
20

How Secure Is Split Manufacturing in Preventing Hardware

Trojan?

YAJUN YANG, ZHANG CHEN, and YUAN LIU, ShanghaiTech University

TSUNG-YI HO, National Tsinghua University

YIER JIN, University of Florida

PINGQIANG ZHOU, ShanghaiTech University

With the trend of outsourcing fabrication, split manufacturing is regarded as a promising way to both acquire

the high-end nodes in untrusted external foundries and protect the design from potential attackers. However,

in this article, we show that split manufacturing is not inherently secure, that a hardware Trojan attacker can

still recover necessary information with a proximity-based or a simulated-annealing-based mapping approach

together with a probability-based or net-based pruning method at the placement level. We further propose a

defense approach by moving the insecure gates away from their easily attacked candidate locations. Results

on benchmark circuits show the effectiveness of our proposed methods.

CCS Concepts: • Security and privacy → Hardware attacks and countermeasures; • Hardware →

Design for manufacturability;

Additional Key Words and Phrases: Split manufacturing, hardware trojan, proximity-based attak, simulated

annealing attack

ACM Reference format:

Yajun Yang, Zhang Chen, Yuan Liu, Tsung-Yi Ho, Yier Jin, and Pingqiang Zhou. 2020. How Secure Is Split

Manufacturing in Preventing Hardware Trojan? ACM Trans. Des. Autom. Electron. Syst. 25, 2, Article 20 (March

2020), 23 pages.

https://doi.org/10.1145/3378163

1 INTRODUCTION

The integrated circuit (IC) production flow has become globalized due to the high cost of owning
a state-of-the-art manufacturing foundry and the complexity of the IC design. Although the sep-
aration of design and fabrication brings economic benefits to the design companies, it also raises
significant concern on the security of the fabricated circuits, since potential threats come from all
stages of the supply chain in the form of hardware attacks. As one of the most common attacks
on ICs, Hardware Trojan (HT) [20] tries to insert additional malicious circuits into the original
design to change the functionality of the circuit or steal the vital information such as secret key
and user account. HTs may not only cause huge economic losses but also bring tremendous harm
to the military, governmental, and public safety [2, 14]. The threats of HTs mainly come from the

Authors’ addresses: Y. Yang, Z. Chen, Y. Liu, and P. Zhou, ShanghaiTech University, Shanghai; email: {yangyj, chenzhang,

liuyuan1, zhoupq}@shanghaitech.edu.cn; T.-Y. Ho, National Tsinghua University, Hsinchu; email: tyho@cs.nthu.edu.tw; Y.

Jin, University of Florida, Orlando; email: yier.jin@ece.ufl.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1084-4309/2020/03-ART20 $15.00

https://doi.org/10.1145/3378163

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

https://doi.org/10.1145/3378163
mailto:permissions@acm.org
https://doi.org/10.1145/3378163

20:2 Y. Yang et al.

following parties who engaged in the IC design and fabrication flow: IC design house, H/W IP
vendor, CAD tool vendor, and foundry.

To counter these attacks, all stages of the design and fabrication flow need to take security
into account [12] and the defense methods can be classified into two categories: HT detection
and design for security (DFS). HT detection attempts to detect the potential HTs inserted into the
circuit at either the post-silicon or the pre-silicon stage. Reverse engineering (RE) [24] is one of
the post-silicon methods that de-packages an IC to obtain the microscopic images of each layer.
The drawback of RE is that it is destructive, since the chip becomes ineffective after RE and the
analysis result is often not applicable to other circuits. Therefore, pre-silicon methods such as logic
testing and side-channel analysis [5, 9] have been proposed and such methods have shown to be
more effective in detecting HTs than RE without destroying the chip. In contrast, the DFS tries
to make the insertion of HTs difficult or increasing the insertion cost by intervening one or more
of the whole production stages. For instance, the obfuscation-based methods protect the circuit
by either obscuring its function from the designer’s perspective or changing its structure from
the CAD tool’s side [21, 31]. Another prevailing method is split manufacturing [17]. Several chips
have been fabricated successfully using this method [26, 27]. In split manufacturing, the whole
design is split into two parts: (1) the Front End of Line (FEOL) consisting of transistors and lower
metal layers, and (2) the Back End of Line (BEOL) consisting of top metal layers. Only FEOL layers
need to be fabricated in an untrusted high-end foundry, while BEOL layers can be fabricated in
a trusted low-end foundry. In other words, with split manufacturing, only the transistors and the
limited number of connections in lower metal layers are exposed to potential threats, while the
connections in top metal layers are hidden from the attackers.

Recently, References [16, 19, 29, 30] analyzed the security of a group of ISCAS-85, ITC-99 and
ISPD 2011 benchmark circuits, which are assumed to be fabricated using split manufacturing
method and an attacker is attempting to retrieve the missing BEOL connections from the FEOL
connections. In Reference [19], the authors first assumed that the split layer is Metal 4 (M4), and
then proposed an attack method named proximity attack to recover the hidden connections be-
tween the circuit partitions in the BEOL layers, by leveraging the local physical information re-
vealed by the physical design tools. Their results show that they can retrieve 96% of the missing
connections correctly. Wang et al. [29, 30] studied more general flattened designs and proposed
the network-flow attack method to retrieve the missing connections. Results show that on aver-
age their method can retrieve up to 67% of the connections when varying the split layer. Reference
[16] analyzed the effectiveness of different proximity-based techniques on identifying the candi-
date pins to be connected for each cutting net in the FEOL layers. Their results show that when
split layer is M2, up to 82% of the candidate pin lists contain the correct pins to be connected.

To effectively retrieve most of the hidden BEOL connections, the aforementioned works need
enough information of the FEOL connections as input, implying that the lowest split layer is M2.
However the splitting layer has great impacts on the effectiveness of attack. For instance, in Ref-
erence [30] the correctly retrieved rate of BEOL connections for benchmark c880 is close to 100%
when the split layer is M5 or higher, but it drops to 27% when the split layer changes to M3. This
indicates that a lower split layer can obfuscate the attacker more efficiently. Vaidyanathan et al.
[27] propose to split at M1, in which case all the FEOL connections are hidden, just leaving the
attacker a sea of gates, thus could make the attacker difficult to recover the missing wires. But they
only justify the security of splitting at M1 theoretically; however, our work shows that splitting
after M1 still carries the threat of HT insertion.

In this work, we study the security of a circuit under HT attack when split layer is M1 and
assume that the attacker can implant HT at multiple spots to guarantee success. We then come
up with two metrics to quantitatively measure the security of a circuit under HT attack. For the

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:3

attack, we propose two approaches—one is adapted from proximity attack [19], by leveraging the
heuristic that the connected gates tend to be close to each other. The other is based on simulated
annealing (SA), which is widely used in placement stage in the back end design of chips to minimize
the total wirelength [23]. These two approaches incorporate either local heuristic (such as logic
connections) or global information (such as total wirelength) and leverage the common knowledge
that minimizing total wirelength is a fundamental objective during placement. Furthermore, to
counter our proposed attack methods, we provide a defense method that moves gates out of their
easily attacked candidate locations.

The contributions of our work are as follows:

• Two metrics, namely, EMSR (Effective Mapped Set Ratio) and AMSPR (Average Mapped Set
Pruning Ratio) are proposed to evaluate the security level of a circuit under HT attacks.

• Two attack methods are proposed in our work. The SA-based attack method that integrates
global heuristic is presented in our conference paper [6], and in this article, we propose an
improved proximity attack method that uses the local heuristic. The experimental results
show that improved proximity-based attack method is effective in terms of finding the cor-
rect mapped set for each gate (i.e., the candidate gate set to implant HT), and improved
proximity attack is faster than the SA-based attack.

• To further reduce the cost of the attacker and the risk of implanted HT being detected, we
propose two pruning methods, i.e., probability-based pruning (see our conference paper [6])
and net-based pruning, to prune the mapped sets obtained after attacks.

• Finally, we propose a corresponding gate-swapping-based defense approach. Our results
show that it can significantly improve the security of a circuit compared with the state-of-
the-art methods.

The remainder of this article is organized as follows. In Section 2, we review the related work.
In Section 3.2, we discuss our threat model and the problem formulation. We describe our security
metrics and attack approaches in Section 4, and then present our defense method in Section 5. We
show our experimental results in Section 6 and finally make conclusions in Section 7.

