
Privacy and Security in Internet of Things
and Wearable Devices

Orlando Arias, Student Member, IEEE, Jacob Wurm, Student Member, IEEE,

Khoa Hoang, and Yier Jin,Member, IEEE

Abstract—Enter the nascent era of Internet of Things (IoT) and wearable devices, where small embedded devices loaded with sensors

collect information from its surroundings, process it, and relay it to remote locations for further analysis. Albeit looking harmless, these

nascent technologies raise security and privacy concerns. We pose the question of the possibility and effects of compromising such

devices. Concentrating on the design flow of IoT and wearable devices, we discuss some common design practices and their

implications on security and privacy. Two representatives from each category, the Google Nest Thermostat and the Nike+ Fuelband,

are selected as examples on how current industry practices of security as an afterthought or an add-on affect the resulting device and

the potential consequences to the user’s security and privacy. We then discuss design flow enhancements, through which security

mechanisms can efficiently be added into a device, vastly differing from traditional practices.

Index Terms—Hardware security, user privacy, Internet of Things (IoT), wearable devices

Ç

1 INTRODUCTION

WITHIN the past decade, the number of Internet of
Things (IoT) devices introduced in the market has

increased drastically. With totals approaching 15 billion, the
staggering conclusion that there are roughly two connected
devices per person is reached [1]. This trend is expected to
continue, with an estimate of 26 billion connected devices
by the year 2020, the majority of which being IoT and wear-
able devices [2]. Much like the embedded systems they
derive from, IoT and wearable devices are armed with an
array of sensors whilst also offering the means to establish a
network connection, enabling the transmission of the col-
lected information to a remote node.

The collected information can range from a simple heart-
beat, to temperature and humidity data, to the location of
the user himself and his living habits. As such, privacy
issues arise. Also, because of the information these devices
can gather and store, they become prime targets for attack-
ers looking to obtain this data. Further, given the always on
network connectivity some of these devices hold and the
different usage pattern, these devices could be targeted by
malware, increasing the potential for harmful usage.

While IoT manufacturers are aware of the privacy and
security implications, security in IoT devices is either
neglected or treated as an afterthought. This is often due to
the short time to market and reduction of costs driving the
device’s design and development process. The few devices
that do choose to add any protection usually employ

software level solutions, such as firmware signing and the
execution of signed binaries, methods which resemble those
used in regular computing [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. These solutions, however, do not consider the
different usage patterns of IoT and wearable devices com-
pared to traditional embedded systems or personal com-
puters, proving to be insufficient at times. Furthermore,
concentrating on the software-based protection schemes
often leaves the hardware unintendedly vulnerable, allow-
ing for new attack vectors.

In order to better understand the security and privacy
issues associated with current IoT device design flow and
their implications, we used the Google Nest Learning Ther-
mostat and the Nike+ Fuelband SE Fitness Tracker, hereaf-
ter referred to as the Nest Thermostat and Nike+ Fuelband,
as test devices. Our selection of these units was based on
the fact that both Nest Labs and Nike Inc. are among the
few manufacturers who have taken steps towards securing
their devices and protecting user data. Nest Labs further
claims to “use best-in-class data security tools” to protect its
products and user’s data from unauthorized access [13].
However, as we shall demonstrate in this paper, the protec-
tion schemes used in these devices are not sufficient to
secure the units themselves.

The remainder of this paper follows the ensuing orga-
nization. Section 2 introduces related work in security and
privacy assurance on IoT and wearable devices. Section 3
discusses common IoT device design methodologies and
possible pitfalls that may be encountered in the process.
Section 4 presents our case study regarding the Nest Ther-
mostat focusing on how to bypass software protection
mechanisms using a hardware exploit. This particular
attack vector and its possibilities for exploitation are then
discussed in Section 5. Section 6 presents the other case
study on Nike+ Fuelband. The attack vector on the wear-
able devices is introduced in Section 7. Further elaborat-
ing on the impact of such attacks, Section 8 explores the

� The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Central Florida, Orlando, FL 32816.
E-mail: {oarias, jacob.wurm, maximus64}@knights.ucf.edu, yier.jin@eecs.
ucf.edu.

Manuscript received 4 May 2015; revised 17 Sept. 2015; accepted 20 Oct.
2015. Date of publication 6 Nov. 2015; date of current version 11 Dec. 2015.
Recommended for acceptance by S. Ray, J. Park, and S. Bhunia.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2015.2498605

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015 99

2332-7766� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

consequences of introducing compromised IoT and wear-
able devices within a network. Recommended security
enhancement approaches dedicated for IoT and wearable
devices are discussed in Section 9. Conclusions are drawn
in Section 10.

2 RELATED WORK

Current IoT and wearable device literature often treats IoT
from a network perspective or provides solutions that are
inherently incompatible with the needs of a manufacturer.
Few works have been published discussing the security of
IoT devices themselves [14], [15]. In the ensuing sections,
we summarize some of the previous work that has been pre-
sented in this area.

2.1 IoT Secure Protocols and Network Protection

An early survey about the IoT has shown that security and
privacy are the main concerns that need to be addressed
before IoT devices are widely adopted [16]. Proposed solu-
tions for security rely on network protocols to ensure IoT
security. Meanwhile, encrypted communication is treated
as the effective solution for privacy protection. However,
these proposed approaches do not consider the unique
properties of IoT devices. The authors in [17] summarized
all current security threats to the IoT network but these
threat models are mostly derived from network security.
They claim that hardware level attacks, such as differential
power analysis (DPA) [18], are of high cost and therefore
less harmful. Similarly, the authors in [4] treat IoT as an
extremely interconnected network and list possible solu-
tions to secure the IoT network including protocol and net-
work security, data and privacy, identity management,
trust and governance, fault tolerance, cryptography and
protocols, identity and ownership, and privacy protection.
All these methods try to regulate the communication
between IoT devices under the assumption that all IoT devi-
ces are operating properly. The authors in [5] tried to solve
IoT security through different IoT topologies: centralized
architectures [6] and distributed architectures [7], [8].
Again, the network based solutions only emphasize high
level structures without considering whether the available
resources in IoT devices can afford these topologies.

