. The die is packaged in a PGA108M package. The
packaged die sits in a socket of a custom FR-4 printed circuit
board (PCB), which is connected to an Opal Kelly XEM 3010
FPGA board with 2.5 V power supply, through which the
wireless cryptographic IC can be controlled from a PC via
MATLAB. The bias voltage of the UWB TX is controlled by
an 8-bit Digital to Analog Converter (DAC) (AD5668) on the
PCB. The wireless transmission is carried out through a pair of
dual-band handheld antennas [17]. One antenna is connected
to the UWB TX output of our chip. The other antenna is
connected to our oscilloscope (Tektronix MDO4104-6), which
has a built-in spectrum analyzer and acts as the receiver (Rx).

A. Trojan-Free Version

A system-level block diagram of the circuit is shown
in Fig. 2. The AES core receives plaintext in blocks of 128 bits,
which it encrypts using a 128-bit key that is loaded through the
“key” input and stored on-chip. The width of the encryption
key determines the number of transformation rounds to which
the plaintext is subjected during encryption. In this case, after
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Fig. 2. System-level block diagram.

Fig. 3. UWB TX schematic.

ten rounds of transformation, the plaintext is encrypted into
ciphertext, which is stored in an output buffer in blocks of
128 bits, until it is transmitted. The output buffer is a first-
in first-out (FIFO) structure of 128-bit words, which is the
length of the ciphertext. The output buffer sends ciphertext
to the UWB TX serially. The UWB TX designed in this
platform includes a baseband pulse generator and an RF pulse
generator, as shown in Fig. 3. In our design, frequency-shift
keying (FSK) is used to distinguish the polarity of a bit,
while ON–OFF keying (OOK) is used to separate adjacent
bits. Bit values of “0” and “1” are separated and converted to
return-to-zero (RTZ) format in the baseband pulse generator.
The pulsewidth (PW) is controlled by two types of signals.
Specifically, the first type of PW control signals, PW_01 and
PW_11, controls the capacitance of several voltage-controlled
capacitors, which adjust the delay of the signal path, thereby
controlling the PW of the baseband signal. The second type of
PW control signals, PW_02 and PW_12, adjusts the current
through each branch by controlling the gate voltage of the
bottom nMOS transistors. With higher gate voltage, more
current flows through each branch and the PW of the baseband
signal becomes smaller. With lower gate voltage, the PW
of the baseband signal becomes wider. The output of the
baseband pulse generator controls the input of the RF pulse
generator. Here, a ring oscillator is used as a voltage-controlled
oscillator (VCO) to gene rate the RF pulse, and the pulses of
signals “0” and “1” are assigned to two different frequencies.
Signals F0 and F1 are used to control the pulse frequency
by controlling the current through each branch. The higher
the current through each branch, the larger the oscillation
frequency. The modulation waveform of the UWB TX is
shown in Fig. 4. The last part of the design is a power
amplifier (PA), consisting of several stages of inverters, which
are used to combine the signals “1” and “0” from the VCOs.

Fig. 4. Modulation waveform.

Fig. 5. Transmission power while sending “1” and “0.”

The all-digital design of this UWB TX makes it compatible
with the digital part and reduces overall power consumption
and die area. An example of a typical transmission of a “1”
and a “0” is shown in Fig. 5. We note that the transmission
of signal “1” has higher amplitude and lower frequency than
transmission of signal “0.”

B. Trojan-Infested Versions

In order to reduce the risk of being detected, the underlying
hardware changes required for introducing hardware Trojans
should be very simple. Indeed, in our experimental platform,
minor additions/modifications to the digital and analog parts of
the circuit are needed in order to leak the encryption key over
the public channel, as shown in Fig. 6 and as we explain in
the following. Specifically, we designed two different hardware
Trojans, both of which require the same simple change on the
digital side, while each requires a slightly different change on
the analog side. On the digital side, the added hardware taps
into the register that stores the 128-bit AES key, in order to
steal one bit at a time. The value of the stolen key bit is passed
to the UWB TX, through which it is leaked by modulating
the parameters of the wireless transmission (i.e., amplitude
or frequency) during the transmission of one ciphertext bit.
Overall, along with every 128-bit block transmitted by the
UWB TX, the 128-bit key is also leaked. On the analog
side, the modifications needed to leak a stolen key bit with
each transmitted ciphertext bit by each of the two alternative
hardware Trojans are also very simple, taking advantage of
the design margins provided to account for fabrication process
variation. Specifically, the first hardware Trojan (Trojan-I)
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Fig. 6. Hardware Trojan modifications in digital and analog parts.

is located in the PA, while the second hardware Trojan
(Trojan-II) is located in the RF pulse generators.

For Trojan-I, a pMOS transistor is added to the output of
the PA of the UWB TX, and the stolen key bit is connected to
the gate of this pMOS transistor. Accordingly, when the stolen
key bit is “0,” the pMOS transistor is turned ON and draws a
small additional current from the power supply to the output,
thereby slightly increasing the transmission power. Conversely,
when the stolen key bit is “1,” the pMOS transistor is turned
OFF, so no additional current is drawn to the output, with the
circuit, essentially, continuing to operate as in the Trojan-free
case.