2 RELATED WORK

An example of targeted HT attack is shown in Reference [22], where the state of hardware registers
is modified to maliciously raise privilege level. To achieve successful attack, the gate and wire that
corresponds to the privilege bit need to be determined in the circuit layout. Thus, to support such
targeted HT attack and reduce the attack cost, one needs both the complete gate-level netlist and
the mapping of the gates in netlist to their physical locations in the layout [27].

Split manufacturing was first proposed to improve chip yield in early 2000s and more recently,
it was used to enhance circuit security [29] by hiding the BEOL connections in layout from
the attackers. Recently a few research works have analyzed the security of a circuit using split
manufacturing [16, 19, 29, 30]. Proximity heuristic [19] has been proposed to retrieve the hidden
connections in BEOL by exploiting the fact that connected pins should be placed close to each
other. On top of proximity heuristic, Reference [29] further proposed a network-flow-based attack
framework, which considers more information such as timing and load capacitance constraints.
The results of their works show that for general split manufacturing with enough layers of metal
connections included in FEOL, the attacker can reconstruct a large portion of the connections
in BEOL, but the security can be enhanced by lowering the split layer, because less information
is exposed to the attacker. In the extreme case, Reference [27] proposed to lower the split layer
to be M1 so that the attacker can only see a sea-of-gates with no inter-cell connections. As for
defense, pin swapping technique [19] is adopted to reduce the correctness of the reconstructed

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:4 Y. Yang et al.

BEOL connections, while placement perturbation-based defense is proposed in Reference [29] to
make its network-flow-based attack less effective.

In our work, we study the security of a split manufactured circuit under HT attack, where the
split layer is M1. Because there is no connection information available in the FEOL, we cannot
directly use the methods in References [16, 19, 29, 30]. Since the attacker aims to implant HT
in the circuit, to fulfill this task, he/she needs to do his/her best to find the possible locations of
the target gates in the layout. In our work, we first adapt the proximity heuristic [19] together
with the logical connection and size of gate in the netlist to reverse engineer the possible netlist-
layout mapping in Section 4.3 to find the target gate, instead of using it to recover the hidden
connections. Considering that proximity heuristic does not take global information such as total
wirelength into account, we further propose a simulated-annealing-based approach for the attack.
To quantitatively measure the security of a circuit under HT attack, where the attacker can implant
HT at multiple spots to guarantee success, we come up two metrics, namely, EMSR and AMSPR.
We also propose a corresponding gate-swapping-based defense approach.

Our work is mostly related to Reference [10], where a graph isomorphism method is proposed
to obtain the netlist-layout mapping. Two connection graphs are, respectively, constructed—one
for the netlist and the other for the physical layout of FEOL layers. Then, the mapping is obtained
by graph isomorphism between the two connection graphs, which is unfortunately a NP-hard
problem. Also the authors assume that the attacker can only exploits the proximity information
of two connected pins. To evaluate the effectiveness of the attack, k-security metric is proposed in
[10]: If a gate in the logical netlist can be mapped to k candidate locations in the layout, then this
gate is k-secure, meaning that it cannot be distinguished from the other k − 1 gates. A wire lifting
technique is then demonstrated to uplift the security of the circuit by lifting part of the wires to the
trusted BEOL, with wirelength and area overhead of up to 2×. In contrast, in our work, all the wires
are manufactured in the BEOL, and there is no wire available to be lifted. Thus, our gate-swapped-
based defend method could increase the security of the circuit without any chip area overhead.

In the literature, in addition to k-security, there are many other metrics proposed to measure
the effectiveness of both the attack and defense method under different threat models. Percentage
of gates correctly extracted from a layout [24] and number of signals correctly matched [15] are
leveraged to estimate the utility of reverse engineering. Reference [29] exploits the correct connec-
tion rate and output error rate to evaluate its attack and defense techniques. Reference [13] uses
detection rate to measure the correctness of detecting HT. For the sake of IP piracy and IC over-
building attack, hamming distance [16, 19, 32], number of brute force and number of input patterns
[3] are used for measuring obfuscation. Reference [11] proposes four metrics, namely, neighbor
connectedness, standard-cell composition bias, cell-level obfuscation and entropy, to evaluate the
effectiveness of its obfuscation techniques. Although the above metrics are effective for their cor-
responding attack and defense techniques, they cannot be used directly for our work. For example,
in our attack model described in Section 3.1, k-security [10] can only describe how hard for the
attacker to insert HT for general gates, while we need metrics that can characterize how accuracy
of inserting HT in a target gate and the associated cost as well.

3 PROBLEM FORMULATION

In this section, we first discuss our threat model, then present our problem formulation on HT
attack.

3.1 Threat Model

As discussed in Section 2, the attacker wants to carry out a targeted HT attack, which requires
getting the mapping between the gates in the netlist and their locations in the layout. While the

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:5

Fig. 1. Threat model.

attacker can implant HT at all possible locations, such strategy increases the workload of the
attacker as well as the risk of implanted HT being detected. Therefore, the attacker should reduce
the number of implanted HTs as much as possible.

In our threat model shown in Figure 1, the attacker can get help from two roles in two stages: a
rogue element in the untrusted foundry who can modify the FEOL layout during fabrication and
a malicious observer in the design stage who cannot do malicious changes on the design but has
access to the precise gate-level netlist of the entire circuit. Our threat model aligns with the one
used in Reference [10].

The reason that the attacker is assumed to be able to obtain gate-level netlist is that unlike
software attackers, organizations that intend hardware attack are resourceful and are willing to
pay for the related cost, because successfully implanted HT is capable of executing valuable attacks
[7].

Moreover, to show the vulnerabilities of split-fabricated circuits to HT attacks, we assume that
the circuit is split after M1, which gives the least information to the attacker. We also assume that
primary inputs and outputs in the layout can be uniquely identified based on the specification of
the design and can be correctly mapped to their counterparts in netlist without further efforts.

Finally, we assume that the attacker will not have access to the fully integrated IC thereby
preventing any reverse engineering [27]. Under this assumption, the attacker could then insert
malicious hardware in future batches of the IC as they are fabricated in the foundry [10].

3.2 Problem Formulation

With the physical layout of the FEOL layers and the gate-level netlist of the entire circuit, the goal
of the attacker is to map the gates in netlist to the physical locations in layout to implant HT, which
is similar to References [10, 33]. We use Figure 2 to illustrate our problem definition. Figure 2(a) is
the graph corresponding to the gate-level netlist of a circuit. Figure 2(b) is the complete physical
layout of this circuit, which shows the correct mapping between the gates in netlist (as shown in
Figure 2(a)) and the physical gates in layout. Figure 2(c) is the layout that the attacker sees, with
no inter-cell connections and all physical gates labelled differently.

LetVn = {1, 2, 3, 4} be the set of the gates in the netlist andVl = {a,b, c,d } be the set of the gates
in the layout that the attacker sees, then the mapping problem is to find a mapping ϕ : Vn → Vl

that is close to the correct mapping ϕc :Vn → Vl . From Figures 2(b) and 2(c), the correct mappings
are all bijective: ϕc (1) = a, ϕc (2) = c , ϕc (3) = b, ϕc (4) = d .

For the attacker, since he can get information from the untrusted foundry, he can reverse engi-
neer [25] all the components in FEOL [30], after which he knows the gate type of all the physical
gates in the layout. Consequently, the initial mapping for the attacker is ϕini (x) = {a,b, c} for
x = 1, 2, 3 and ϕini (4) = d . Based on the initial mapping, if his target is gate 3, then he has to im-

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:6 Y. Yang et al.

Fig. 2. (a) Logical connection corresponding to the gate-level netlist. (b) The complete physical layout with

all gates correctly mapped to their counterparts in netlist. (c) The physical layout that the attacker sees.

plant HT at all three AND gates. Note that ϕ is not restricted to be bijective. The reason for this
is obvious: the main goal of the attacker is to successfully implant HT, so if the location for the
target cannot be uniquely identified, then multiple implantations are acceptable. We call ϕ (Vn (i))
the mapped set of the ith gate in netlist, which contains all the possible physical gates for Vn (i) to
map to. |ϕ (Vn (i)) | is the size of the mapped set of ith gate. For example, in Figure 2(a), the mapped
set of gate “1” could be represented as ϕ (1) = {a,b, c}, and |ϕ (1) | = 3 means the number of gates it
can be mapped to in the layout is 3. Finally, it is obvious that |ϕ (Vn (i)) | may not always be 1, but
the attacker can try to prune ϕ (Vn (i)) to reduce the cost and risk of the attack.