Other research focuses on the secure communication
between IoT nodes. For example, the authors in [9] focus on
secure communication between IoT devices and present an
Identity Authentication andCapability basedAccess Control
(IACAC) model to protect IoT from man-in-the-middle,
replay and denial of service (DoS) attacks. The authors in
[10], [11] expand the definition of IoT to include four nodes
in a typical IoT network: person, intelligent object, technolog-
ical ecosystem, and process. The authors claim that IoT secu-
rity cannot be solved at a single-layer, but should require the
analysis of the interactions between these nodes. A 2D ver-
sion of the systemic approach was developed, which was
expanded to a 3D version highlighting new functional plans
of security [12]. Following this route, communication proto-
cols were then developed to secure the interactions between
IoT nodes such as 6LoWPAN [19] and Constrained Applica-
tion Protocol (CoAP) [20]. The CoAP was constructed based
on Datagram Transport Layer Security (DTLS) [21] and IPsec

[22]. To counter the attacks at the transport layer, protocols
were enhanced to use either HTTP/TLS or CoAP/DTLS by
proposing a mapping between TLS and DTLS [23] or using
secure tunneling on the transport layer [24]. However, these
communication layer security analyses and protection meth-
ods ignore device level vulnerabilities and often impose
unrealistic constraints on device deployment.

2.2 Hardware Based Protection

Besides network level protection, researchers from the
industry have also tried to develop highly secure processor/
SoC architectures for IoT protection. ARM TrustZone is
an industry landmark in providing a basis of trust for
various applications such as secure payment, digital rights
management (DRM), enterprise and web-based services.
TrustZone technology provides infrastructure foundations
that allow a SoC designer to choose from a range of compo-
nents that can perform specific functions within the security
environment [25]. Intel proposed the concept of enclaves
recently [26], [27]. An enclave contains software code, data,
and a stack that are protected by hardware enforced access
control policies. Samsung KNOX has also been developed
with protection inmind [28]. KNOXprovides a safe execution
environment in a KNOX-enabled device where the userland
is verified and a KNOX container holds sensitive data, such
as corporate contacts and e-mails in a cellphone. If the device
is deemed to be compromised by altering the bootloader, an
e-fuse is blown inside the SoC driving the unit, thus branding
it as untrusted. However, these hardware-based secure archi-
tectures are developed with passive protection in mind,
whereas they do not detect and mitigate hardware and soft-
ware level attacks. Samsung KNOX is possibly an exception
to this, however, it remains to be proven whether or not it is
possible to bypass any checks to the e-fuse protection in the
bootloader. TrustZone environments have been proven to be
compromised as shown in [29], [30], [31] by exploiting bugs
in the software stack. Furthermore, these solutions do not
transfer well to low power embedded units. For example, at
the time of writing, Samsung KNOX is only available in select
Android-based cellular phones and tablets.

3 IOT DEVICE DESIGN FLOW PRACTICES

3.1 Reliance on Vendor Designs

Throughout our investigation of the design flow of IoT devi-
ces we have found that there are cases where the lack of
familiarity with the hardware being used has led to over
reliance on vendor designs. That is, products are directly
based on a design or application solution a vendor has pro-
vided. Whereas for targeted applications this may be
sufficient, when the only available designs are for general
purpose computing devices or development boards, it may
lead to the unintentional exposure of interfaces that are
meant for debugging or reprogramming purposes. An
attacker can easily leverage these interfaces to leak internal
sensitive information or even install malicious firmware to
control device operation.

3.2 Open versus Closed Source Software

At the device firmware level, it is common to find Linux-
based stacks, although other devices utilize FreeRTOS [32]

100 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

or other open source projects, thus leveraging pre-existing
software solutions to build upon. Other manufacturers opt
for proprietary solutions, such as Wind River’s vxWorks [33]
or Blackberry’s QNX [34]. The question of open source versus
closed source software in security is a hard one to answer.
With open source software, an attacker just needs to find a
potential vector to target the device by looking for errors in
the source code. However, a manufacturer does not have to
rely on the system’s vendor in order to patch the bug, thus
enabling a faster response time. With a closed source system,
however, an attacker is faced with a problem in reverse engi-
neering interfaces looking for potential errors in the software
stack. Manufacturers, however, need to rely on vendors once
vulnerabilities are found. The stack chosen should then be
selected based on design requirements, availability of sup-
port, documentation and amount of security offered.

3.3 Weak or Bad Cryptographic Implementations

If a device is designed to be remotely updated, it must be
able to verify the downloaded image for both integrity and
authenticity. This usually involves a cryptographic algo-
rithm, sometimes many. Cryptographically securing a
product is a complicated task, as proven by the countless
vulnerabilities found in software, not only because of the
mathematics involved, but because of implementation
errors [35], [36], [37], [38], [39], [40]. Two of these vulner-
abilities are of critical importance to our research as it
shows how weakly implemented cryptographic systems
can be bypassed, providing a way to remotely attack the
device. These exploits describe how an attacker can
remotely compromise a Belkin WeMo Home Automation
device by exploiting the faulty usage of SSL, allowing
remote firmware installation by spoofing a distribution
server, or by spoofing SSL servers via arbitrary certificates.

3.4 Debug Interfaces on Production Runs

It is often cheaper to write images to flash chips when
assembling the device, rather than purchasing preprog-
rammed parts. Furthermore, the device must be function-
ally tested before it leaves production. This implies that the
circuit board must expose programming interfaces and test
points for the different components present within.
Although at times unlabeled, these often unpopulated inter-
faces are not removed after testing. An attacker can utilize
them to inject his own code on the unit or alter their func-
tional behavior. The software component may also fall prey
to this issue, as compilers can generate binaries that include
debugging symbols, expressing the constructs that gener-
ated a certain block of machine code. Leaving these debug-
ging symbols in production runs aids an attacker in
reconstructing the original sources, allowing for easier vul-
nerability detection.

3.5 Supply Chain Threats

Hardware Trojans also pose a serious threat to IoT security.
These malicious modifications to integrated circuits can
leak key data to an attacker, cause a device to operate out-
side specified parameters, or otherwise render the device
inoperable. Hardware Trojans further pose the threat of not
being detected by normal testing methodologies, requiring

expensive specialized tests to detect them. For example, a
malicious adversary could insert a hardware Trojan in a
cryptographic IP core utilized in a system-on-chip (SoC)
used in an IoT device [41]. When triggered, this Trojan
weakens the entropy of the random number generator used
to generate keys. If these keys are used to encrypt sensitive
data that is being transmitted by the device, the amount of
computational effort required by the attacker to decrypt
the data is severely reduced.

4 CASE STUDY 1: NEST THERMOSTAT

As part of our research, we present the Nest Thermostat as a
case study. We disassembled the device and explored its
functionality with the objective to find any vulnerabilities
that were left in the hardware and software stack.

4.1 High Level Overview

The Nest Thermostat is a smart device designed to control a
standard heating, ventilation and air conditioning (HVAC)
unit based on heuristics and learned behavior. The thermostat
is also equipped with a motion sensor capable of detecting
whether users are at the installed location and control the
HVAC unit accordingly. Coupled with a WiFi module, the
unit is able to connect to the user’s home or office network
and interface with the Nest Cloud, thereby allowing for
remote control of the unit. It also exhibits a ZigBeemodule for
communication with other Nest devices, but has remained
dormant as of firmware versions up to the current 4.2.x series.