For Trojan-II, only two transistors are added at the input
of each RF pulse generator. In the original design, signals
F0 and F1, which control the frequency of the output signal,
are connected directly to the RF pulse generators, as shown
in Fig. 3. In the modified design, however, they are no longer
connected to the RF pulse generators. Instead, FT0 and FT1
are connected to the RF pulse generators. When the stolen
key bit is “0,” the pMOS transistor in Trojan-II is turned ON,
thereby resulting in

FT 0/1 = F0/1 + (V dd − F0/1) ∗ ron

ron + rop
(1)

where ron and rop are the channel resistances of the nMOS
and the pMOS transistors, respectively, and Vdd is the supply
voltage. The sizes of the pMOS transistors and the nMOS
transistors can be carefully designed, so that FT0/FT1 is just
slightly higher than F0/F1, which, in turn, makes the frequency
of the pulse “0”/“1” just slightly higher than its original value.
Conversely, when the stolen key bit is “1,” the pMOS transistor
is turned OFF, in which case FT0 and FT1 are equal to
F0 and F1, respectively, with the circuit essentially continuing
to operate as in the Trojan-free case.

Fig. 7 shows the impact of hardware Trojan-I on the trans-
mission power waveform of a Trojan-infested chip. Fig. 7(a)
contrasts the power waveforms for transmitting a logic “0”
when the stolen key bit is “1” and “0,” respectively. In the
latter case, the slight increase in transmission power is evident
across the waveform, with the difference peaking at 0.14 mW.
Similarly, Fig. 7(b) contrasts the power waveforms for trans-
mitting a logic “1” when the stolen key bit is “1” and “0,”
respectively, with the difference in transmission power peaking
at 0.2 mW.

Fig. 7. Difference in transmission power waveform of Trojan-I infested chip
when the stolen key bit is “0” and “1” while transmitting (a) ciphertext bit
of value “0” and (b) ciphertext bit of value “1.”

Similarly, Figs. 8 and 9 show the impact of hardware
Trojan-II on the transmission power waveform of a
Trojan-infested chip. Fig. 8 contrasts the power waveforms
for transmitting a logic “0” when the stolen key bit is
“1” and “0,” respectively. In the latter case, the slight increase
in transmission frequency is evident across the waveform,
with the difference measured at 24 MHz. The left plot in
Fig. 8 shows the two waveforms in the time domain. The
frequency difference is too small to be distinguished visually,
so we convert the waveforms into the frequency domain for
easier observation. The right plot in Fig. 8 contrasts the power
waveform for transmitting a logic “0” in the frequency domain,
when the stolen key bit is “1” and “0,” respectively. The
difference due to the hardware Trojan is now evident when
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Fig. 8. Difference in transmission power waveform of Trojan-II infested chip
when the stolen key bit is “0” and “1” while transmitting a ciphertext bit of
value “0.”

Fig. 9. Difference in transmission power waveform of Trojan-II infested chip
when the stolen key bit is “0” and “1” while transmitting a ciphertext bit of
value “1.”

comparing these two waveforms. Similarly, Fig. 9 contrasts the
power waveforms for transmitting a logic “1” when the stolen
key bit is “1” and “0,” respectively, with the difference in
transmission frequency measured at 12 MHz. Once again, the
left plot in Fig. 9 shows the two waveforms in the time domain,
while the right plot in Fig. 9 shows the same information
transformed into the frequency domain, with the difference
incurred due to the hardware Trojan becoming evident.

We emphasize that the slight increase in transmission power
amplitude (by Trojan-I) or frequency (by Trojan-II) when the
hardware Trojan is turned ON (i.e., when the stolen key bit
is “0”) is very small and leaves the circuit well within its func-
tional specification margins allowed for process variations and
operating condition fluctuations. In other words, all of these
transmissions, when considered individually, appear perfectly
legitimate and do not raise any suspicions, as they do not
violate any specifications and could have been produced by a
chip originating from the Trojan-free distribution, as we will
demonstrate further in Section IV.

Finally, we also point out that the overall area overhead
incurred by Trojan-I and Trojan-II is 0.005% and 0.025%,
respectively, which is extremely small and hard to detect
through visual inspection. Similarly, despite being always ON,
the overall power consumption of Trojan-I and Trojan-II is
360 and 90 μW, respectively. When expressed as a percentage
of the 81.14 mW of total power consumed by the chip, this

Fig. 10. Received waveform of a 4-bit ciphertext block transmitted by
Trojan-I infested chip.

amounts to 0.4% and 0.1%, respectively, making it difficult to
detect by conventional or statistical methods.

III. HARDWARE TROJAN OPERATION

We now proceed to describe how the hardware Trojan-
induced modifications in the transmission power waveform can
be used for stealing the encryption key and we evaluate the
robustness of the attack to measurement and channel noise.

A. Stealing the Key

Despite being hidden in the process variation margins, the
impact of the hardware Trojan on the transmission power
waveform suffices for the informed adversary to obtain the
secret key and, by extension, the plaintext by deciphering the
ciphertext. We emphasize that the attacker does not need to
know the exact shape of the waveform when a key bit of
value “0” and a key bit of value “1” is leaked. In fact, it is
impossible to know this information, since every chip will be
affected differently by process variations. Indeed, the attacker
does not rely on absolute values. Rather, it is the minute
relative difference between transmissions by the same chip
that gives away the secret. All the attacker has to do is listen
to the public wireless transmission channel, focusing on the
parameter manipulated by the hardware Trojan (i.e., amplitude
or frequency), in order to observe the different levels, which
correspond to a key bit of “1” and “0,” respectively, when a
ciphertext bit of value “0” and a ciphertext bit of value “1”
are transmitted (i.e., the waveforms of Figs. 7–9). Once these
four waveforms are known to the attacker, observing the
transmission of a 128-bit block suffices to obtain the entire
128-bit AES key.