Generally, letm be the number of gate types in a circuit, the mapping problem becomes finding

m mappings ϕ1, ϕ2, ϕ3, . . . ,ϕm such that ϕ j :V j
n →V j

l
is the mapping between the gates of type j in

netlist and the physical gates of the same type in the layout. For any gateV j
n (i) of type j, its initial

mapped set is the set of all the physical gates of type j. For example, in Figure 2(a), m = 2, since
there are two types of gates, i.e., AND and NOT gate. And for AND gate “1,” its initial mapped set
is ϕ (1) = {a,b, c}, which includes all the AND gates in the layout. Then the problem is to prune
ϕ (1) in an appropriate way. We will present our solutions to the mapping and pruning problems
in Section 4. After that, we will present our defense method in Section 5.

4 ATTACK METRICS AND FLOW

In this section, we first propose two metrics that are specific to our HT attack model and then
present the overall attack flow.

4.1 Metrics

As discussed in Section 3.1, to achieve successful HT attack, the attacker should do his best to
ensure that the mapped set for a target gate contains the correct target gate to implant HTs. Mean-
while, he also wants to reduce the size of the mapped set to be as small as possible to decrease
the cost and risk of HT implantation. Obviously, the metrics discussed in Section 2 are not feasible
for our attack model; thus, we propose the following two metrics to quantitatively measure the
effectiveness of our attack approaches:

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:7

4.1.1 Effective Mapped Set Ratio (EMSR). A mapped set of a gate is effective only when it con-
tains the correct location (i.e., candidate gate in layout) of the gate. If a mapped set does not contain
the correct location, then it will mislead the attacker to miss the targeted spot and harms the ef-
fectiveness of the attack. EMSR is defined as the percentage of effective mapped sets among all the
mapped sets. Formally,

EMSR =

∑ |Vn |
i=1 |ϕ (Vn (i)) ∩ ϕc (Vn (i)) |

|Vn |
, (1)

where ϕ (Vn (i)) is the mapped set of gateVn (i), ϕc (Vn (i)) is the correct physical gate forVn (i). |Vn |
is the total number of gates in the circuit.

4.1.2 Average Mapped Set Pruning Ratio (AMSPR). AMSPR evaluates the average reduction ra-
tio of a mapped set in a circuit after attack, which is calculated as the ratio between the reduced
size of the set after the attack and the size of the original set. Formally,

AMSPR =
1

|Vn |
·
|Vn |∑
i=1

(
1 − |ϕ (Vn (i)) |
|ϕini (Vn (i)) |

)
· |ϕ (Vn (i)) ∩ ϕc (Vn (i)) |, (2)

where ϕini (Vn (i)) is the initial mapped set for Vn (i) that contains all the physical gates with the
same gate type as Vn (i). Note that if a mapped set ϕ (Vn (i)) becomes ineffective during pruning,
i.e., ϕ (Vn (i)) ∩ ϕc (Vn (i)) is empty, then this mapped set would only mislead the attacker no matter
how much it is pruned. Thus, if a mapped set becomes ineffective, then we set the pruning ratio
of this mapped set to be 0, meaning that the pruning is fruitless.

Take the circuit shown in Figure 2 as an example,Vn = {1, 2, 3, 4};ϕc (1) = a,ϕc (2) = c ,ϕc (3) = b,
ϕc (4) = d ;ϕini (1) = {a,b, c},ϕini (2) = {a,b, c},ϕini (3) = {a,b, c},ϕini (4) = d . Initially, the mapped
set for each gate ϕ is equal to its initial mapping ϕini ; thus, according to Equation (1),

EMSR =
1 + 1 + 1 + 1

4
= 1.

Now, suppose after attack, the mapped sets reduce to ϕ (1) = {a,b},ϕ (2) = {c},ϕ (3) = {a, c},ϕ (4) =
{d }, then according to Equations (1) and (2),

EMSR =
1 + 1 + 0 + 1

4
= 0.75,

and

AMSPR =
(1 − 2

3) · 1 + (1 − 1
3) · 1 + (1 − 2

3) · 0 + (1 − 1
1) · 1

4
= 0.25.

Note that the EMSR reduces from 1 to 0.75 after attack because the correct mapping “b” was pruned
out from the initial mapping set ϕini (3) = {a,b, c} for gate “3.” From this example, we can also see
that pruning the mapped set is also a very effective way to reduce the attack cost.

In general, the attacker seeks to find the mapped sets that have both large EMSR and AMSPR—
the former implies high attack correctness while the later indicates low attack cost.

4.2 Attack Flow

Figure 3 shows our attack flow, which mainly comprises three steps:

• Analyzing: First, since the attacker has the gate-level netlist and FEOL layout information,
he/she will first obtain the initial mapped set for each gate in the netlist, that is, all gates of
the same type in the FEOL layout. In our experiments, we show that the size of an initial

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:8 Y. Yang et al.

Fig. 3. Our attack flow.

mapped set can be larger than one thousand, which motivates us to propose novel tech-
niques to prune the initial mapped sets. In our work, we prune the initial mapped sets in
the following two steps.

• Mapping: This step aims to find enough number N of the possible netlist-layout map-
pings, by leveraging either the local physical heuristics in the layout or the common knowl-
edge that minimizing total wirelength is a fundamental objective during placement. We will
present two approaches for this step in Section 4.3. By merging all the found N mappings,
we can get a reduced mapped set for each gate.

• Pruning: Finally, our experimental results show that the mapping step alone is not enough
to reduce the size of the mapped set, so we propose two approaches (see Section 4.4) to
further reduce the mapped sets at this step.

4.3 Mapping

Mapping aims to obtain a certain number of possible netlist-layout mappings. In our work, we have
proposed both simulated annealing-based method and proximity-based method by leveraging the
physical heuristics at different granularities. Simulated annealing method is widely leveraged in
placement algorithms [4, 23]. Thus, we propose a SA-based mapping method that exploits the
global heuristic that placement tools generally minimize the total wirelength of a circuit. For the
details of this approach, the readers are referred to our conference paper [6]. In this section, we
introduce the proximity-based method.

Before introducing the specific process of our proximity-based mapping method PM, some pre-
liminaries need to be clarified:

• In physical layout, the gates of the same type (or size) have the same number of pins, and
the offset location of each pin to the center of the gate is determined. For example, there are
two groups whose gate type is the same in Figure 4(b): {a,b} is the AND type and {c,d, e}
is the OR type. Each of AND type gates has three pins and the locations of these pins are
determined, i.e., all these gates have pins {p1,p2,p3} and the location of each pin is fixed.

• Since all the terminals have only one pin and their size can be neglected compared to the
standard cells. Let terminalnamen and terminalnamel to represent terminal in netlist and
layout, respectively. For example, in1n means terminal in1 in Figure 4(a), in1l stands for
terminal in1 in Figure 4(b). Names of other terminals are similar. For other nonterminal
gates, denote the ith pin of gate j as pini, j . For example, pin1,1 and pin1,a mean the pin p1

of gate 1 and pin p1 of gate a, respectively, as shown in Figure 4. The pins having the same
offset locations and the same associated gate types are called same-type pins. For example,

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:9

Fig. 4. Example of recovering netlist-layout mapping by proximity: (a) Logical connection corresponding to

the gate-level netlist. (b) The complete physical layout that the attacker sees.

{pin1,a , pin1,b } are the same-type pins, while neither {pin1,a , pin2,b } nor {pin1,a , pin1,c } is
the same, since their gate type and pin location are not the same, respectively.

• Once a pin is mapped, the gate it belongs to is also mapped, and vice versa. For exam-
ple, in Figure 4, if pin1,1 is mapped to pin1,a , then gate 1 is also mapped to gate a with all
their pins are mapped to each other, respectively, i.e., {pin1,1,pin2,1,pin3,1} is mapped to
{pin1,a ,pin2,a ,pin3,a }, respectively, indicating that map a pin is equivalent to map a gate.

• All the terminals are already correctly mapped as explained in Section 3.2.A. For example,
{in1n , in2n , in3n , in4n ,out1n ,out2n } are mapped to {in1l , in2l , in3l , in4l ,out1l ,out2l }, re-
spectively.