The Nest Thermostat runs a Linux kernel, coupled with
some GNU userland tools, Busybox, other miscellaneous
utilities in order to run a proprietary stack designed and
written by Nest Labs. To remain GPL compliant, the modi-
fied source code used within the device has been published
and is available for downloading from Nest Lab’s Open
Source Compliance page [42], with the notable exception of
the C library. Build scripts to generate binaries from these
sources are provided, whereas a toolchain was unavailable
to users until shortly after preliminary results of our
research were presented.

Energy savings are attempted by gathering usage statis-
tics and environmental factors to systematically build a user
profile. As these metrics are coupled with user input, they
provide a comfortable environment. The profile is also
uploaded to Nest Cloud, a service where users can remotely
interact with their device. The manufacturer proceeds to
gather and study this information with the hopes of aiding
energy providers with the means to achieve optimal energy
generation.

4.2 Device Security

The Nest Thermostat contains two wireless communication
channels, a WiFi interface and a ZigBee interface. At the
time of writing, only the WiFi interface is active and used.
The Thermostat is capable of connecting to wireless net-
works encrypted using WPA2–Personal but it is incapable
of connecting to WPA2–Enterprise encrypted networks.
Other legacy connection standards are also supported. Any
log-related communication started by the unit is encrypted
using TLS 1.2 from the beginning, making it hard to inter-
cept any data that is being transmitted by these means.

ARIAS ET AL.: PRIVACY AND SECURITY IN INTERNET OF THINGS ANDWEARABLE DEVICES 101

This includes access to the Nest Cloud, which authenticates
credentials using OAuth tokens. OAuth tokens have the
advantage that they can easily be revoked by the issuer (in
this case, Nest Cloud) and can be used to limit access to cer-
tain account features. Updates and non-critical data such as
weather is obtained over a plain-text communication chan-
nel. This data can be potentially intercepted and modified.
However, update images are cryptographically signed
using PKCS #7 certificates, thus modifying an update image
results in invalidating the cryptographic signature. The
Nest Thermostat’s internal software stack rejects any update
image which does not contain a valid signature.

4.3 Device Descriptive Overview

The thermostat is divided into two main components, a
backplate which interfaces with the HVAC unit and a front
plate which presents the main user interface.

The backplate is managed by a ST Microelectronics ARM
Cortex-M3 based microcontroller. An SHT20 temperature
sensor communicates with the microcontroller using the I2C
bus protocol. A rectifier bridge and switching supply is
used in order to retrieve power from the HVAC unit. A few
driver circuits are also present, as to manipulate the control
signals utilized by most HVAC systems. The backplate con-
tains a 2 by 20 connector which provides access to some of
the microcontroller peripherals, such as UART, power rails
and other control signals.

The largest part count is found in the front plate of the
thermostat, which is driven by a Texas Instruments Sitara
AM3703 system-on-chip [43], interfacing directly with a
Micron ECC NAND flash memory module, a Samsung
SDRAM memory module and a LCD screen. The front plate
also holds two wireless connectivity modules (an Ember
EM3567 for ZigBee and a TI WL1270B coupled with a Sky-
works SKY2463 for WiFi), a button, a long range and a short
range motion sensor, an optical navigation module (ADBM-
A350) and other miscellaneous components. Power distri-
bution within the front plate is managed by a Texas Instru-
ments TPS65921B power management module, which also
provides high speed USB capabilities. A customized GNU/
Linux stack provides the backbone of the software interface,
with our research units running kernel version 2.6.37.
Figs. 1 and 2 show the device internals and device map,
respectively.

4.4 The AM3703—A Close Look

The TI AM3703 SoC is composed of a 32 Channel DMA con-
troller, a dual-output three-layer display processor, High

Speed USB controller with USB OTG capabilities, an emula-
tion module for debugging, a General Purpose Memory
Controller (GPMC) to handle NAND/NOR flash, an
SDRAM memory scheduler and controller, an 112KiB on-
chip ROM which contains boot code, a 64KiB on-chip
SRAM all connected by a Level 3 (L3) interconnect which
runs at 200MHz. The ARM core within the MPU subsystem
uses a 256KiB cache to reach the L3 interconnect. Further-
more, a Level 4 interconnect adds the peripheral module to
the memory map. This peripheral module handles the

GPIO, UARTs, high speed multimaster I2C bus, memory
card controller, memory stick pro controller, watchdog
timer, general purpose timers and other miscellaneous sub-
systems [43].

The ARM subchip integrates an ARM Cortex-A8 core,
with Version 7 of the instruction set architecture, providing
standard ARM instructions and Thumb-2 mode, the Jazel-
leX Java accelerator and media extensions. It also integrates
an ARM NEON core SIMD coprocessor. The subchip con-
nects to 32KiB/32KiB instruction/data caches which pro-
ceeds to interface with a 256KiB eight-way associative
cache supporting parity and ECC. The core also provides
integrated trace and debug features [43]. A simplified mem-
ory map of the AM3703 is shown in Fig. 3.

4.5 Boot Process and Device Initialization

Upon normal power on conditions, the Sitara AM3703 starts
to execute the code in its internal ROM. This code initializes
the most basic peripherals, including the General Purpose
Memory Controller. It then looks for the first stage boot-
loader, x-loader, and places it into SRAM. Once this

Fig. 1. Front (left) and backplate (right) of a Nest Thermostat (credit: Nest, iFixit).

Fig. 2. Device map of the Nest Thermostat.

102 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

operation finishes, the ROM code jumps into x-loader,
which proceeds to initialize other peripherals and SDRAM.
Afterwards, it copies the second stage bootloader, u-boot,
into SDRAM and proceeds to execute it. At this point, u-
boot initializes the remaining subsystems and executes the
uImage in NAND flash with the configured environment.
The system finishes booting from NAND flash as initializa-
tion scripts are executed and services are run, culminating
with the loading of theNest Thermostat proprietary software
stack. Fig. 4 shows the normal boot sequence of the device.

Power connections, clock and reset signals must be prop-
erly initialized before the AM3703 boots. The device boot
configuration is given by six external pins, sys_boot

[5:0]. After power-on reset, the value on these pins are
latched into the CONTROL.CONTROL_STATUS register.
Table 1 describes the boot selection process for a selected set
of configurations.

