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Abstract—Many logic locking schemes have been proposed and
subsequently broken in recent years most notably by oracle-
guided SAT-solver-based attacks. This has in part been due
to a lack of formal definitions of security. Recent work has
however taken the first steps towards this by defining some
notions of security. One such notion, exact-functional-secrecy
(EFS) is satisfied as soon as the attacker is not able to learn
the precise functionality of the original circuit. This is less
stringent than the approximate-functional-secrecy (AFS) notion
of security which captures approximation-resiliency. This paper
focuses on EFS. We present first a novel SAT-based attack that
can automatically divide the deobfuscation of a locked circuit into
two different processes: a) deobfuscating high-activity/entropy
nets which contribute to AFS and are best handled by a few
queries and heavy SAT-solving, and b) deobfuscating low-activity
nets which require many useless queries in search of a few rare
informative queries. The attack, called the rare-fast-querying
(RFQ) SAT attack, guarantees key-correctness for logic outside
of low-activity cones, and is not exclusive to a specific low-
activity locking scheme. We show how the RFQ attack can under
some conditions, avoid exponential querying altogether. Given the
insight from this attack, we then present a deeper look into EFS
and discuss simple techniques to achieve always-exponential EFS
with bearable overhead. We show how one can take advantage
of the abundance of comparator logic at the RT-level of control-
oriented designs to achieve EFS with even less overhead via
absorbing existing structures.

Index Terms—Hardware Security, Logic Obfuscation, IC Cam-
ouflaging, Logic Locking.

I. INTRODUCTION

The high costs of maintaining semiconductor nano-
fabrication in the sub-100nm regime have over the years re-
sulted in a separation of design and fabrication. With more and
more companies from various sectors investing in application-
specific ICs (ASIC), the fabless business model in which
designers outsource fabrication to consolidated foundries has
been on the rise. An untrusted foundry in such a setting raises
several security and privacy concerns including 1) reverse
engineering for IP theft, 2) overproduction, and 3) malicious
modification of the design. In addition to untrusted foundries,
end-user microscopy-based reverse-engineering of fabricated
ICs can cause similar pains for IP holders and designers [1].

Three broad categories of techniques exist for hiding the
design of a circuit from untrusted foundries or end-users.
1) IC Camouflaging: in which ambiguous-under-microscopy
nano-structures are dispersed throughout the layout to hinder
end-user reverse-engineering while providing no protection
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against foundries [2]. 2) Split-manufacturing: which splits the
design (typically by metal layer) and fabricates the less costly
part in a lower-end trusted foundry [3]. 3) Logic locking
[4]: in which (one-time) programmable (ambiguous-under-
microscopy) elements are added to the circuit, ensuring that
correct operation requires a post-fabrication configuration with
a secret bit-string (aka a secret key, hence the name locking).

Logic locking, due to its protection against both foundry
and end-users without requiring a trusted foundry, has be-
come increasingly appealing. However, it is the hardest to
secure against attacks with low overhead. This is because
programmable elements need programming structures that
leak the location of ambiguity to the attacker and increase
overhead. Furthermore, it is difficult to flood the empty spaces
in the layout with programmable elements, an approach that
produces very strong low-overhead IC camouflaging [5].

All three schemes, especially locking, can be modeled
mathematically as transforming a Boolean (possibly sequen-
tial) circuit to an augmented/locked/obfuscated Boolean circuit
with added hidden/key variables, with the goal of the attacker
being to obtain the original circuit (find the correct key) from
the keyed one. The question of security under this model
heavily relies on a) the threat model, and b) the defini-
tion/notion of security itself. The main threat models are 1)
oracle-guided (OG) [6]: where the attacker, in addition to the
obfuscated circuit, has access to a black-box implementation
of the original circuit, 2) sequential-oracle-guided (SOG) [7]:
where the oracle has inaccessible state-elements 3) oracle-less
(OL): where the attacker has access only to the ambiguous
design1. Any kind of access to an oracle can allow for the
attacker to use input-output patterns extracted from the oracle
to disambiguate the obfuscated circuit.