Proximity attack is first proposed in Reference [19] to recover the hidden connections of the
circuit in the BEOL layers, it tends to connect the two closest pins as the missing wire. Instead of
using proximity to recover the hidden connections, in our work, we propose to use the proximity
idea to find the possible netlist-layout mappings. Except for leveraging the hints including input-
output relationship and proximity mentioned in Reference [19], the logical connection information
in the netlist and the type/size information of gates are also considered in the proposed mapping
process. PM leverages these hints to find the pin’s mapped pin to find gate’s mapped gate: For
example, considering net3 in Figure 4(a). This net has three relevant pins {pin3,1,pin1,2,pin1,4},
assume gate “1” is already mapped to gate “a,” which means pin pin3,1is mapped to pin3,a , consider
the next pin to be mapped is pin1,4 to find the mapped gate of gate “4.” The proximity attack
considers pin1,b be the most possible mapped pin of pin1,4, since it is the pin nearest to pin pin3,a

among all the other unmapped pin, thus map gate “4” to gate “b.” While in the proposed PM
process, the gate type of pin1,4 is the OR type observed from the netlist, thus only the unmapped
same-type pins of pin1.4 in layout need to be considered, others can be directly pruned, i.e., choose
a nearest pin from {pin1,d ,pin1,e } as the mapped pin of pin1,4, finally PM take pin1,d as the mapped
pin of pin1,4 and map gate “4” to gate “d.” Thus, in proximity-based mapping, a pin in netlist can
only be mapped to the nearst same-type pins in layout. PM chooses an unmapped pin each time

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:10 Y. Yang et al.

to find its possible mapped pin in layout until all pins or gates are mapped. Once a pin is mapped,
the gate it belongs to is also mapped, and vice versa. For example, in Figure 4, if pin1,1 is mapped
to pin1,a , then gate “1” is also mapped to gate “a” with all their pins are mapped to each other,
respectively, i.e., {pin1,1,pin2,1,pin3,1} is mapped to {pin1,a ,pin2,a ,pin3,a }, respectively.

Here, we use the circuit in Figure 4 to illustrate the process of PM summarized in Algorithm 1:

ALGORITHM 1: Proximity-based Mapping

1: Input: Netlist, layout positions

2: Output: Mapping result of each gate

3: Initially, map all the terminal gates correctly as Gterminal ;

4: Gmapped ← ∅, дmapped ← ∅;
5: pmapped ← ∅, pnext ← ∅;
6: while there exits unmapped gates or unmapped pins do

7: if Gmapped = ∅ then

8: Randomly choose a gate from Gterminals as дmapped and pmapped whose belong to net has un-

mapped pins;

9: else if Gmapped � ∅ && all nets connected to дmapped has no unmapped pins then

10: Randomly choose a gate fromGmapped as дmapped , at least one of whose nets has unmapped pins,

and ramdomly choose a pin from дmapped as pmapped ;

11: end if

12: neti ← RandomChoose(дmapped ’s nets who have unmapped pins);

13: pnext ← RandomChoose(neti ’s unmapped pins);

14: playout ← FindNearestUnmappedSametypePin(pmapped);

15: map playout to pnext ;

16: map pnext ’s gate to playout ’s gate;

17: Gmapped .push_back(pnext ’s gate);

18: pmapped ← pnext ;

19: дmapped ← playout ’s gate;

20: end while

21: // all gates mapped, get a possible mapping solution;

22: return Mapping result of each gate;

• First, map all the terminals correctly. Gterminal stores the terminal gates, Gmapped

stores all the previously mapped gates except for the terminal gates, while дmapped

stores the recent mapped gate, pmapped is one pin of дmapped ’s pins, and pnext is the
next pin to be mapped, which corresponds to lines 3–5. For example, in Figure 4,
{in1n , in2n , in3n , in4n ,out1n ,out2n } are mapped to {in1l , in2l , in3l , in4l ,out1l ,out2l }, re-
spectively.

• Second, randomly choose one net as neti from дmapped ’s nets who have unmapped pins,
then one pin is randomly chosen from neti ’s unmapped pins as pnext . Obviously, at the
beginning, the дmapped is one of the terminals, since only terminal gates are mapped corre-
sponding to lines 7 and 8. Otherwise, the дmapped is the recently mapped gate. However, if
all nets of дmapped have no unmapped pin, then a new gate should be chosen randomly as
the дmapped from previous mapped gates(i.e., Gmapped) and a pin is also randomly chosen
fromдmapped , which alias to lines 9–11. For instance, in Figure 4, assume initially we choose
pmapped = in3n whose belonging to net is net4 with its unmapped pins being {pin2,2,pin2,4}.
According to lines 12 and 13, assume pnext = pin2,4 after randomly choosing.

• Third, pnext ’s mapped pin in the layout could be found, which is its unmapped same type
pin nearest to pmapped ’s mapped pin, i.e., PM takes pin2,d as pin2,4’s mapped pin, since it

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:11

Fig. 5. Example of different mapping results obtained by PM.

is the nearest to in3l among its unmapped same type pins {pin2,c ,pin2,d ,pin2,e }. Then map
gate “4” to gate “d” and the remaining pins, i.e., {pin1,4,pin3,4} is mapped to {pin1,d ,pin3,d },
respectively, corresponding to lines 15 and 16.

• Finally, start from the recently mapped pin and gate according to lines 17–19, the above
steps repeat until all the gates or pins are mapped.

The red line in Figure 4 shows the example mapping process of PM. Start from in3n (mapped to
in3l), then use the connection {in3n ,pin2,4} to map pin2,4 (mapped to pin2,d , and gate 4 is mapped
to gate d), the remaining used connections are: {pin1,4,pin3,1} (map pin3,1 to pin3,a , and gate “1”
to gate “a”), {pin3,1,pin1,2}, {pin3,2,pin1,3}, {pin2,3,pin1,5}. Finally, the mapping result is that gates
{1, 2, 3, 4, 5} are mapped to gates {a,b, c,d, e}, respectively.

It should be pointed out that the mapping results obtained by PM are strongly dependent on the
mapping order. For example, start from in3n in Figure 5, if the subsequentnext_pin is {pin2,2,pin1,3}
alias to the the blue partition, then it will map gate {2, 3} to gate {a,d }, respectively. While for
the mapping order {pin2,4,pin3,1} alias to the red partition, gate {4, 1} is mapped to gate {d,a},
respectively. Thus, different mapping solutions can be obtained if PM process is run for multiple
times.

4.4 Pruning

After the mapping step, the size of the mapped set for some gates may still be too large for the
attacker. Take Figure 4 as an example, assume the N = 5 mapping solutions for Vn = {1, 2, 3, 4, 5},
Vl = {a,b, c,d, e} is

GN×|Vn | =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a b e d c
a b d c e
a b d c e
a b c d e
b a e c d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

With Gi, j being the mapped gate of gate Vn (j) in ith mapping solution. After merging G:, j , the
mapped set of each gate is ϕ (1) = {a,b}, ϕ (2) = {a,b}, ϕ (3) = {c,d, e}, ϕ (4) = {c,d }, ϕ (5) = {c,d, e}.
We can see that only the size of mapped set of gate “4” is reduced. If the attacker would like to

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:12 Y. Yang et al.

insert HT at gate “3” successfully, then he/she still needs to insert the HT at all the gates in ϕ (3).
Therefore, we propose two methods, probability-based pruning and net-based pruning, to further
prune the mapped sets. Probability-based pruning is a statistical method, which assumes that a
mapped gate is less possible if it occurs few times in the mapping solutions, we have described it
in our conference paper [6]. Therefore, in this section, we only present the net-based pruning.