After performing basic initialization tasks, the on-chip
ROM may jump into a connected execute in place (XIP)
memory, if the sys_boot pins are configured as such. This
boot mode is executed as a blind jump to the external
addressable memory as soon as it is available. Otherwise,
the ROM constructs a boot device list to be searched for
boot images and stores it in the first location of available
scratchpad memory. The construction of this list depends
on whether or not the device is booting from a power-on
reset state. If the device is booting from a power-on reset,
the boot configuration is read directly from the sys_boot

pins and latched into the CONTROL.CONTROL_STATUS reg-
ister. Otherwise, the ROM will look in the scratchpad area
of SRAM for a valid boot configuration. If it finds one, it

will utilize it, otherwise it will build one from permanent
devices as configured in the sys_boot pins. The flowchart
in Fig. 5 provides a graphical view of this process.

5 ATTACK VECTOR ON NEST THERMOSTAT

Examination of the circuit board for the Nest Thermostat
shows that the sys_boot[5] pin is not only exposed in a
pad, but also in an unpopulated header. As shown before, if
this pin is pulled high, the processor is made to boot from a
peripheral interface, namely USB or UART3. This behavior
can be exploited to insert our own code into the device. Fur-
thermore, by pressing the button in the thermostat for about
10 seconds, it is possible to trigger a hard reset of the device
causing the sys_boot[5] pin to be driven high, ensuing
the same behavior. Since ROM does not run any kind of ver-
ification on the code being injected, we are able to run it
without restriction. Only the timing windows for device
detection and programming must be met. The first payload
must be x-loader, which is copied into SRAM. Subse-
quent payloads are copied into SDRAM.

5.1 Initial Attack

Our initial attack consisted of sending x-loader into the
unit by means of USB, coupled with a custom u-boot

crafted with an argument list to be passed to the on-board
kernel. Our u-boot image was sent along a custom ram-

disk which contained the final payload. As the on-board
kernel booted, our ramdisk was utilized as the init file-
system. This gave us a very rustic shell upon which to
modify the device’s behavior. By mounting the device’s file-
system, we enabled remote access to the unit using the
already onboard netcat binary. The device’s init script
was also modified in order to activate this shell upon any
subsequent boot.

Reconstruction of the userland by means of the shell
allowed us to start initial forensic analysis of the device.
This ensued in obtaining toolchain information, Application
Binary Interface (ABI) information and other missing areas

Fig. 3. Simplified memory map (shaded areas are internal to the
AM3703).

Fig. 4. Standard Nest Thermostat boot process.

TABLE 1
Selected Boot Configurations

sys_boot[5:0] First Second Third Fourth Fifth

001101 XIP USB UART3 MMC1
001110 XIPwait DOC USB UART3 MMC1
001111 NAND USB UART3 MMC1

101101 USB UART3 MMC1 XIP
101110 USB UART3 MMC1 XIPwait DOC
101111 USB UART3 MMC1 NAND

ARIAS ET AL.: PRIVACY AND SECURITY IN INTERNET OF THINGS ANDWEARABLE DEVICES 103

of the userland. With the information at hand, a full tool-
chain was developed which enabled us to build arbitrary
payloads targeting the Nest Thermostat.

5.2 Refining Backdoors

With the new tools, the dropbear secure shell and SFTP
server was cross compiled, providing us with a better way
to access the unit, after making the respective changes to
the system’s /etc/passwd, /etc/shadow and /etc/

groups files, enabling a user account.
With secure shell having been enabled, accessing the

device within the local network became easier and more
reliable. Further forensic analysis of the unit was performed
this way, discovering the storage of all logged data and the
possibility of its retrieval by unauthorized sources.

5.3 Dialing from Ilion

Under regular operating conditions, the Nest Thermostat
is behind a Network Address Translation (NAT) firewall,
meaning that accessing it from a remote location by
means of standard secure shell requires a user to enable
port forwarding in their firewall. As such, we developed
a proof of concept Trojan horse, codenamed Odysseus
which is designed to dial into a remote server, Achaea,
and await commands. The Trojan was injected into a
thermostat unit and deployed into a proof of concept
smart house we named Ilion. Within its network, Ilion
contained laptop and desktop computers, smartphones,
tablets and a few other devices, as to emulate a real life
setting.

Since the Nest Thermostat was now a part of Ilion, we
were able to utilize Odysseus to extract the network creden-
tials. Odysseus was also used to scan the network for other
devices, sending this information to Achaea, where the
remote attacker can collect it. Fig. 6 shows traffic from a ses-
sion of Odysseus relaying collected information. Our Trojan
also enabled us to deploy a rogue DHCP server, allowing us
to shape the outgoing traffic by redirecting DNS requests to
our servers, thus enabling us to launch a wider variety of
attacks against other connected devices.

5.4 Remote Updates and the Linux Kernel

The Nest Thermostat receives signed updates from the Nest
website over standard, plain-text HTTP. As such, the con-
nection can be eavesdropped and images can be down-
loaded to an alternate location and analyzed for contents.
The update images are not encrypted, but they contain a
manifest file with signing keys. These signatures are verified
against a public certificate found on the device. It is possible
then to alter the certificate verification within a compro-
mised unit to accept updates from a different source.

With our current toolset, we were able to obtain the ker-
nel configuration file generated within the /proc filesys-
tem. Further study of the device can be accomplished by
means of intercepting system calls and kernel level debug-
ging. As such, using this configuration file as a base, a cus-
tom kernel was built with debugging features added. Since
u-boot must provide the layout of NAND flash to the ker-
nel, analysis of its sources yielded a possible place of storage
for our customized kernel.

Our custom kernel has been patched to allow polling in
the OMAP serial driver, allowing us to use the kernel level
debugger kgdb through one of the exposed serial ports. We
have permanently written this kernel to the boot1 section
of NAND flash and use a custom u-boot to select whether
to use the stock kernel or ours upon powering on the unit.
With a custom kernel in place, as mentioned above, we can
intercept system calls, potentially disabling reads and
writes to specific sections of NAND flash. This enables us to
block certain files from being deleted, even if we allow offi-
cial Nest updates to run, giving persistence to any software
backdoors injected within the device.

6 CASE STUDY 2: NIKE+ FUELBAND

Architecture wise, wearable and medical devices resemble
IoT devices, however, they tend to have much less computa-
tional power and limited communication interfaces. Never-
theless, these units perform as much if not more data
collection than IoT devices do. Although closely related to
IoT devices, security vulnerabilities on wearable devices can
lead to safety concerns for users. A pacemaker with wireless
capabilities was proven to be vulnerable and could be used
to affect the health of the patient [44]. Information leaks from

Fig. 5. Boot device setup.

Fig. 6. Sample traffic between Odysseus and Achaea.