Under the above threat models, some notions/definitions-of-
security (what it means mathematically for a locking scheme to
be secure) were defined in [8]. These notions focus on keeping
the functionality of the original circuit secret, rather than the
key per se. One is exact-functional-secrecy EFS where the
attacker is barred only from perfect learning of the function-
ality of the original circuit in a given time. EFS hence allows
for arbitrary approximation of the original circuit. A much

1One can define probing attacks by defining a new threat model 𝑡-probed-
oracle-guided tpOG in which an attacker can probe 𝑡 “arbitrary” locations in
the circuit. It is easy to show that exponential-security under tpOG for 𝑡 ≥ 1
is impossible to achieve without exponentially many keys as the attacker can
simply probe key bits or their immediate fanouts. A slightly more hopeful
threat model is one where the attacker can probe 𝑡 locations from a subset
of nets 𝑊 . If 𝑊 is functionally distant enough from key-bits security may
be achievable. Either way without physical package-level protection against
probing (active/passive-shielding etc.), a probing-capable attacker is very hard
if not impossible to defeat with algorithmic techniques and hence outside the
scope of (un)locking algorithms research and this paper.
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stronger notion per [9] is approximate-functional-secrecy AFS
in which the attacker is barred from approximating the original
circuit beyond a given accuracy limit.

The strongest oracle-guided attacks are SAT-based attacks
[10], [11], which use iterative SAT-solver calls to trim the
key hypothesis space and recover a guaranteed correct key.
These attacks have been successful in defeating the majority
of existing low-overhead gate-based locking/camouflaging. To
thwart these attacks several “point-function” schemes were
proposed [12], [13], [14] which use functions with sparse
truth-tables to create exponential minimum-query-counts for
oracle-guided attacks. These schemes were subsequently at-
tacked with removal attacks [15], [9] that find these structures
in the circuit and remove them, and approximation attacks
[16], [17], [9] which disregard the point-function and recover
the remainder of the circuit in cases where the point-function
schemes were mixed with traditional schemes.

In this paper, we take a deeper look at EFS and attacks
against it. The paper delivers the following:

• We show that in general, locked circuits can have ei-
ther query hardness present for instance in point-function
schemes with low-activity nets in which the attacker can
recover the function if they simply make a large number of
queries with little book-keeping; or alternatively, the locked
circuit can have algebraic hardness in which very high-
entropy/nonlinear/deep circuits do not need many queries,
but the system of equations resulting from the few queries
is difficult to solve. For the latter part, we use an argument
from pseudo-random-functions (PRFs) in cryptography.

• We present an attack that unlike existing approximate
attacks which either query blindly like AppSAT [16], or
are tailored to specific point-function schemes such as
DDIP[17], SigSAT[18], and 𝑘DIP[9], can in fact target any
low-activity net (including ones inherent to the original
circuit), and avoid adding exponentially many copies of
useless query conditions to the SAT-solver for such nets.
Instead, it fast-queries the fanin of these low activity nodes
until it encounters rare and interesting queries which are
then added to the solver (hence called the rare-fast-query
(RFQ) attack). This not only speeds up attacks on low-
activity (e.g. point-function) locked circuits, it creates a
mechanism to detect such nodes in the circuit and separate
the circuit nodes into those with query hardness (EFS-like)
and those with algebraic hardness (AFS-like).

• Using the formal definition of EFS we show how in certain
cases the RFQ attack can avoid exponential querying with
early termination, and then propose simple defense tricks
to avoid these conditions and achieve always-exponential
security for EFS schemes. Using these tricks we propose
a new EFS scheme that takes advantage of inherent com-
parator logic at the RT-level for always-exponential-query
EFS locking. We showcase our EFS locking approach on
a control-heavy RS232 Verilog design.

The paper is organized as follows. Section II covers some
preliminaries. Section III presents the RFQ attack and its
experimental results. Section IV presents the improved EFS
schemes along with a case study. Section V concludes the

paper.

II. PRELIMINARIES

A. Definitions
Following [8], Circuit Locking 𝑐L can be defined as fol-

lows:

Definition 1 (Combinational Circuit Locking (𝑐L) scheme).
A Combinational Circuit Locking (𝑐L) scheme for a family
of combinational circuits C𝑜 is a probabilistic polynomial-
time (PPT) algorithm LockC𝑜 that takes security parameter
𝜆 and an original circuit 𝑐𝑜 ∈ C𝑜, and returns the locked
combinational circuit 𝑐𝑒 and a correct key 𝑘∗ where we have
the following:

- (𝑙 Added key-inputs) When 𝑐𝑜 : 𝐼 → 𝑂 where 𝐼 = F𝑛2 and
𝑂 = F𝑚2 , then 𝑐𝑒 : 𝐾 × 𝐼 → 𝑂 where 𝐾 = F𝑙2.

- (Correct functionality under correct key) We have ∀𝑥 ∈
𝐼, 𝑐𝑒 (𝑘∗, 𝑥) = 𝑐𝑜 (𝑥).