Fig. 10 shows an example of how the encryption key is
leaked by a Trojan-I infested chip. We transmitted a ciphertext
through the antenna connected to the UWB TX on our chip
and we received it through the second antenna, which was
connected to the oscilloscope. Fig. 10 zooms in on a 4-bit
portion of the 128-bit ciphertext transmitted by the UWB TX.
The value of this 4-bit snippet is “1100,” which is shown
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Fig. 11. Received waveform of ciphertext bitstream transmitted by Trojan-II
infested chip, when leaked key bit is “1.”

in the purple (middle) trace. The corresponding 4-bit key
portion leaked during transmission of this ciphertext snippet
is “1010” and is shown in the blue (top) trace. The received
ciphertext signal is shown in the green (bottom) trace. This
signal is perfectly legitimate for every bit transmitted in this
example, as it stays well within the specifications of the
circuit. Indeed, due to its simple structure and careful transistor
sizing, the changes that Trojan-I imposes on the parameters
of the transmission power waveform (e.g., power gain, power
efficiency, and power consumption) when it is enabled (i.e.,
when the stolen key bit is “0”) are very small, measured by
the oscilloscope at 81 and 32 mV for ciphertext bit values of
“0” and “1,” respectively. However, comparative observation of
the transmission power amplitude in the received waveforms
reveals the values of the key bits to the attacker.

Similarly, Figs. 11 and 12 show an example of how the
encryption key is leaked by a Trojan-II infested chip. Once
again, we transmitted a ciphertext through the antenna con-
nected to the UWB TX on our chip, we received it through
the second antenna connected to the oscilloscope, and we
converted it to the frequency domain through the built-in
spectrum analyzer of our oscilloscope. These examples also
zoom in on a snippet of the ciphertext including both sig-
nal “0” and signal “1.” Specifically, Fig. 11 shows the received
signal when the leaked bit is “1,” while Fig. 12 shows the
received signal when the leaked bit is “0.” In Figs. 11 and 12,
the top half shows the ciphertext bits, shown in the purple
(bottom) trace, along with leaked key bits, shown in the
blue (top) trace, in the time domain. The bottom half of
Figs. 11 and 12 shows the received signal in the frequency
domain. In order to be compatible with the antennas, the trans-
mission frequency of signal “1” was tuned to be centered at
380 MHz, while the transmission frequency of signal “0” was
tuned to be centered at 561 MHz. As in the case of Trojan-I,
the impact of Trojan-II on the transmission parameters is
inconspicuous and the received signals for each transmitted
ciphertext bit are perfectly legitimate, remaining well within
the specifications of the circuit. Specifically, when the leaked
key bit is “0,” the transmission frequency of ciphertext bits

Fig. 12. Received waveform of ciphertext bitstream transmitted by Trojan-II
infested chip, when leaked key bit is “0.”

“1” and “0” is increased to 390 and 573 MHz, respectively, as
shown in Fig. 12. Once again, while the difference when the
leaked key bit is “1” and when the leaked key bit is “0” is very
small, it is systematic; therefore, comparative observation of
the transmission frequency reveals the values of the key bits.

B. Attack Robustness

For the designed hardware Trojans to facilitate a robust
attack, the difference between the transmission power wave-
forms when the stolen key bit is “0” and “1” should
be discernible even in the presence of measurement noise
and environmental variations. When measuring transmission
power/frequency, unavoidable measurement noise is intro-
duced due to the accuracy of the test equipment (i.e., starting
point and step size precision), resulting in slightly different
outcomes for the same waveform. Environmental conditions,
such as temperature, electromagnetic interference, and test-
board setup, may also impact the measurements. To assess
the robustness of the introduced hardware Trojans to noise,
we conducted ten repetitions of the same measurements while
placing the chip in different locations with variable ambient
noise and after operating the chip for a variable time to
introduce differences in operating temperature. While this was
not a controlled-temperature experiment and no temperature
sensors are available on chip, the on-chip voltage variation
caused by the different temperature conditions resulted in
transmission power variation in the range of 5%–7%.

Fig. 13(a) shows the ten power waveforms obtained from
a Trojan-I infested chip while transmitting a “1” and a “0”
when the stolen key bit is a “1.” Similarly, Fig. 13(b) shows
the same measurements when the stolen key bit is “0.”
As may be observed, the lowest peak amplitude among the
ten repetitions shown in Fig. 13(b) is always above 1.16 and
0.48 mW for transmitting a “1” and a “0,” respectively, when
the leaked key bit is “0.” In contrast, the corresponding highest
peak amplitude shown in Fig. 13(a) never exceeds 1.07 and
0.46 mW, respectively, when the leaked key bit is “1.” Hence,
the difference is clearly distinguishable and Trojan-I robustly
leaks the encryption key.
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Fig. 13. Ten repetitions of measuring transmission amplitude while trans-
mitting a “1” and a “0” when the stolen key bit is (a) “1” and (b) “0.”