104 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

fitness devices owned by corporate executives could be used
against them, causing the corporation’s value to deteriorate
on themarket, severely affecting its performance.

Much like our work with the Nest Thermostat, we per-
formed a similar analysis on medical and wearable devices,
looking for possible hardware vulnerabilities which may be
utilized against an unsuspecting user. In the following sec-
tions, we introduce as a secondary case study our work
with the Nike+ Fuelband, a wearable device with fitness
monitoring capabilities.

6.1 High Level Overview

The Nike+ Fuelband is a low-power Bluetooth 4.0-enabled
fitness wristband designed to measure daily physical activ-
ity, such as the amount of steps taken, sleep patterns and
estimate the amount of calories burned (see Fig. 7). This is
done by means of reading data from the on-board three-axis
accelerometer, which is subsequently stored within the
unit. By means of software provided by the manufacturer,
the unit can communicate with a Windows or OS X based
computer, as well as Android and iOS devices. The col-
lected data can then be analyzed, tracked and shared with
the Nike+ online community. Periodic synchronization
with the device can be achieved with the mobile applica-
tions and real-time feedback is performed with the on-board
LED matrix display. The device is powered by two Lithium-
polymer batteries, advertised to provide up to four days of
continuous usage.

6.2 Device Security

The Nike+ Fuelband contains a Bluetooth interface which it
uses to communicate with a smartphone. Some settings of
the Fuelband can be configured through these means and
information from the band can be sent back to the smart-
phone using this channel. Firmware updates, however, are
performed by means of the Nike+ application on a Win-
dows or OS X based personal computer. Most of the com-
munications from the smartband are done through the
smartphone or personal computer application. Upon boot,
the firmware is checked against a checksum before it is run
ensuring a valid image.

6.3 Device Descriptive Overview

The main processing unit in this device is the ST Microelec-
tronics STM32L151QCH6 microcontroller. Built upon an

ARM Cortex-M3 core, this microcontroller is described in
greater detail in Section 6.4. An LIS3DH three-axis MEMS
accelerometer from the same manufacturer interfaces
with the STM32 by means of a Silego SLG46300 program-
mable mixed signal array. The 120-LED matrix is driven
by an AMS AS1130 driver, which simplifies some LED
matrix related operations. Power management is pro-
vided by the ST Microelectronics RS12, which also
facilitates communications over USB 2.0. Bluetooth com-
munication is achieved by means of a Cambridge Silicon
Radio CSR1010 Bluetooth Low Energy module. Fig. 8
shows the device map of the unit.

6.4 The STM32L151QCH6—A Closer Look

The ST Microelectronics STM32L151QCH6 system on a
chip, hereafter referred to as STM32, is an ultra-low-power
platform offering a 12 channel DMA controller, 23 capaci-
tive sensing channels and a CRC calculation unit. The SoC
further includes a 96 bit unique ID, a preprogrammed boot-
loader supporting both USB and USART programming, 116
fast input/output pins which are mappable to a 16 interrupt
vector table. Storage wise, the STM32 in question offers
256KiB of flash storage with ECC support, 32KiB of SRAM,
8KiB of ECC supporting EEPROM and a 128B backup reg-
ister. Included peripherals range from an LCD driver, to
communication interfaces supporting USB 2.0, USART, SPI

and I2C [45].
The included ARM Cortex-M3 core supports both

the Thumb and Thumb-2 instruction set architectures.
Advanced low-power optimizations are achieved by means
of multiple power and clock domains, architecture defined
sleep modes and support for advanced low-power technol-
ogies such as State Retention Power Gating. A JTAG mecha-
nism is provided by means of serial wire debug, which
provides real-time access to systemmemory without halting
the processor.

A simplified memory map of the STM32 is illustrated in
Fig. 9. The highlighted block of addresses in the figure are
multiplexed between Flash or System Memory, depending
on the status of the external BOOT0 pin (see Section 6.5).

Fig. 7. Nike+ Fuelband SE Fitness Tracker (credit: Nike).

Fig. 8. Device map of the fuelband.

ARIAS ET AL.: PRIVACY AND SECURITY IN INTERNET OF THINGS ANDWEARABLE DEVICES 105

6.5 Boot Process and Device Initialization

Upon device power on, the STM32 executes the code stored
in its internal ROM, initializing the device’s basic periph-
erals. Execution then continues from internal flash memory,
which proceeds to finish device setup into a working model.
Specific to the Nike+ Fuelband, this entails activation of the
Bluetooth radio, mixed signal array and LED driver, along
with the calibration of the accelerometer. At this point, the
device is ready for regular usage.

The STM32, however, implements a secondary boot
mode, which is triggered by holding the BOOT0 pin to a logic
1 as the device starts. If started this way, the device initial-
izes a basic set of peripherals and configures the USB subsys-
tem. Then, if a USB cable is detected whilst being driven by
the proper clock signal, the internal PLL reconfigures the
system clock to 32MHz and the USB subsystem clock to
48MHz. The system proceeds to execute the DFU bootloader
with USB interrupts enabled, as to allow for communication.
Using this mechanism, the STM32 can be sent commands
which allow for read and write operations to memory,
changing memory protection modes and status retrieval.

7 ATTACK VECTOR ON THE NIKE+ FUELBAND

Although the STM32 documentation states that the micro-
processor contains the necessary capabilities to lock external
reads and writes against the internal flash, thus isolating the
device’s firmware from the external world, this protection
was not employed on the Nike+ Fuelband. As such, the con-
tents of flash can be freely modified by an attacker with
access to the device.

The Nike+ Fuelband contains a standard USB connector
which is used for both device charging and synchronization.
This connector can also be used to write new firmware onto
the device, however, the necessary access to the BOOT0 pin
is not externally provided. As such, the device must be
opened in order to trigger the alternate boot sequence. Fur-
ther complicating the issue is the fact that the microcontrol-
ler is packaged as a Ball Grid Array (BGA) and thus no
direct access to the BOOT0 pin can be obtained. Traces on
the circuit board must then be followed in order to encoun-
ter a test point indirectly exposing the pin in question.

After following this process, we were able to indirectly
locate the BOOT0 pin, which was subsequently driven to a
logic 1 state by means of a 100V resistor connected to VDD.
This allowed us to enter the alternate boot mechanism and
exploit the lack of read and write protection on the device.

By means of standard ST Microelectronics development
tools, communication over USB with the STM32 was
achieved and the device’s firmware was obtained.

With the device’s firmware in our hand, we set on to
modify it. The simplest change is one of string replacement,
that is, find a string in the program that gets displayed at
some point and change it to something else. With the
change made, the modified firmware was written to the
device, only to find normal functionality had ceased to exist.
Further testing demonstrated that this was caused by a fail-
ure to compute the proper CRC for the image. Since the
image was modified, the check failed.