- (Polynomial overhead) We have size(𝑐𝑒) ≤ poly2 (size(𝑐𝑜))
and depth(𝑐𝑒) ≤ poly(depth(𝑐𝑜)).

This definition is sufficient for directly modeling locking,
and with some polynomial work camouflaging and split-
manufacturing. The PPT assumption on Lock does not disqual-
ify locking schemes that use SAT/BDD or other worst-case-
exponential subroutines since such schemes will work only
on circuits with subexponential SAT/BDD complexity which
can be encoded in C𝑜. Additional a priori information on the
original circuit can also be encoded in C𝑜.

Under Definition 1 two notions of security proposed in
[8] focusing on hiding the functionality of 𝑐𝑜 rather than
key-recovery (functional-secrecy implies key-security). In the
following definition a computational adversary A is playing
an attack-game with a challenger that initially runs (𝑐𝑒, 𝑘∗)
LockC𝑜 (𝑐𝑜, 𝜆) and hands 𝑐𝑒 over to A. OG/OL are used to
denote access/no-access to an oracle of 𝑐𝑜:

Definition 2 (Approximate Functional Secrecy (AFS)). The
adversary A has 𝑐𝑒, can make up to 𝑞 chosen input queries
to 𝑐𝑜 and has to return an 𝜖-approximation3 of 𝑐𝑜 to win.
We say that a 𝑐L scheme is (𝑡, 𝑞, 𝜖 , 𝜎)-AFS-OG secure if
the advantage of any A bounded by 𝑡 operations is no more
than 𝜎 better than the advantage of the adversary A ′ that
makes 𝑞 queries to 𝑐𝑜 and randomly guesses the remaining
2𝑛−𝑞 truth-table entries. For OL attackers, (𝑡, 𝜖 , 𝜎)-AFS-OL
≡ (𝑡, 0, 𝜖 , 𝜎)-AFS-OG.

Definition 3 (Exact Functional Secrecy (EFS)). equivalent to
AFS but with an 𝜖 = 0:
((𝑡, 𝑞, 𝜎)-EFS ≡ (𝑡, 𝑞, 0, 𝜎)-AFS-OG).

The defender would want 𝜎 to be exponentially small
(negligible) and 𝑡 to be exponentially large. In such a case,
observing 𝑞 chosen queries on the oracle does not help the
attacker much with predicting the value of 𝑐𝑜 on any of the
non-queried points. In EFS the attacker only wins, if he/she

2poly(x) denotes a polynomial expression in 𝑥
3An 𝜖 -approximation of 𝑓 differs from 𝑓 on at most an 𝜖 fraction of the

input space.
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can predict precisely the truth-table of 𝑐𝑜. Recovering a circuit
𝑐+𝑜 perfectly equivalent 𝑐𝑜 satisfies this as well.

The AFS-OG definition of approximation-resiliency is quite
strong as it essentially demands that the attacker not be able
to learn the functionality of 𝑐𝑜 at any rate significantly faster
than entry-by-entry querying of the oracle for 𝑐𝑜. Achieving
this with exponentially large 𝑡 was shown to be impossible for
many classes of Boolean functions especially small circuits
since simply learning these classes of functions from their
oracle queries achieves super-linear learning rates [8]. For
instance, consider the simple case of a highly sparse function.
i.e. the output is 1/0 for 1−Δ proportion of inputs and 0/1 for
the rest where Δ is small. The attacker can make a few queries
and simply decide the rest of the truth-table entries to be all
equal to the majority of the observations from these queries.
This all-0 or all-1 Boolean circuit is an Δ-approximation of
the original sparse function even though the attacker did not
even look at the locked circuit 𝑐𝑒. This simple case also
proves why a circuit with signal-probability 1

2 −Δ at its output,
can achieve no better than (poly( 1

Δ
, 1
𝜖
, 𝛿, 𝑞), 𝑞, 𝜖 , 𝛿)-AFS. As

such, exponentially secure AFS attainability is constrained by
the original circuit 𝑐𝑜’s learnability itself. A more relaxed
weaker notion of approximate security called best-possible
approximate-functional-secrecy BPAFS-OG was defined in
[8] which avoids this impossibility result and is achievable
via universal circuits.

In the remainder of the paper, we focus mostly on EFS
and we may simplify the notation by saying “exponential”
EFS to mean that 𝑞 and consequently 𝑡 in (𝑡, 𝑞, 𝜎)-EFS
are exponentially large in the number of key-bits and 𝜎 is
exponentially small. We shall also drop the OG qualifier as
we mean EFS-OG unless otherwise specified.