The probability-based pruning method considers only the occurrence probability of the ele-
ments in the mapped set; it may prune out the correct mapped gates, which occur a few times.
For example, ϕ (3) excludes its correct gate G4,3 = c after probability-based pruning, since P3 (c) <
Pb (3). To make the pruning more effective, net-based pruning also considers the fact that place-
ment tools tend to make the wirelength of each net small. The main idea of net-based pruning is to
only prune those mapped gates whose net wirelength is long and occur less, while other mapped
gates are kept directly. We use the mapping solution of G in Equation (3) to show how net-based
pruning works: There are totalK = 9 nets in Figure 4(a). Here, we first consider net5, its connected
gates in netlist are Vn (net5) = {2, 3}. The N mapped gates of each gate in Vn (net5) is

Gn5 = [G:,2,G:,3]. (4)

Then HPWL of net5 of the N mapping solutions could be calculated according to the physical
locations of the mapped gates:

HPWLsT = [2 2.5 2.5 1 3]. (5)

Finally, consider the corresponding mapping solutions, denoted as solution_A, whose HPWL sat-
isfies the pruning condition:

HPWL_i > Min(HPWLs) + β ∗ (Max(HPWLs) −Min(HPWLs)), (6)

where β ∈ [0, 1] is the parameter of net-based pruning. In terms of the example, we set β = 0, then
when i = {1, 2, 3, 5}, HPWLs(i) satisfies equation(6), thus

solution_A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G1,2 G1,3

G2,2 G2,3

G3,2 G3,3

G5,2 G5,3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

Those mapped gates of Vn (net (i)) among solution_A are thought to be less possible, since the
HPWL of each net tends to be longer. And they need to be further pruned by probability-based
method. While those do not satisfy are directly kept in the mapped set: namely, G4,2 and G4,3 are
kept inϕ (2) andϕ (3), respectively. Thus, reserving the correct mapped gate of “3” inϕ (3). For each
net, the above process executes until all the nets are processed. Finally, merge all the remaining
mapped gates, and the final pruned mapped sets for each gate are obtained. In this way, net-based
pruning method prunes out the impossible mapped gates by using both probability and net-HPWL
heuristic. It is obvious that β dominates the percentage of mapped gate to be pruned, and the larger
β is, the less solutions are included in solution_A. The proper value of β can be determined in the
experiment.

The difference between pruning and the previous mapping process discussed in Section 4.3 lies
in their different goals: Mapping aims to find all possible locations for a gate so that the attacker
will not miss the real location, while pruning aims to further prune the possible locations to re-
duce the cost and risk of attacks. We refer to the possible locations after pruning as the candidate
locations for a gate. The attacker may implant HT either at all or stochastically at any subset of
these locations, based on his attacking capability.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:13

Fig. 6. Example circuit for defense: (a) original circuit, (b) FEOL for split after M1, (c) circuit with v3, v4

swapped, and (d) circuit with v2 and v3 swapped.

5 DEFENSE

To fulfill the security provided by split manufacturing, physical design techniques need to be
deployed in the placement stage to reduce the information revealed by design heuristics. Local
movement of gates [30] is usually applied to disrupt the proximity of connected gates. While it
performs well against greedy proximity attack, its performances are not naturally generalized to
global information-based attack. To see this, we use the example circuit in Figure 6. There is one
NOR2, one INV, and three NAND2 gates in this circuit. Figure 6(a) is the original layout. We assume
that the fabrication is split after M1 layer, so the attacker cannot see any inter-cell connections just
as in Figure 6(b). Despite the absence of connections, the attacker still can correctly reconstruct
most connections even without gate-level netlist, because the circuit is well organized in terms
of pin positions. Now, if we only consider disrupting pin proximity and swap v3 with v4 as in
Figure 6(c), then the attack effectiveness is mitigated. But for an HT attacker who has netlist, he
can get around the intentionally misleading pin positions by using the global wirelength as the
heuristic: When swapping v3 with v4, the global wirelength of the circuit is only affected smally,
so the attacker will treat v3 and v4 as mutually interchangeable gates and implants HT at both
locations. Although the cost of the attack increases, the effort in defense is much more nullified.
However, if the defender swaps v2 with v3 as shown in Figure 6(d), then the global wirelength
is significantly changed and the attacker will not regard this placement as a possible one, which
prevents v3 from being correctly attacked. Therefore, although it is undesirable to have increased
wirelength, for the sake of security in critical chips, there is a tradeoff for us to explore sometimes.

To counter the threat from a more powerful HT attacker, we propose a defense method that
incorporates global wirelength information. Figure 7 shows our proposed defense workflow. The
goal of this defense is to hide gates from their candidate locations, which means to decrease EMSR.
As the defender is required to know the candidate locations obtained by the attack, he first needs
to go through the entire attack process to collect candidate locations for each gate. Then a greedy
gate-swapping-based defense algorithm is used, which is shown in Algorithm 2. The goal is to swap
the locations of gates so that they are not in one of their candidate locations obtained by the attack.

We start from the gates with the fewest possible candidates, because they are the most insecure
[10]. For each gate д, we find its out-of-candidate gates, which is defined as the union set of each
gate дo that is with the same gate type as д but not in the candidate locations of д. Then, the
security elevation for the location swapping between д and any дo is measured using Algorithm 3.
The reason we only consider swappings between same-type gates is that in this case, no matter

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:14 Y. Yang et al.

Fig. 7. Defense flow.

ALGORITHM 2: Greedy Gate-swapping-based Defense

1: Input:

The candidate locations for each gate ϕ, the original placement

2: Output:

The placement with improved security

3: G ← Vn

4: Ascendingly sort all the gates in G based on the number of their candidate locations

5: while G � ∅ do

6: ToSwap ← ∅
7: Pop the first gate Vn (f) from G and add it to ToSwap

8: Find all the gates in G whose number of candidate locations equals |ϕ (Vn (f)) |, pop them from G and

add into ToSwap.

9: while ToSwap � ∅ do

10: for each gate д in ToSwap do

11: if д � ϕ (д) or |ϕ (д) | = S (д) then

12: Pop д from ToSwap

13: else

14: for each gate дo such that дo ∈ S (д)and дo � ϕ (д) do

15: Get the security elevation and wirelength increase if д swaps its location with дo

16: end for

17: end if

18: end for

19: Get the pair of д and corresponding дo that gives highest nonzero security elevation. If multiple

pairs have the same security elevation, then get the one with least wirelength increase

20: Swap the locations of д and дo

21: Pop д from ToSwap

22: end while

23: end while

24: return The placement with improved security;

how swappings are made, the candidate locations for each gate remain unchanged. So if a gate is
swapped to an out-of-candidate location, its security elevation will not be nullified by swappings
of other gates. The calculation of security elevation is based on the goal that we want to move as
many gates to their out-of-candidate locations as possible. For a gate д, if it is not in an out-of-
candidate location, then its probability of being correctly mapped by random guessing is 1

ϕ (д) . After

being swapped to an out-of-candidate location, its probability of being correctly mapped becomes

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:15

ALGORITHM 3: Security Elevation Calculation

1: Input:

Two gates д and дo

2: Output:

The amount of security elevation if the locations for д and дo are swapped

3: if д � ϕ (дo) and дo � ϕ (д) then

4: SecurityElevation = 2 + 1
|ϕ (д) | +

1
|ϕ (дo) |

5: else if дo � ϕ (дo) and д ∈ ϕ (дo) then

6: SecurityElevation = 1
|ϕ (д) | −

1
|ϕ (дo) |

7: else

8: SecurityElevation = 1 + 1
|ϕ (д) |

9: end if

10: return SecurityElevation;

0. So its security elevation is computed as 1
ϕ (д) . However, we want to enforce more gates to out-

of-candidate locations, so we add security elevation by 1 if a gate is moved from an in-candidate
location to an out-of-candidate location.

Note that the gate-swapping defense is executed after the placement process having been com-
pleted. By swapping the same type of gates, the chip area will remain the same, since the two
swapped gates in the defense process is the same kind of standard cells, which means the area
cost is zero when uplifting the security of the circuit. However, the wirelength overhead and the
security level could be balanced demonstrated in Section 6.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

The proposed techniques are evaluated on eight circuits from ISCAS-85 benchmarks [8] and two
larger scale circuits from ITC-99 benchmarks [18]. OSU technology library [1] is used for syn-
thesis and placement is performed by wirelength-driven placer FastPlace3 [28] for the ISCAS-85
benchmarks. The algorithms run on a Linux machine with 8 Intel i7-3770 CPU cores with 3.4 GHz
frequency and 24 GB memory.

6.2 Proper Number of Mappings N

As stated in Section 4.2, we run mapping algorithms to find N netlist-layout mappings to eliminate
improbable locations while letting the correct locations to be included in the mapped sets. If N is
too small, then correct locations are likely to be excluded from mapped sets. However, if N is too
large, then it would be a waste of time after the correct locations are already included. Thus, the
proper number of mappings, N , needs to be figured out first.

In our experiments, we found that N is related to the maximum number of same-type instances
in the circuit, because they have the most possible locations to choose from. Table 1 shows the
physical information of all the benchmarks and the value ofN in our experiments. A suitable choice
for N is two times of #max same − type , since this can guarantee the most of these benchmarks to
reach >95% intial EMSR.

6.3 Effectiveness of Attack

6.3.1 Effectiveness of Two Mapping Methods: PM and SA. After obtaining N netlist-layout map-
pings by either proximity-based mapping or SA-based mapping method, the mapped set for each
gate of the circuit can be obtained by merging all these N mapping solutions, respectively. Then,

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:16 Y. Yang et al.