Closer examination of the disassembled firmware image
demonstrated that it utilized the CRC engine within the
STM32 microcontroller in order to verify itself as genuine
by checking the result of the CRC computation against a
stored value. This value was found within the image itself,
and thus easily modifiable. With the proper checksum
added, the modified firmware was sent to the device and
proven to work.

8 DISCUSSIONS

8.1 Security Impact to Network

A compromised IoT device can be utilized to further attack
other units in an unsuspecting victim’s network. Effects
could range from simple backdoor injection to leaking user
information and credentials to even causing physical harm
to the user. As shown with the case of the Nest Thermostat,
it can be used as a beachhead to other nodes within the net-
work, allowing for discovery and attack of those nodes.

Furthermore, rogue services may be installed on the
device, aiming to disrupt regular network operations. For
instance, a rogue DHCP server may be utilized to inject
DNS requests to a poisoned server which would return false
information, allowing for traffic shaping. Address Resolu-
tion Protocol (ARP) based attacks are also possible, with the
compromised device masquerading as the router, allowing
for the capture and redirection of a target computer’s net-
work traffic.

Security issues with backdoored IoT devices are exacer-
bated by the fact that local network credentials need to be
stored within the unit, thus becoming accessible to an
attacker. Leveraging the extraction of network credentials
allows for the introduction of extraneous devices into the
local network, granting for new methods of exploitation
against other nodes. In the case of the Nest Thermostat, the
network credentials are stored in regular text files, and even
if these were encrypted, the algorithms necessary to obtain
the clear text would necessarily be present on the device,
granting the attacker the means to collect them.

8.2 Safety Concerns

Safety concerns arise when compromised IoT and wearable
devices see on-field deployment. Due to the services these
units provide, from communications to medical applica-
tions, a compromised device could then be used to cause
physical harm to its user [44]. The Nest Thermostat could be
employed to overstress the HVAC unit it is connected to,
causing it to malfunction. Furthermore, all the information
stored within the device can be utilized by the attacker to

Fig. 9. Simplified memory map of the STM32L151QCH6.

106 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

build a profile of the victim, aiding in the determination of a
daily routine, the usage of which can result in facilitating
the burglarizing of the victim’s property.

8.3 Privacy Concerns

Almost all IoT and wearable devices, upon setup, will start
collecting user information. For example, the Nest Thermo-
stat will collect information such as the location of the ther-
mostat, whether it is being used in a home or business, the
postal code of the area and device information from the
HVAC system to determine its capabilities. The on-board
sensors on the thermostat will also collect temperature data,
humidity and ambient light data, and by means of the
onboard passive infrared sensor, whether somebody is
moving in the room. Any direct temperature adjustments to
the device are also recorded and utilized in algorithms to
learn and compute comfort levels under different situations.
Whenever the HVAC unit is activated, the thermostat will
record the time and duration for which this happened.
Using this information, the thermostat builds a profile for
the users in order to help them feel comfortable whilst also
providing energy savings. The Nike+ Fuelband will store
the user’s heartbeat and sleeping patterns, which can then
be learned by the attacker. The information could poten-
tially be used against the user, or against any entity the
user is part of.

Although there are laws and standards defining data col-
lection policies, some of these have proven to be ineffective
and are often antiquated, as demonstrated by information
leaks from companies [46], [47], [48]. User information col-
lected by the Nest Thermostat is stored within the unit and
uploaded to the Nest Cloud. Local log files are sent to Nest
as well and removed from the unit as to save space. System
and software logs contain information such as the user’s
Zip code, device settings, HVAC settings and wiring config-
uration. Forensic analysis of the unit yields that the Nest
Thermostat has code to prompt the user for information
about their place of residence or office. Reports indicate that
Nest plans to share this information with energy providers
in order to aid with efficient power generation [49]. As for
the Nike+ Fuelband, the information collected and stored
by the unit is then sent to a personal computer or mobile
device, from where it can be publically shared with other
users. Even if the information is not shared, an unautho-
rized third party still has access to the data from a compro-
mised device and can use it for their own purposes.
Although IoT manufacturers have gone through consider-
able efforts to ensure the secure transmission of this data, it
is all for naught if it can be leaked at the source.

9 DEVICE SECURITY ENHANCEMENT

9.1 Security Solutions Common to IoT and
Wearable Devices

Verifying the firmware at update time is a step towards
securing IoT devices, however, this is often done by the on-
board software. As with the Nest Thermostat and the Nike+
Fuelband, the on-board software is trusted to be authentic.
The implementation of this check, however, must be sound.
For example, schemes that utilize random numbers must
ensure the usage of a cryptographically secure random

number generator, any used cryptographic certificates must
be validated by a trusted Certificate Authority [39]. A
weakly implemented cryptographic algorithm is no better
than a lack of a cryptographic algorithm.

However, as we have demonstrated with our case stud-
ies, it is insufficient to authenticate an update image. The
software stack must also be authenticated before it can reli-
ably determine if an update is valid or not. With the devices
compromised, we are free to bypass any checks on the
update image, thus rendering the protection mechanism
ineffective. A proper chain of trust in the hardware infra-
structure of the device can aid the process of determining
an authentic software stack [50].

The attack in both the Nest Thermostat and the Nike+
Fuelband could have been avoided had a proper chain of
trust been implemented. Inherently, this needs the type of
hardware support which is not available in either the Sitara
AM 3703 used in the Nest Thermostat or the STM32 micro-
controller used in the Nike+ Fuelband.

The exposure of debug interfaces in these devices further
presents a risk. These are often left as residues from
development prototypes or as testpoints used during
manufacturing. These debug interfaces can also serve as the
means to service IoT or wearable devices on the field, as to
ease repairs. As such, we can see why they may be needed.
However, these interfaces must be protected against attack-
ers. For example, FRAM devices in the MSP430 lines pro-
vide means to both secure JTAG access and to protect
certain memory segments from access using a built in IP
Encapsulation Module [51]. Other microcontrollers and
microprocessors offer the same kind of functionality, imple-
menting means to restrict access to its debug units. As such,
manufacturers are able to still expose these interfaces for
testing purposes and lock them before they are deployed.
Ideally, however, any debug interfaces should be removed
from production runs or have proper protections.