Fig. 14. Ten repetitions of measuring transmission frequency while (a) trans-
mitting a “1” when the stolen key bit is “1” and “0” and (b) transmitting a “0”
when the stolen key bit is “1” and “0.”

Fig. 14(a) shows ten transmission frequency plots obtained
from a Trojan-II infested chip while transmitting a “1” when
the leaked key bit is “1” and “0,” while Fig. 14(b) shows
the same measurements while transmitting a “0” when the
leaked key bit is “1” and “0.” As may be observed, the highest
frequency among the ten repetitions shown in the blue (left)
traces of Fig. 14(a) is below 385 MHz when the leaked key
bit is “1.” In contrast, the lowest frequency among the ten
repetitions shown in the red (right) traces is always above
385 MHz when the stolen key bit is “0.” Hence, the difference
is clearly distinguishable. Similarly, as shown in Fig. 14(b),
when transmitting a “0,” the transmission frequency is always

below 570 MHz when the leaked key bit is “1,” shown in
blue (left), and always above 570 MHz when the leaked key
bit is “0,” shown in red (right). Hence, Trojan-II is also robust
to measurement noise while leaking the encryption key.

The above-mentioned experiment evaluated the robustness
of our Trojan-infested UWB TX against measurement noise,
while leaking the encryption key. Besides measurement noise,
however, a robust attack should also be able to withstand
noise on the communication channel, as well as on the Rx
circuitry, which may contribute to an increase in bit error
rate (BER). The ability of an Rx to robustly obtain the key
leaked through our Trojan-infested UWB TX over the air,
as shown in Figs. 10–12, was demonstrated in a controlled
laboratory environment where channel noise is low. In case of
arbitrary channel conditions or variable transmission distance,
however, such robustness may be jeopardized. Therefore, in
order to evaluate robustness of both ciphertext reception and
stolen key reception in a noisy environment, we perform
an experiment, which combines on-chip instrumentation for
controlling the intensity level of the Trojan impact on the
transmitted signal, with MATLAB simulation for introducing
various levels of channel noise.

Specifically, instead of the single pMOS transistor shown
in Fig. 6 for Trojan-I, we have implemented an array of four
pMOS transistors (X1, X2, X4, and X8), each being twice
the width of the previous one, as shown in Fig. 15(a). The
gates of these four transistors are still driven by the leaked
key bit but only after going through four two-input OR gates,
the other inputs of which are controlled through a 4-bit control
code (en4, en3, en2, and en1). When all four control bits are
“0,” the circuit operates as Trojan-free, since the OR gates
produce a logic “1” and all pMOS transistors are OFF, so
no additional current is drawn, independent of the key value.
For all other values of the 4-bit control code, at least one
pMOS transistor turns ON when the stolen key bit value is
“0.” The sizes of the four pMOS transistors were carefully
chosen, such that the 4-bit code can control the transmission
power amplitude difference when the stolen key bit is “0”
and when it is “1” in one of 15 distinct levels. The same
capability was also designed for Trojan-II, by replacing each
of the two pMOS transistors shown in Fig. 6, which generate
signals FT0 and FT1, respectively, with four transistors (X1,
X2, X4, and X8), as shown in Fig. 15(b). In this case, the 4-bit
code controls the difference in transmission power frequency
when the stolen key bit is “0” and when it is “1” in one of 15
distinct levels. In the rest of this paper, we will use Level 0 to
denote the case when all pMOS transistors are OFF, Level 1
to denote the case where only the smallest pMOS transistor
is ON (i.e., minimal Trojan impact), and so on, until Level 15
which denotes the case where all four pMOS transistors are
ON (i.e., maximal Trojan impact). We emphasize that even
at Level 15, all the UWB transmissions remain within their
specifications.

Besides controlling the Trojan impact level, as explained
earlier, we also used MATLAB simulations to introduce addi-
tive white Gaussian noise (AWGN) to the transmission wave-
form, thereby modeling communication channel noise and Rx
circuitry noise. With these capabilities at hand, we conducted
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Fig. 15. On-chip provisions for controlling the impact of (a) Trojan-I and
(b) Trojan-II in 15 distinct levels.

the following experiment to assess robustness of ciphertext
reception and leaked key reception in a noisy environment.
We started by using one of our chips to transmit a 128-bit
block of ciphertext 15 times, while leaking the same 128-bit
AES encryption key, first through Trojan-I and then through
Trojan-II. For each of these 15 transmissions, a distinct impact
level was used to control the transmission amplitude or fre-
quency incurred by Trojan-I and Trojan-II, respectively. All
in all, for each of the two Trojans, we collected 15 trans-
mission power waveforms. To each of these waveforms, we
added nine different levels of AWGN, with signal-to-noise
ratio (SNR) ranging from 0 to 40 dB with a step size of
5 dB. Two bandpass filters, with a central frequency of
380 and 560 MHz, respectively, were then used to model Rx
functionality in MATLAB and distinguish between ciphertext
signals “0” and “1.” After filtering, the method of Section III-A
is applied to extract the leaked key bit values. Comparison
to the correct ciphertext and key values is then performed
to compute BER. The experiment was repeated 30 times
and the results reported next reflect the average over these
30 repetitions.