Fig. 8. EMSR and AMSPR after applying two mapping methods: PM and SA.

Fig. 9. Network flow model to get the netlist-layout mapping.

we can use two proposed metrics EMSR and AMSPR to evaluate the solutions. Figure 8 shows the
two metrics, namely, EMSR and AMSPR, of each benchmark under PM and SA. Without further
pruning, the average EMSR and AMSPR of PM is 82.83% and 30.89%, respectively, while for SA
they are 95.79% and 40.13%. It can be seen that comparing with PM, 13% more mapped sets found
by SA contain correct mapped gates, meanwhile SA can prune the initial mapped sets better. This
tells us that global metric (total wirelength) is better than local metric (proximity) in finding the
correct mappings for the benchmarks. Even though PM is less effective than SA, however, it is less
time consuming and the running time is shown in Table 1. It can be concluded that PA is more
suitable for the larger size benchmarks. For example, more than 48 hours are needed to get the
mapped sets of benchmark b17 under SA, while that of PM is only 1.6 hour, speeding up the at-
tacking process by more than 200×. However, though the EMSR is smaller than SA, the attacker
could accept the slight difference if time is the prior consideration.

6.3.2 Comparison with Network Flow-based Attack in Reference [30]. Since the network flow-
based attack method proposed in Reference [30] aims to obtain the connections that has the
minimum total wirelength and satisfies the other constraints at the same time, it cannot be used
in our threat model directly. Instead, we adapt the idea of network flow to formulate a min cost
bipartite mapping problem to get the netlist-layout mapping while at the same time minimizing the
total wirelength. Figure 9 shows the network flow model used to get the netlist-layout mapping.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:17

Fig. 10. (a) HPWL and mapping accuracy versus K. (b) Comparison of Reference [30], PM, and SA.

Fig. 11. EMSR and AMSPR of net-based pruning with respect to the pruning parameter β .

The left vertices correspond to all the gates in netlist, while the right are the gates in layout.V i, j
n is

the ith cell of type j in netlist and it could only be mapped to the same type gate of it, corresponding
to edges to all the j type of gates (vertices) in the right. Finally, weight w and capacity c of source
and sink edges set to 0 and 1, respectively, the capacity of the other connected edges is 1 and

weight is the wirelength relevant to verticeV i, j
n when map it toV i, j

l
. Since the initial netlist-layout

mapping is unknown, we set the location of unmapped gates in netlist to be the average position
of their k-nearest same type gate, thus the edge weight could be calculated and later be minimized.
Figure 10(a) shows how k impacts the mapping results of benchmark c432b under network flow-
based attack. For each benchmark, we choose the best k under which both HPWL and mapping
accuracy are optimal. Finally, different from the proposed attack methods, network flow-based
attack can only have one mapping result no matter how many times the process is executed, thus
we compare mapping accuracy of one mapping result of them. Figure 10(b) shows the mapping
accuracy under three attack methods for several benchmarks. It shows that SA is the most effective
when the circuit is small size, but as the circuit goes to larger size, the mapping accuracy tends to
be close to each other and both has low accuracy. For a network flow-based attack, this will mislead
the attacker the wrong location to insert HTs. While the proposed mapping methods could make
the HT insertion more likely to be successful, since multiple possible netlist-layout mappings are
generated.

6.3.3 Effectiveness of Net-based Pruning. Similar to α in probability-based pruning, different
value of β also impacts the pruning results, since it dominates the percent of gates to be pruned.
From Section 4.4, we know that when β = 1, there are no gates needed to be pruned and the
results of which is equivalent to that of without further pruning. Here, we just experiment on the
results obtained by SA, since it is better than PM. Figure 11 shows how EMSR and AMSPR of each
benchmark change with different value of β . It shows that when β decreases, the AMSPR increases

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:18 Y. Yang et al.

Fig. 12. Results of two pruning methods under SA attack.

Table 1. Benchmark Size and Running Time of Attacks

Benchmark c432b c499b c1908 c2670 c3540 c5315 c6288b c7552 b15 b17

#Gate Types 12 14 8 8 8 8 15 8 30 39

#PI&PO 43 73 58 373 72 301 64 315 934 2,897

#Gate Number 159 562 521 1,176 1,646 2,844 2,956 3,733 5,533 17,161

#Total Gate
Number

202 635 579 1,549 1,718 3,145 3,020 4,048 6,467 20,058

#max same-type 38 190 208 459 547 1,016 623 1,172 1,272 3,535

N 50 200 500 700 1,000 1,400 900 2,400 2,400 3,500

#Running Time
of One SA Run

0.4s 1.3s 1s 2.5s 2.9s 5.8s 7s 7.7s 101.51s 359.84s

#Running Time
of One PM Run

0.0004s 0.0002s 0.003s 0.015s 0.027s 0.074s 0.060s 0.079s 0.186s 1.644s

#Total Running
Time of SA

20s 4.33m 8.33m 29.17m 48.33m 2.26h 1.75h 7.7s >48h >48h

#Total Running
Time of PM

0.02s 0.4s 1.5s 10.5s 27s 1.73m 54s 3.16m 7.44m 1.60h

while EMSR decreases, and it is obvious that the variation of EMSR and AMSPR is smaller than
probability-based pruning. The results also show that β = 0.3 gives a good tradeoff between EMSR
and AMSPR. We then compare the net-based pruning with the probability-based pruning. Figure 12
shows the results of two different pruning methods under SA with α = 0.9, β = 0.3. It indicates
that on average the net-based pruning improves the EMSR by 5.59% compared to probability-based
pruning, with slightly lower AMSPR. The reason that net-based pruning attains a higher EMSR
is that net-based pruning considers both the net-HPWL heuristic and the occurrence probability,
thus more mapped sets reserve their correct mapped gate during pruning.

6.3.4 Discussion. In this part, we try to explore the final results after the whole attack process
including mapping and pruning. Since SA-based mapping and net-based pruning method have
been proved to be better than their counterparts, here we only analyze the final mapped sets
obtained by them. Table 1 shows the physical information of all benchmarks and the running time
of attack techniques. First, note that the effectiveness of SA is not affected much by circuit scale.
For example, c6288b has more than five times the number of gates than c1908 but the attack is
more effective on c6288b in terms of both metrics showed in Figure 12. The underlying impact on
the effectiveness of the attack comes from the diversity of a circuit. Benchmark c1908 has only 8

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:19

Fig. 13. Distribution of the size of mapped sets of c432: (a) before attack, (b) after attack.

Table 2. The Number of Mapped Sets of Different Sizes: B Means

Before Attack, A Means After Attack

Circuit

Size of mapped set
[0,10) [10,30) [30,100) [100,200) [200,+∞)

B A B A B A B A B A
c432b 17 80 70 65 72 14 0 0 0 0
c499b 0 24 116 269 256 248 190 21 0 0
c1908 1 1 0 82 162 219 150 177 208 42
c2670 0 11 0 45 126 399 271 394 779 327
c3540 0 0 0 11 169 200 112 254 1,365 1,181
c5315 0 2 0 7 0 141 168 640 2,676 2,054
c6288b 0 5 47 61 204 315 294 449 2,411 2,126
c7552 0 2 0 13 0 77 0 395 3,733 3,246
b15 28 118 52 382 193 1650 440 2,353 4,820 1,030
b17 - - - - - - - - - -

gate types including primary input/output and almost half of the gates belong to a same gate type.
In comparison, c6288b has 15 gate types, with the maximum number of same-type instances being
only 1

5 of the total number of instances. We also compare the running time between probability-
based pruning and net-based pruning in Table 3. The upper part is under proximate attack and
lower part is under SA attack. It’s obviously that probability-based pruning is faster than net-based
pruning, since net-based pruning takes time to calculate the wire length.

However, SA-based attack approach not only performs well on global metrics such as EMSR and
AMSPR but also prunes many mapped sets to a small size without turning the mapped sets into
ineffective. Figure 13 shows the changes in the distribution of the sizes of mapped sets of c432b.
Figure 13(a) is the distribution before attack while Figure 13(b) is the distribution after attack. For
ineffective mapped sets, their set sizes are restored to their initial sizes, i.e., the number of gates
with corresponding types. In Figure 13(b), most mapped sets reside in the region of size < 15,
which largely reduces the cost and risk of the attacker. For each benchmark circuit, Table 2 shows
the number of mapped sets of different sizes before and after SA attack, where many mapped sets
have their sizes reduced to be under 30 after attack.