9.2 Specific Solutions for IoT Devices

Often, IoT devices provide a full operating system in which
binaries are loaded into an userland. This simplifies the
interface to the hardware and provides high level Applica-
tion Programming Interfaces (APIs). The Nest Thermostat,
for example, employs an embedded Linux stack which is
used to launch the proprietary Nest application which relays
commands to the backplate of the unit and controls the com-
munications channels. As we demonstrated in our case
study, binaries can be injected into the filesystem of the unit
and executed in devices that utilize this model. As such,
extra protection must be added to devices that load binaries
into a userland. A possible approach is to only load and exe-
cute cryptographically signed binaries. This requires the ker-
nel to have a custom loader that verifies these binaries as
they are prepared for execution. If the signature verification
fails, then the binary is not run and the device is set into a
failsafe mode, notifying the user of possible tampering.

9.3 Specific Solutions for Wearable Devices

In devices whose architecture is self contained, that is,
microcontroller based systems, it becomes necessary to
secure all update channels. External reprogrammability of

ARIAS ET AL.: PRIVACY AND SECURITY IN INTERNET OF THINGS ANDWEARABLE DEVICES 107

the microcontroller and any debug interfaces it may feature
must be disabled. The microcontroller must also be pro-
grammed before being placed in the circuit board, as to
avoid adding unnecessary interfaces which could expose
functionality.

9.4 Overhead of Security Solutions

There is usually a certain degree of overhead associated
with any protection mechanism. Cryptography necessarily
adds computational overhead to any protection scheme that
utilizes it. It may be reasonable to expect then that any
device which utilizes encryption or any other cryptographic
function to require binaries with functions to include the
necessary checks and have higher memory and CPU
requirements in order to perform better. However, current
industry solutions include parts which are capable of accel-
erating these processes, much like the microcontroller uti-
lized in the Nike+ Fuelband which can accelerate CRC32
computations [45]. This reduces the software overhead
needed to perform these checks, but slightly increases the
area and power consumption of these parts. It should be
noted, however that for most parts, power can be gated to
the SoC subsystems that are not being utilized, thus reduc-
ing power consumption in the device.

10 CONCLUSIONS AND FUTURE WORK

As our case studies demonstrated, a non-secure hardware
platform will inevitably lead to a non-secure software stack.
A vulnerability in the design of the unit can result in its
compromise. Furthermore, without being able to authenti-
cate the running software, it can not be trusted to make deci-
sions about its own validity. Due to the short time to market
engineers are given to finish a product, we believe that most
of the current IoT and wearable devices suffer from similar
issues. Software protection becomes ineffective if the hard-
ware is vulnerable to attack. This raises safety and privacy
issues with users, is their information safe?

Moving forward, we will continue to probe other IoT
devices for security, with the goal of finding vulnerabilities
in their hardware. Ultimately, this will lead us to a better
understanding of design issues and how to correct them.
We will attempt to build prototypes of smart devices that
utilize our proposed chain of trust to test for their viability
and ability to prevent malicious attacks.

ACKNOWLEDGMENTS

Mr. Orlando Arias and Mr. Khoa Hoang are partly sup-
ported by the REU Supplement of the US National Science
Foundation (NSF) award (CNS-1319105).

REFERENCES

[1] D. Evans, “The internet of things - how the next evolution of the
internet is changing everything,” White Paper. Cisco Internet Busi-
ness Solutions Group (IBSG), 2011.

[2] P. Middleton, P. Kjeldsen, and J. Tully, “Forecast: The internet of
things, worldwide, 2013,” Gartner, 2013.

[3] D. Welch and S. Lathrop, “Wireless security threat taxonomy,” in
Proc. IEEE Syst., Man Cybern. Soc. Inf. Assurance Workshop, 2003,
pp. 76–83.

[4] R. Roman, P. Najera, and J. Lopez, “Securing the internet of
things,” Computer, vol. 44, no. 9, pp. 51–58, Sep. 2011.

[5] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Comput.
Netw., vol. 57, no. 10, pp. 2266–2279, 2013.

[6] A. Williams. (2011). How the internet of things helps us under-
stand radiation levels [Online]. http://readwrite.com/2011/04/
01/ow-the-internet-of-things-help.

[7] D. Viehland and F. Zhao, “The future of personal area networks in
a ubiquitous computing world,” Int. J. Adv. Pervasive Ubiquitous
Comput., vol. 2, no. 2, pp. 30–44, 2010.

[8] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and
A. Oliveira, “Smart cities and the future internet: Towards cooper-
ation frameworks for open innovation,” in The Future Internet, Ber-
lin, Germany: Springer, 2011, pp. 431–446.

[9] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad,
“Identify authentication and capability based access control
(IACAC) for the internet of things,” J. Cyber Security Mobility,
vol. 1, pp. 309–348, 2013.

[10] Y. Challal, “Internet of things security: Towards a cognitive and
systemic approach,” Ph.D. dissertation, Compiegne University of
Technology, 2012.

[11] A. Riahi, Y. Challal, E. Natalizio, Z. Chtourou, and A. Bouabdal-
lah, “A systemic approach for IoT security,” in Proc. IEEE Int.
Conf. Distrib. Comput. Sensor Syst., 2013, pp. 351–355.

[12] A. Riahi, E. Natalizio, Y. Challal, N. Mitton, and A. Iera, “A sys-
temic and cognitive approach for IoT security,” in Proc. Int. Conf.
Comput., Netw. Commun., 2014, pp. 183–188.

[13] (2015). Nest Labs. Privacy statement [Online]. https://nest.com/
legal/privacy-statement/

[14] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle, “Privacy in the
internet of things: Threats and challenges,” Security Commun.
Netw., vol. 7, no. 12, pp. 2728–2742, 2014.

[15] A. D. Thierer, “The internet of things and wearable technology:
Addressing privacy and security concerns without derailing
innovation,” Rich. J. Law Technol., vol. 21, pp. 6–15, 2015.

[16] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[17] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad,
“Proposed security model and threat taxonomy for the internet of
things (IoT),” in Proc. Recent Trends Netw. Security Appl.: 3rd Int.
Conf., 2010, pp. 420–429.

[18] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Adv. Cryptol., 1999, pp. 789–789.

[19] G. Mulligan, “The 6LowPAN architecture,” in Proc. 4th Workshop
Embedded Netw. Sensors, 2007, pp. 78–82.

[20] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained
application protocol (CoAP), draft-ietf-core-coap-13,” in The Inter-
net Engineering Task Force (IETF), 2012.

[21] E. Rescorla and N. Modadugu, “Datagram transport layer
security,” RFC 4347, 2006.

[22] S. Kent and K. Seo, “Security architecture for the internet proto-
col,” RFC 4301, 2005.

[23] M. Brachmann, S. L. Keoh, O. Morchon, and S. Kumar, “End-to-
end transport security in the ip-based internet of things,” in Proc.
21st Int. Conf. Comput. Commun. Netw., 2012, pp. 1–5.