Fig. 16 shows the ciphertext BER results for Trojan-I
infested transmissions. Results for the Trojan-free case
(i.e., Trojan impact Level 0) are also provided for the purpose
of comparison. In the worst case scenario, where SNR is 0 dB
and the impact level of the Trojan is minimal (i.e., Level 1),
more than half of the ciphertext bits (i.e., 72/128) are incor-
rectly received. As the channel conditions improve, at an
SNR of 15 dB, BER drops to 36/128 incorrectly received
ciphertext bits, while at 20 dB, it drops further to 20/128.
Beyond that SNR point, BER becomes negligible, even for

the lowest Trojan impact level. At each SNR point, increasing
the Trojan impact level slightly reduces BER. This is explained
by noticing that whenever the leaked key bit is “0,” the Trojan-
infested transmission signal has increasingly higher amplitude
as we increase the Trojan impact level. Thus, it can withstand
more noise, essentially helping the Rx correctly interpret the
ciphertext waveform and reducing BER. Overall, these results
confirm that the presence of Trojan-I does not jeopardize the
robustness of ciphertext reception; in fact, it actually helps in
slightly improving it.

Fig. 17 shows the leaked key BER results for Trojan-I
infested transmissions. When the impact level of the Trojan
is minimal (i.e., Level 1), the BER is very high, with
49/128 leaked key bits incorrectly received even when the
channel is very clean at an SNR of 40 dB. This is expected,
as the extra transmission amplitude when the leaked key bit
is “0” is extremely small in this case and becomes easily
lost even in relatively little channel noise. Similarly, when the
channel is very noisy, at an SNR of 0 dB, even the maximal
level of Trojan impact (i.e., Level 15) results in a very high
BER of 61/128 incorrectly received key bits. The situation
improves quickly as the SNR increases, becoming negligible at
25 dB for the maximal level Trojan impact. The results clearly
depict the joint impact of SNR and Trojan intensity, revealing
that the leaked key can be received very robustly as the
channel conditions improve and as we approach the maximal
impact level (Level 15), for which Trojan-I was originally
designed. We remind that, even at this impact level, the
transmissions are well within their specifications and appear
legitimate.

Figs. 18 and 19 show the same results for Trojan-II infested
transmissions. Regarding ciphertext reception, in the worst
case of SNR of 0 dB and minimal Trojan impact level (i.e.,
Level 1), 70/128 ciphertext bits are incorrectly received. The
situation improves quickly as the SNR and the impact level of
the Trojan increase, though not always as quickly as in the case
of Trojan-I. This is expected, since Trojan-II modulates trans-
mission power frequency rather than amplitude; hence, it only
indirectly counteracts channel AWGN. Overall, the results
confirm again that the presence of Trojan-II does not reduce
the robustness of ciphertext reception; in fact, it improves it.
Regarding leaked key reception, in the worst case of SNR
of 0 dB and minimal Trojan impact level (i.e., Level 1),
82/128 key bits are incorrectly received. As expected, increas-
ing SNR and/or the impact level of the Trojan quickly reduces
leaked key BER, becoming negligible at an SNR of 30 dB even
for the minimal Trojan impact level (i.e., Level 1). Overall, as
can be observed in the results, Trojan-II is more robust than
Trojan-I in leaking the key. This is, again, attributed to the
type of noise introduced in the channel (i.e., AWGN), which
masks slight amplitude differences much more effectively than
slight frequency differences.

Finally, with respect to correct retrieval of the leaked
encryption key, we should also point out that the infrequent
change of the key offers another opportunity for dealing with
BER. Specifically, since the 128-bit key is leaked with every
128-bit ciphertext, an attacker could repeat the process an odd
number of times and take a majority vote to decide the value
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Fig. 16. Error bits in retrieved ciphertext for Trojan-I infested transmissions.

Fig. 17. Error bits in retrieved encryption key for Trojan-I infested
transmissions.

of each key bit. In our experiments, after three repetitions, this
simple process eliminated almost all of the leaked key BER
reported earlier.

IV. DETECTION EVASION

The hardware Trojans introduced in our design evade
traditional manufacturing test, since they do not change the
functionality of the circuit and they do not violate any circuit-
or system-level specifications. As commonly practiced in
mixed-signal ICs, we generated test vectors that cover both
stuck-at and transition faults in the digital portion of the
design by using a full-scan chain of enhanced scan flip-flops.
However, since our hardware Trojan only taps into the register
holding the encryption key and does not alter the functionality
of the AES circuit, no functional or structural digital test
targeting stuck-at or transition faults is going to expose it.
Furthermore, the added capacitive load for leaking the key, one
bit at a time, is very low to make the circuit fail any delay tests
or to be picked up by statistical side-channel fingerprinting
methods for hardware Trojan detection, such as [6].

Similarly, on the UWB side, the impact of the introduced
hardware Trojan (i.e., one pMOS transistor for Trojan-I and

Fig. 18. Error bits in retrieved ciphertext for Trojan-II infested transmissions.

Fig. 19. Error bits in retrieved encryption key for Trojan-II infested
transmissions.

two pairs of transistors for Trojan-II) is hidden within the
process variation margins. In other words, for the vast majority
of fabricated devices, the transmission power waveform will
continue to be within the UWB transmission specifications.
It is possible, however, that for a very small number of chips
at the tails of the distribution, the extra nudge provided by
the hardware Trojan might push them outside the specifi-
cations, thereby slightly reducing yield. Nevertheless, such
yield loss could be caused by many other reasons (process
drifts, material impurities, mask misalignment, measurement
noise, and so on) and there is no way to attribute it to
the presence of a hardware Trojan. In our case, none of
the 80 Trojan-infested circuits ended up outside the speci-
fications, while all of them could robustly leak the secret
key. System-level test is also not going to reveal these
hardware Trojans, since they do not transmit any additional
bits and they do not violate the transmission protocol in
any way.