6.4 Effectiveness of Defense

Since defense tends to protect the circuit from being attacked or increasing the cost of the at-
tacker to insert the HTs, we consider the effectiveness of defense on the attack results obtained by

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:20 Y. Yang et al.

Table 3. Running Time(s) of Probability-based Pruning and Net-based Pruning

in Different Benchmarks Under Different Attacks

benchmarks c432b c499b c1908 c2670 c3540 c5315 c6288b c7552

prob-based 0.0479 0.1388 0.2881 0.8620 1.4220 3.4245 2.1940 7.2333

net-based 0.4278 4.6809 11.5906 39.2878 72.1106 186.8645 119.8071 487.4236

prob-based 0.0227 0.1372 0.2823 0.8248 1.4007 3.3295 2.1736 7.0445

net-based 0.3695 4.6261 11.2752 38.1949 69.0310 179.7954 112.2774 466.8182

The upper part is under proximity attack and the lower part is under simulated annealing attack.

Fig. 14. EMSR of PM and SA attack under different defense techniques.

net-based pruning method with β = 0.3, which performs better than probability-based pruning
method during attack.

6.4.1 Effectiveness of the Defense Method. The effectiveness of defense is directly measured by
EMSR, since the goal of the defender is to hide the correct mapped gates away from their mapped
sets. We first experiment it under all the proposed attack methods: PM + no defense, PM + defense,
SA + no defense, SA + defense. The maximum reduction of EMSR under different attacks is demon-
strated in Figure 14. It shows that EMSR of all benchmarks under SA with defense goes below 30%
compared to that of without defense, and the proposed defense method is effective to proximity-
based attack as well. This is because the defense targets to obfuscate the global heuristic, i.e., total
wirelength, which indirectly impacts the local heuristic, i.e., local connection of pins. However, the
average EMSR of SA after leveraging the proposed defense approach is up to 14%, with average
reduction being about 74%. It means most of the mapped sets contains no correct gates and result-
ing only a small number of effective mapped sets left, showing the effectiveness of the proposed
defense method. The reason is that the defense approach moves most gates to locations that are
immune to the global wirelength-based attack. Besides, since we assign higher priority to more
insecure gates, i.e., the gates with smaller mapped sets, the number of small effective mapped sets
will decrease, significantly elevating the cost and risk of the attacker.

6.4.2 Comparison with State-of-the-Art. We also compare our defense method with the state-
of-the-art methods proposed in References [19, 30]. First, since the pin-swapped defense method
in Reference [19] aims to swap pins of partitions of a hierarchical design, while our benchmarks
are flatted designs and the split layer is M1, thus swap pin is equivalent to swap gate in our model.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:21

Fig. 15. Security vs. Wirelength overhead under SA attack.

A random gate-swapped defense technique is then implemented to be compared with ours. Obvi-
ously the number of gates swapped could impact the proximity hint, and in our experiments, all the
gates are randomly swapped to thwart the proximity hints the most. The results in Figure 14 show
that random gate-swapped method has little effect on PM attack but could weaken the effective-
ness of SA attack. However the average EMSR under “SA + RandDefense” could still be nearly 50%,
while that of “SA + Proposed” is less than 14%. Second, a placement perturbation-based defense
method in Reference [30] is implemented and compared. It is worth mentioning that since Refer-
ence [30] assumes several metal layers are manufactured in the BEOL, only a few portion of gates
are extracted to be perturbed. But in our work, since the split layer is M1, all the gates should be ex-
tracted according to the idea of its defense method. This will cause exponential computation cost,
because the worst computation complexity of the defense technique in Reference [30] is O (KV)
with V the number of extracted tree vertices and K the number of space locations in the layout,
for example, due to large gate and space number in the layout, perturbation to benchmark b15 and
b17 have not been completed yet due to exponential computation. To speed up the perturbation,
the vertice number of extracted tree is set to be less than 5 in our experiment. Figure 14 shows
the average EMSR reduction of “SA + [30]” is 25.6%, while that of “SA + Proposed” is 75.3%. How-
ever, the effectiveness of [30] on PM attack largely correlates with the size of the benchmark. For
example, EMSR of c432b under “PM + [30]” is 25.74%, which is close to that of “PM + Proposed,”
but EMSR of “PM + [30]” is less than that of “PM + Proposed” by 25.12%, indicating the proposed
defense method is more effective.

6.4.3 Security–Wirelength Overhead Tradeoff. Since our defense method can move gates to
places that wirelength-driven placement does not choose, the security against attacks that utilize
global wirelength heuristic is guaranteed. Also, the gates in out-of-candidate locations are secure
in a solid way, which means the best chance for the attacker is to randomly guess their locations.
Although the experimental results show the effectiveness of our proposed defense method, it is
under the worst wirelength cost circumstance. It deserves considering the security level versus
wirelength overhead specifically. Here, we just consider the case with SA attack method.

Figure 15 shows the tradeoff between EMSR and wirelength overhead for ISCAS-85 benchmarks.
As EMSR decreases during gate swapping, the wirelength overhead increases approximately lin-
early with EMSR especially for large scale benchmarks. The reason is that we want as many as
possible gates whose mapped sets exclude their correct mapping of the circuit, resulting in a large
number of gates to be swapped, thus enlarge the final total wirelength. However, for a targeted

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

20:22 Y. Yang et al.

HT insertion, the attacker generally only concerns certain gate types, leaving the other type gates
secure intrinsically. So there is no need for the defender to swap all the gates, thus the wirelength
overhead could be controlled. Finally, the defender can also set a wirelength overhead budget and
only allow defense within this budget to protect all the gates.

7 CONCLUSIONS

In this work, we have shown that split manufacturing is not secure intrinsically even when split
at M1 level, which is considered as the most secure scenario. The attacker can still get necessary
information through our proposed mapping approaches at the placement level, by leveraging the
global or local physical heuristics, to decrease the cost of inserting hardware Trojans. The exper-
imental results show that the proposed SA attack method can decrease the average mapped set
ratio (AMSPR) to above 50% while maintaining the average effective mapped set ratio (EMSR) high
enough (about 88.6% after net-based pruning), while the PM approach could speed up the map-
ping process by about 200×. Compared to the state-of-the-art attack method in Reference [30],
our method is more effective to find the mapped sets. We further propose an effective defense
approach from the placement level to defend against such attacks. Experimental results show that
the proposed defense method is effective under both the PM and SA attack methods compared to
previous proposed defense methods [19, 30]. With defense, EMSR of benchmarks under SA and
PM all decrease to below 30%, which means most of the mapped sets of each benchmark contain no
correct gates, resulting in higher cost for the attacker to insert hardware Trojans. Note that even
the defense can attain a maximum EMSR of 14%, which greatly increases the cost of the attacker;
however, it is under the worst wirelength cost circumstance. Practically, the defender could only
defend partial gates of the circuit or just set a wirelength budget to defend the circuit within it.

REFERENCES

[1] Oklahoma State University. 2015. System on chip (SoC) design flows. Retrieved from http://vlsiarch.ecen.okstate.edu/

flow/.

[2] Intelligence Advanced Research Projects Activity. 2011. Trusted integrated circuits program. Retrieved from

https://www.fbo.gov/utils/view?id=b8be3d5d5babbffc6975c370247a6.

[3] R. S. Chakraborty and S. Bhunia. 2009. HARPOON: An obfuscation-based SoC design methodology for hardware

protection. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 28, 10 (Oct. 2009), 1493–1502. DOI:https://doi.org/10.

1109/TCAD.2009.2028166

[4] Abhijit Chatterjee and Richard Hartley. 1991. A new simultaneous circuit partitioning and chip placement approach

based on simulated annealing. In Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM, 36–39.

[5] X. Chen, L. Wang, Y. Wang, Y. Liu, and H. Yang. 2017. A general framework for hardware trojan detection in digital

circuits by statistical learning algorithms. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 36, 10 (Oct. 2017), 1633–

1646. DOI:https://doi.org/10.1109/TCAD.2016.2638442

[6] Zhang Chen, Pingqiang Zhou, Tsung-Yi Ho, and Yier Jin. 2016. How secure is split manufacturing in preventing

hardware trojan? In Proceedings of the IEEE Asian Hardware-Oriented Security and Trust (AsianHOST’16). IEEE, 1–6.