[24] R. Seggelmann, “Sctp: Strategies to secure end-to-end
communication,” Ph.D. dissertation, Univ. Duisburg-Essen,
Essen, Germany, 2012.

[25] ARM, “Building a secure system using trustzone technology,”
ARM Limited, Cambridge, England, 2009.

[26] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative instruction and
software model for isolated execution,” in Proc. 2nd Int. Workshop
Hardware Architectural Support Security Privacy, 2013.

[27] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for cpu based attestation and sealing,” in Proc. 2nd Int.
Workshop Hardware Architectural Support Security Privacy, 2013.

[28] Samsung. (2015). Samsung KNOX: Mobile Enterprise Security
[Online]. Available: https://www.samsungknox.com/en

[29] N. Keltner and C. Holmes, “Here be dragons: A bedtime tale for
sleepless nights,” in RedCon, 2014.

[30] D. Rosenberg, “Reflections on trusting trustzone,” in BlackHat
USA, 2014.

[31] T. Wei and Y. Zhang, “To swipe or not to swipe: A challenge for
your fingers,” in Proc. RSA Conf., 2015.

[32] “Freertos reference manual: API functions and configuration
options,” Real Time Eng. Limited, Tech. Rep. WC2H 9JQ, London,
England, 2009.

108 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 1, NO. 2, APRIL-JUNE 2015

[33] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa,
and C. Taliercio, “Performance comparison of VxWorks, Linux,
RTAI and Xenomai in a hard real-time application,” in Proc. 15th
IEEE-NPSS Real-Time Conf., 2007, pp. 1–5.

[34] (1982-2014). QNX operating systems [Online]. Available: http://
www.qnx.com/products/neutrino-rtos/index.html

[35] CVE-2014-0160. Common Vulnerabilities and Exposures [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0160

[36] CVE-2014-2783. Common Vulnerabilities and Exposures [Online].
Available: http://www.cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-2783

[37] CVE-2014-2001. Common Vulnerabilities and Exposures [Online].
Available: http://web.nvd.nist.gov/view/vuln/detail?vul-
nId=CVE-2014-2001

[38] CVE-2013-7373. Common Vulnerabilities and Exposures [Online].
Available: http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-7373

[39] CVE-2013-6951. Common Vulnerabilities and Exposures [Online].
Available: http://web.nvd.nist.gov/view/vuln/detail?vul-
nId=CVE-2013-6951

[40] CVE-2013-6950. Common Vulnerabilities and Exposures [Online].
Available: http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-6950

[41] G. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Proc. 15th Int. Conf. Crypto-
graphic Hardware Embedded Syst., 2013, pp. 197–214.

[42] (2015). Nest Labs. Open source compliance [Online]. https://nest.
com/legal/compliance

[43] Texas Instruments, “AM3715, AM3703 Sitara ARM Microproc-
essor,” 2011.

[44] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. Maisel, “Pacemakers and
implantable cardiac defibrillators: Software radio attacks and
zero-power defenses,” in Proc. IEEE Symp. Security Privacy, 2008,
pp. 129–142.

[45] ST Microelectronics, “STM32L15xQC, STM32L15xRC-A, STM32L
15xVC-A, STM32L15xZC Ultra-low-power 32b MCU ARM-based
Cortex-M3, 256KB Flash 32KB SRAM, 8KB EEPROM, LCD, USB,
ADC, DAC,” no. 026119 Rev 5, 2015.

[46] M. BARBARO and T. Zeller Jr., “A face is exposed for aol searcher
no. 4417749,” The New York Times, 2006.

[47] I. Reynolds and C. Fujioka. (2011). Update 2-sony removes
data posted by hackers, delays playstation restart. Reuters
[Online]. http://www.reuters.com/article/2011/05/07/sony-
idUSL3E7G701T20110507

[48] Z.Whittaker. (2012).Amazon’szappos inmassivedatabreach24mil-
lion affected. ZDNet [Online]. http://www.zdnet.com/article/
amazons-zappos-in-massive-data-breach-24-million-affected/

[49] M. Mombrea. (2014). Googles real plan behind the purchase of the
nest thermostat [Online]. http://www.itworld.com/consumer-
ization-it/416110/googles-plan-rake-cash-nest-thermostat

[50] W. Arbaugh, D. Farber, and J. Smith, “A secure and reliable boot-
strap architecture,” in Proc. IEEE Symp. Security Privacy, 1997,
pp. 65–71.

[51] Texas Instruments, “MSP430 Programming Via the JTAG Inter-
face,” 2015.

Orlando Arias is a senior computer engineering
student at the University of Central Florida, where
he is currently a research assistant in the Security
in Silicon Laboratory. His research interests
include device security, secure computer archi-
tectures, network security, IP core design, and
integration and cryptosystems. He received the
Best Paper Award at the 52nd Design Automa-
tion Conference as part of his work in hardware-
assisted control flow integrity systems. He is a
student member of the IEEE.

Jacob Wurm is currently a senior undergraduate
student studying computer engineering at the Uni-
versity of Central Florida. He is currently a
research assistant in the Security in Silicon Labo-
ratory lead by Dr. Yier Jin. His research interests
include embedded device security, secure com-
munication protocols, and network traffic analysis.
He is a student member of the IEEE.

Khoa Hoang is an undergraduate student at the
University of Central Florida. He enjoys tinkering
with electronics, technology, and jail breaking
devices. He has disclosed exploits of various
Internet of Things (IoT) device and other smart
devices to multiple vendors. He is currently listed
on multiple “Security Hall of Fame” pages for suc-
cessful bug bounty submissions.

Yier Jin received the BS and MS degrees in elec-
trical engineering from Zhejiang University,
China, in 2005 and 2007, respectively, and the
PhD degree in electrical engineering in 2012 from
Yale University. He is currently an assistant
professor in the EECS Department, University of
Central Florida. His research focuses on the
areas of trusted embedded systems, trusted
hardware intellectual property (IP) cores, and
hardware-software co-protection on computer
systems. He proposed various approaches in the

area of hardware security, including the hardware Trojan detection meth-
odology relying on local side-channel information, the post-deployment
hardware trust assessment framework, and the proof-carrying hardware
IP protection scheme. He is also interested in the security analysis on
Internet of Things (IoT) and wearable devices with particular emphasis
on information integrity and privacy protection in the IoT era. He received
the Best Paper Award at the 52nd Design Automation Conference in
2015. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ARIAS ET AL.: PRIVACY AND SECURITY IN INTERNET OF THINGS ANDWEARABLE DEVICES 109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