To demonstrate the difficulty in detecting these hardware
Trojans, in Fig. 20(a)–(c), we show the measured transmis-
sion power for transmitting a ciphertext bit of “0” and “1”
by each of the 40 hardware Trojan-free, hardware Trojan-I
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Fig. 20. Transmission power of (a) 40 Trojan-free circuits, (b) 40 Trojan-I infested circuits, and (c) 40 Trojan-II infested circuits enclosed in the μ ± 3σ
envelop of the Trojan-free circuits.

infested, and hardware Trojan-II infested circuits. During these
transmissions, the maximal impact level of each Trojan is
employed. Each of these three distributions is enclosed in the
μ ± 3σ transmission power envelop of the hardware Trojan-
free circuits. The key observation based on Fig. 20 is that the
three distributions are very similar. Clearly, given any one of
these 120 transmission power waveforms, it is very difficult,
if not impossible, to definitively tell whether it comes from
a hardware Trojan-free circuit or a hardware Trojan-infested
circuit.

We note that the specification margins allowed for interdie
process variation are much wider than the margins needed for
a single chip to deal with variable SNR on the communication
channel. Therefore, while these measurements were taken over
an actual communication channel with typical ambient noise,
higher or lower SNR would not adversely impact the ability
of the Trojans to remain hidden.

V. SIDE-CHANNEL FINGERPRINTING EVALUATION

Having demonstrated the robustness of our hardware
Trojans in stealing the cryptographic key, we now proceed to
evaluate the effectiveness of a popular hardware Trojan detec-
tion method, namely, side-channel fingerprinting, in detecting
them. As mentioned in Section I, the underlying premise
of statistical side-channel-based hardware Trojan detection
methods is that the distortion imposed by hardware Trojans
on the parametric profile of an IC is systematic, even though
it is hidden within the design margins allowed for process vari-
ations. For example, the hardware Trojans introduced in this
paper increase slightly the transmission amplitude/frequency
when the stolen key bit value is “0,” without violating any

transmission specifications. This systematic impact of the
attack is indispensable, since the adversary relies on it in order
to discern the hidden information. However, any systematic
component, subtle as it might be, imposes added statistical
“structure” to the transmission power of a population of
chips. This added “structure” is precisely what statistical side-
channel fingerprinting methods for hardware Trojan detection
rely on.

In the following, we first employ a simple statistical analysis
method, namely, principal component analysis (PCA) [18], to
visualize in a 3-D space the existence of such statistical “struc-
ture” in the silicon measurements obtained from our fabricated
Trojan-free and Trojan-infested wireless cryptographic ICs.
We then show that one-class classifiers, such as a simple min-
imum volume enclosing ellipsoid (MVEE) [19] drawn in the
3-D space of the first three principal components of the data, or
a more advanced one-class support vector machine (SVM) [20]
trained with the original multidimensional data, can be used
to effectively distinguish between Trojan-infested and Trojan-
free circuits, with the SVM being able to do so in lower
dimensionality (i.e., with fewer measurements).

A. Hardware Trojan Detection via PCA and MVEE

In order to visualize through PCA the added statistical
“structure” imposed by hardware Trojans, we randomly
selected six different blocks of plaintext, which we encrypted
through the AES using a randomly chosen 128-bit key. Each
of the resulting six blocks of ciphertext was then transmitted
by the UWB TX and the total transmission power for each
block over the public channel was measured for each of the
40 Trojan-free, 40 Trojan-I infested, and 40 Trojan-II infested
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Fig. 21. Projection of hardware Trojan-free and hardware Trojan-infested circuits on a 3-D space where each dimension corresponds to (a) total transmission
power for transmitting one ciphertext block, demonstrating that the populations are indistinguishable (three out of the six blocks used in our experiment were
randomly chosen; results are similar for any other subset of three) and (b) one of the three top principal components yielded by performing PCA on the total
transmission power for transmitting each of the six blocks for all the chips. The MVEE enclosing the hardware Trojan-free population, which can be used to
classify a chip as hardware Trojan-free or hardware Trojan-infested, is also shown.

circuits. In Fig. 21(a), we project these populations to a
randomly chosen subset of three out of these six measurements
(i.e., each dimension reflects the total transmission power
when transmitting a 128-bit ciphertext block). Evidently, the
three populations fall upon each other and are not distinguish-
able in this space. This remains the case for all other subsets
of three out of the six measurements. This is expected, as the
transmission power for each individual block remains within
the acceptable specification margins for all of these circuits.
In other words, by simply examining transmission power of
blocks by individual chips and comparing to some threshold,
it is not possible to reveal the presence of a hardware Trojan.