[7] J. Francq and F. Frick. 2015. Introduction to hardware Trojan detection methods. In Proceedings of the Design, Au-

tomation Test in Europe Conference Exhibition. 770–775. DOI:https://doi.org/10.7873/DATE.2015.1101

[8] M. C. Hansen, H. Yalcin, and J. P. Hayes. 1999. Unveiling the ISCAS-85 benchmarks: A case study in reverse engi-

neering. IEEE Design Test Comput. 16, 3 (July 1999), 72–80. DOI:https://doi.org/10.1109/54.785838

[9] J. He, Y. Zhao, X. Guo, and Y. Jin. 2017. Hardware trojan detection through chip-free electromagnetic side-channel

statistical analysis. IEEE Trans. Very Large Scale Integr. Syst. 25, 10 (Oct. 2017), 2939–2948. DOI:https://doi.org/10.1109/

TVLSI.2017.2727985

[10] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara. 2013. Securing computer hardware using 3D integrated circuit

(IC) technology and split manufacturing for obfuscation. In Proceedings of the USENIX Conference. 495–510.

[11] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze. 2014. Split-fabrication obfuscation: Metrics and

techniques. In Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust. 7–12.

DOI:https://doi.org/10.1109/HST.2014.6855560

[12] Yier Jin. 2015. Introduction to hardware security. Electronics 4 (2015) 763–784.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

http://vlsiarch.ecen.okstate.edu/flow/
http://vlsiarch.ecen.okstate.edu/flow/
https://www.fbo.gov/utils/view?id=b8be3d5d5babbffc6975c370247a6
https://doi.org/10.1109/TCAD.2009.2028166
https://doi.org/10.1109/TCAD.2009.2028166
https://doi.org/10.1109/TCAD.2016.2638442
https://doi.org/10.7873/DATE.2015.1101
https://doi.org/10.1109/54.785838
https://doi.org/10.1109/TVLSI.2017.2727985
https://doi.org/10.1109/TVLSI.2017.2727985
https://doi.org/10.1109/HST.2014.6855560

How Secure Is Split Manufacturing in Preventing Hardware Trojan? 20:23

[13] Yier Jin and Y. Makris. 2008. Hardware trojan detection using path delay fingerprint. In Proceedings of the IEEE Inter-

national Workshop on Hardware-Oriented Security and Trust. 51–57. DOI:https://doi.org/10.1109/HST.2008.4559049

[14] H. Li, Q. Liu, J. Zhang, and Y. Lyu. 2015. A survey of hardware trojan detection, diagnosis and prevention. In Pro-

ceedings of the International Conference on Computer-Aided Design and Computer Graphics. 173–180. DOI:https://

doi.org/10.1109/CADGRAPHICS.2015.41

[15] W. Li, Z. Wasson, and S. A. Seshia. 2012. Reverse engineering circuits using behavioral pattern mining. In Proceedings

of the IEEE International Symposium on Hardware-Oriented Security and Trust. 83–88. DOI:https://doi.org/10.1109/

HST.2012.6224325

[16] J. Magaa, D. Shi, J. Melchert, and A. Davoodi. 2017. Are proximity attacks a threat to the security of split manufacturing

of integrated circuits?IEEE Trans. Very Large Scale Integr. Syst. 25, 12 (Dec. 2017), 3406–3419. DOI:https://doi.org/10.

1109/TVLSI.2017.2748018

[17] U.S. Patent. 2004. Split manufacturing method for advanced semiconductor circuits.

[18] J. Rajendran, E. Gavas, J. Jimenez, V. Padman, and R. Karri. 2010. Towards a comprehensive and systematic classifica-

tion of hardware Trojans. In Proceedings of IEEE International Symposium on Circuits and Systems. IEEE, Paris, France,

1871–1874.

[19] J. Rajendran, O. Sinanoglu, and R. Karri. 2013. Is split manufacturing secure?. In Design, Automation Test in Europe

Conference Exhibition. 1259–1264. DOI:https://doi.org/10.7873/DATE.2013.261

[20] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri. 2013. Hardware security: Threat models and metrics. In Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design. 819–823. DOI:https://doi.org/10.1109/

ICCAD.2013.6691207

[21] J. A. Roy, F. Koushanfar, and I. L. Markov. 2010. Ending piracy of integrated circuits. Computer 43, 10 (Oct 2010),

30–38. DOI:https://doi.org/10.1109/MC.2010.284

[22] A. Cozzie C. Grier W. Jiang S. T. King, J. Tucek and Y. Zhou. 2008. Designing and implementing malicious hardware.

In Proceedings of the USENIX Conference. 51–58.

[23] Carl Sechen. 1988. Chip-planning, placement, and global routing of macro/custom cell integrated circuits using sim-

ulated annealing. In Proceedings of the 25th ACM/IEEE Design Automation Conference. IEEE Computer Society Press,

73–80.

[24] R. Torrance and D. James. 2007. Reverse engineering in the semiconductor industry. In Proceedings of the IEEE Custom

Integrated Circuits Conference. 429–436. DOI:https://doi.org/10.1109/CICC.2007.4405767

[25] Randy Torrance and Dick James. 2011. The state-of-the-art in semiconductor reverse engineering. In Proceedings of

the 48th ACM/EDAC/IEEE Design Automation Conference (DAC’11). IEEE, 333–338.

[26] K. Vaidyanathan, B. P. Das, and L. Pileggi. 2014. Detecting reliability attacks during split fabrication using test-only

BEOL stack. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference. 1–6. DOI:https://doi.org/10.1145/

2593069.2593123

[27] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi. 2014. Building trusted ICs using split fabrication. In

Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust. 1–6. DOI:https://doi.org/

10.1109/HST.2014.6855559

[28] N. Viswanathan, M. Pan, and C. Chu. 2007. FastPlace 3.0: A fast multilevel quadratic placement algorithm with

placement congestion control. In Proceedings of the Asia and South Pacific Design Automation Conference. 135–140.

DOI:https://doi.org/10.1109/ASPDAC.2007.357975

[29] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran. 2018. The cat and mouse in split manufacturing. IEEE Trans. Very

Large Scale Integr. Syst. 26, 5 (May 2018), 805–817. DOI:https://doi.org/10.1109/TVLSI.2017.2787754

[30] Y. Wang, P. Chen, J. Hu, and J. J. V. Rajendran. 2016. The cat and mouse in split manufacturing. In Proceedings of the

ACM/EDAC/IEEE Design Automation Conference. 1–6. DOI:https://doi.org/10.1145/2897937.2898104

[31] K. Xiao, D. Forte, and M. M. Tehranipoor. 2015. Efficient and secure split manufacturing via obfuscated built-in self-

authentication. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust. 14–19.

DOI:https://doi.org/10.1109/HST.2015.7140229

[32] Y. Xie, C. Bao, and A. Srivastava. 2017. Security-aware 2.5D integrated circuit design flow against hardware IP piracy.

Computer 50, 5 (May 2017), 62–71. DOI:https://doi.org/10.1109/MC.2017.121

[33] Wenbin Xu, Lang Feng, Jeyavijayan J. V. Rajendran, and Jiang Hu. 2019. Layout recognition attacks on split manu-

facturing. In Proceedings of the 24th Asia and South Pacific Design Automation Conference. ACM, 45–50.

Received September 2019; revised December 2019; accepted January 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 20. Pub. date: March 2020.

https://doi.org/10.1109/HST.2008.4559049
https://doi.org/10.1109/CADGRAPHICS.2015.41
https://doi.org/10.1109/CADGRAPHICS.2015.41
https://doi.org/10.1109/HST.2012.6224325
https://doi.org/10.1109/HST.2012.6224325
https://doi.org/10.1109/TVLSI.2017.2748018
https://doi.org/10.1109/TVLSI.2017.2748018
https://doi.org/10.7873/DATE.2013.261
https://doi.org/10.1109/ICCAD.2013.6691207
https://doi.org/10.1109/ICCAD.2013.6691207
https://doi.org/10.1109/MC.2010.284
https://doi.org/10.1109/CICC.2007.4405767
https://doi.org/10.1145/2593069.2593123
https://doi.org/10.1145/2593069.2593123
https://doi.org/10.1109/HST.2014.6855559
https://doi.org/10.1109/HST.2014.6855559
https://doi.org/10.1109/ASPDAC.2007.357975
https://doi.org/10.1109/TVLSI.2017.2787754
https://doi.org/10.1145/2897937.2898104
https://doi.org/10.1109/HST.2015.7140229
https://doi.org/10.1109/MC.2017.121