However, when we perform even a very simple statistical
processing, such as PCA, of the same information from all
the circuits (i.e., the total transmission power for transmitting
each of the same six ciphertext blocks as described earlier),
things start to become very interesting. In Fig. 21(b), we
project again the three chip populations, this time on the three
principal components of the original data, which are essentially
three eigenvectors of the data covariance matrix and, hence,
orthogonal (linearly uncorrelated). Evidently, in this space,
the three populations are clearly separable. For example,
in Fig. 21(b), we show how a simple one-class classifier,
such as an MVEE, can be trained to enclose the population
of Trojan-free chips and, subsequently, serve the purpose of
deciding whether a new chip under evaluation is Trojan-
free (i.e., inside the MVEE) or Trojan-infested (i.e., outside
the MVEE).

The reason why PCA can separate the Trojan-free chips
from the Trojan-infested ones lies in the orthogonality of
the dimensions in the transformed space wherein the original
data are projected. Due to this orthogonality, the minute but
systematic differences incurred by the hardware Trojans,

which are indistinguishable from the random differences
incurred by process variation, are amplified and become
clearly visible in the transformed space. In essence, projection
of the data from the original 6-D linearly correlated space to
the transformed 3-D linearly uncorrelated space reveals that
the distribution of measurements from Trojan-infested chips
does not follow the same characteristics as that of Trojan-
free chips. In our case, this is the result of the systematic
modulation of amplitude/frequency by hardware Trojan-I/II,
respectively, in order to leak the encryption key.

Since each added principal component accounts for as much
of the variance left in the data set as possible, while main-
taining orthogonality with prior principal components, a small
number of dimensions will typically suffice for distinguishing
the Trojan-infested from the Trojan-free chips. In our case, the
six original measurements resulted in overlapping populations
in the 2-D space of the top two principal components and
required the third one to be fully separable.

We also attempted to reduce the dimensionality of the
original data set in order to expedite detection and reduce the
hardware resources required for obtaining and processing the
measurements. Specifically, we randomly selected a subset of
five out of the six ciphertext blocks of our original data set
and used PCA to project this data set to its top three principal
components, with the results shown in Fig. 22. As can be
observed, when training an MVEE one-class classifier in the
transformed 3-D space, it is not possible to enclose the hard-
ware Trojan-free population without also including numerous
Trojan-infested chips. This result was consistent for all subsets
of five out of the six original measurements and for a large
number of different sets of initial six measurements that we
experimented with. Overall, for the given hardware Trojan-free
chip population, a set of six transmission power measurements
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Fig. 22. Projection of Trojan-free and Trojan-infested circuits on a 3-D space
of the top principal components after running PCA on a randomly selected
subset of five out of the six transmission power measurements.

projected through PCA on a 3-D space appears to be the
minimum required for perfectly separating Trojan-free from
Trojan-infested chips in our data set using a trained MVEE
one-class classifier.

We emphasize that, in the above-mentioned method, training
of the MVEE one-class classifier is Trojan-agnostic, i.e., it is
performed using measurements obtained only from Trojan-free
chips, in an unsupervised learning fashion. This is particularly
important, as its detection ability is not geared toward specific
hardware Trojans. In fact, the only assumption in this case
is that a hardware Trojan in wireless cryptographic ICs will
have to somehow distort transmission power, which is the
only parameter an attacker has access to. Accordingly, the
trained MVEE should effectively detect any hardware Trojan
that systematically distorts transmission power, independent
of how it encodes the leaked information. The two hardware
Trojans designed and implemented on our experimentation
platform are not used in training the MVEE but are only used
to demonstrate the trained classifier’s ability to detect hardware
Trojans of which it has no prior knowledge.

B. Hardware Trojan Detection via SVM

As an alternative to the combination of PCA and MVEE,
which was used mainly for visualizing the statistical “struc-
ture” imposed by hardware Trojans and for demonstrating
feasibility of hardware Trojan detection through trained clas-
sifiers, we also experimented with a more advanced classifier,
namely, a one-class SVM. The key strength of SVMs is that
they use nonlinear transformation kernels, such as a radial
basis function in our experiment, in order to project the
original data into a higher dimensional space. In the case of
two-class classification (i.e., supervised learning), the objective
of the transformation is to make the two populations linearly
separable through a hyperplane in the transformed space.
In the case of one-class classification, the objective of the
transformation is to fit a hyperplane that separates the data
from the origin, such that the distance between the hyperplane
and the origin is maximized, or to enclose the population
within a minimal-volume hypersphere. When projected back to

TABLE I

TROJAN DETECTION METRICS FOR DIFFERENT NUMBERS OF
TRANSMISSION POWER MEASUREMENTS USED TO

TRAIN ONE-CLASS SVM

the original (lower dimensional) feature space, this boundary
(hyperplane or hypersphere) becomes nonlinear and it is
precisely this nonlinearity of the transformation that gives a
one-class SVM an edge over the PCA and MVEE approach,
as we show next.

We start with the same data set as before, which consists
of transmission power measurements for six ciphertext blocks,
transmitted by each of our 40 Trojan-free, 40 Trojan-I infested,
and 40 Trojan-II infested circuits. We select 30 out of the
40 Trojan-free circuits as the training set and we train a
one-class SVM to learn the trusted boundary enclosing this
population. Once again, only Trojan-free circuits are used for
training, retaining the Trojan-agnostic aspect of this detection
method. The remaining 10 Trojan-free circuits along with the
80 Trojan-infested circuits are used to evaluate the perfor-
mance of the trained classifier. This performance is quantified
using two metrics, namely, false positive rate and false neg-
ative rate. The former reflects Trojan-free circuits, which are
classified as Trojan-infested, while the latter reflects Trojan-
infested circuits, which evade detection. This experiment is
first performed with all six measurements for each chip and,
subsequently, repeated for randomly chosen subsets of five,
four, three, and two ciphertext blocks, with the results reported
in Table I.

As may be observed, just as in the PCA and MVEE
approach, training the one-class SVM with transmission power
measurements from six ciphertexts results in a classification
boundary that perfectly labels not only the ten previously
unseen Trojan-free circuits but also all 40 Trojan-I and
40 Trojan-II infested circuits. In this case, however, training
the one-class SVM with transmission power measurements
from a subset of five or even four ciphertexts also results
in perfect labeling of the validation set, which could not be
achieved with the PCA and MVEE approach. In fact, even
when a subset of three of these measurements are used for
training, all ten Trojan-free circuits in the validation set are still
labeled correctly, and only 1 out of 80 Trojan-infested circuits
evades detection. When dimensionality of the training set is
further reduced to transmission power measurements from
two ciphertext blocks, however, the error increases to 29 out
of 80 Trojan-infested circuits evading detection, even though
none of the 10 Trojan-free circuits is misclassified as Trojan-
infested. Overall, these results corroborate experimentally the
expectation that, due to the nonlinear nature of the underlying
transformation, the more advanced one-class SVM will require
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fewer measurements in order to effectively separate the Trojan-
free from the Trojan-infested circuits than the simpler PCA
and MVEE approach.

VI. DISCUSSION

Before concluding, we would like to note the following.
1) The simplicity of the hardware Trojans described in this

paper makes them very stealthy and practical designs.
Significantly, these are also the first hardware Trojans
reported and demonstrated in actual silicon for attacking
wireless cryptographic ICs. Encoding of the leaked
information is very straightforward, through modulation
of transmission amplitude or frequency, and is easy to
decode by a simple Rx who is aware of the rogue
encoding. Other options, such as phase modulation and
Rx impedance modulation, or more advanced schemes,
such as code division multiple access [21] or orthogonal
frequency division multiplexing, may also be used to
further reduce the distortion induced by the hardware
Trojan on the transmission power, at the expense of more
complex hardware for staging the attack.

2) The popular statistical side-channel fingerprinting
method employed herein for hardware Trojan detection
is Trojan-agnostic, i.e., it has no knowledge of and
makes no assumptions about the Trojan functionality.
The two hardware Trojans designed and implemented
in this paper were only used to demonstrate that a one-
class classifier, trained with measurements from only
Trojan-free designs, can detect these Trojans. In fact, this
method will detect any Trojan, which systematically dis-
torts transmission power through any other mechanism,
as long as the statistics of the contaminated transmis-
sion exhibit different structure than the statistics of the
Trojan-free measurements. We note that if the above-
mentioned condition does not hold, it will be extremely
difficult, if not impossible, for an attacker to decode
the leaked information. We also clarify that the use
of transmission power as a side-channel measurement
for statistical fingerprinting can only protect against
attacks which assume that the over-the-air transmission
waveform is the only physical parameter the attacker
has access to. Hardware Trojans, which use other side
channels, relying on physical access to the I/O of the
chip, such as MOLES [10], require fingerprinting of
other side-channel measurements, such as power con-
sumption, in order to be detected.

3) Statistical side-channel fingerprinting assumes access to
measurements from a set of known Trojan-free chips
in order to train the one-class classifier. Meeting this
requirement, which is prevalent in the hardware Trojan
detection literature, can be cumbersome. An expensive
option involves destructive delayering and imaging of
the ICs in the training set, after the measurements are
obtained, in order to certify that they are Trojan-free.
Nonintrusive options, including self-referencing [11],
self-consistency [22], and the use of trusted on-die
process control monitors [23], have also recently been

proposed. As such, while not trivial, the obstacle of
obtaining trusted fingerprints is possible to overcome.

VII. CONCLUSION

Wireless cryptographic ICs provide a tangible objective and
constitute an attractive target for hardware Trojans. Not only
do these ICs hold valuable secret information, but also they
communicate over public channels, thereby simplifying the
attack. Indeed, as shown in this paper, leaking the secret key
by hiding it in the wireless transmission power, to which an
adversary has access, is fairly straightforward and requires
very little circuit modification. More importantly, this can be
done without violating any digital, analog, or system-level
specifications, rendering traditional test methods ineffective
in detecting such hardware Trojans, the impact of which is
carefully concealed within the design margins allowed for
process variations. In this sense, transmission by a hardware
Trojan-infested wireless cryptographic IC appears perfectly
legitimate and, in isolation, cannot be differentiated from
that of a hardware Trojan-free chip. Nevertheless, due to the
systematic nature of the hardware Trojan impact, statistical
analysis through either a simple PCA and MVEE or through
a more advanced SVM is capable of revealing the presence of
a hardware Trojan, without requiring any a priori knowledge
about the particulars of the attack. The above-mentioned
observations were demonstrated using 40 chips from a wireless
cryptographic IC design, consisting of an AES encryption core
and a UWB TX, which we designed and fabricated in TSMC’s
0.35-μm process. To the best of our knowledge, this is the
first silicon demonstration of hardware Trojans in wireless
cryptographic ICs and the first evaluation of the popular side-
channel fingerprinting hardware Trojan detection method using
actual measurements.
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