B. The SAT Attack
The SAT attack seen in Algorithm 1 [11], [10] is a practical

and generic oracle-guided attack using modern SAT solvers
that upon termination returns a guaranteed correct key. It
starts by building a miter circuit 𝑀 ≡ 𝑐𝑒 (𝑘1, 𝑥) ≠ 𝑐𝑒 (𝑘2, 𝑥).
Satisfying the miter returns a discriminating input pattern
(DIP) 𝑥 and two different keys 𝑘1 and 𝑘2. 𝑥 is queried on
the oracle getting �̂� = 𝑐𝑜 (𝑥) and the resulting input-output
(IO) observation pair is added to the miter formula. The
process repeats until the miter+IO-conditions is UNSAT at
which point the IO-conditions identify a correct key if 𝑐𝑜 ∈ C𝑒
where C𝑒 is the possible-function-space of the locked circuit;
C𝑒 = {𝑐𝑒 (𝑘, 𝑥) |𝑘 ∈ 𝐾}.

Algorithm 1: Given oracle access to 𝑐𝑜 and the circuit 𝑐𝑒
returns a guaranteed correct key 𝑘∗ ∈ 𝐾∗ if 𝑐𝑜 ∈ C𝑒

1 Function SATAttack(𝑐𝑒, 𝑐𝑜 as black-box):
2 𝐹 ← 𝑡𝑟𝑢𝑒

3 𝑀 ← 𝑐𝑒 (𝑘1, 𝑥) ≠ 𝑐𝑒 (𝑘2, 𝑥)
4 while 𝐹 ∧ 𝑀 is solvable do
5 𝑥, 𝑘1, 𝑘2 ← SAT(𝐹 ∧ 𝑀)
6 �̂� 𝑐𝑜 (𝑥)
7 𝐹 𝐹 ∧ (𝑐𝑒 (𝑘1, 𝑥) = �̂�) ∧ (𝑐𝑒 (𝑘2, 𝑥) = �̂�)
8 satisfy 𝐹 with �̂�1 and �̂�2
9 return �̂�1 as a correct key 𝑘∗

AppSAT [16] and DDIP [17] are approximate SAT attacks
in that they can exit early if a sufficiently good approximation
of the key/functionality is achieved throughout the attack loop.
AppSAT uses random sampling every 𝑑 DIP iterations to mea-
sure the current key-hypothesis’ error and exits at a specific
error threshold. DDIP modifies the miter to capture “DIPs that
disqualify no less than 2 keys”. This becomes unsatisfiable
and terminates the attack as soon as the disqualifying power
of the remaining DIPs falls below 2 precisely. This is relevant
to breaking point-functions schemes that are discussed shortly.

C. Point-Function Schemes
A (single)-point-function 𝑃𝑥∗ on 𝑛-bit vectors/inputs is

simply a comparator function that outputs 1 when the input is
equal to a specific pattern 𝑥∗ and 0 everywhere else. A multi-
point-function 𝑃{𝑥∗ } will output 1 if the input is equal to any
member of a set of vectors {𝑥∗} and 0 otherwise.

Such a point-function will have a very low-activity output,
i.e. the probability of the output activating is 𝑚/2𝑛 for an
𝑚-point-functions. Various schemes have been proposed that
use these functions for locking. Fig. 1a shows AntiSAT [12]
in which two complementary point-function are ANDed and
cancel each other out when the two key vectors are equal.
Fig. 1b shows a general stripped-functionality-logic-locking
(SFLL) [19], [14], [20] scheme in which a low-activity func-
tion 𝐹 (𝑥∗, 𝑥) is used first to flip the functionality of the circuit,
and after resynthesis of the flipped logic, 𝐹 (𝑘, 𝑥) is used to
restore the output yielding the correct key 𝑥∗. The attacker
that finds and removes 𝐹 (𝑘, 𝑥) from 𝑐𝑒 gets the functionally-
stripped circuit instead of the original circuit 𝑐𝑜.
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Fig. 1: Two point-function EFS schemes. (a) AntiSAT (b) SFLL.

III. THE RARE-FAST-QUERY (RFQ) ATTACK
A. Deobfuscation Hardnesses

Consider the locked circuit 𝑐𝑒 (𝑘, 𝑥). What key-recovery
hardness means in this context, is that given arbitrary queries
of the form 𝑐𝑒 (𝑘∗, 𝑥𝑖) = 𝑦𝑖 , it is hard to find 𝑘∗. This, in
fact, carries a certain resemblance to an array of cryptographic
functions, most notably pseudo-random-functions (PRF).

A 𝑞-query secure PRF is a function of two input vectors
𝑓 (𝑘, 𝑥) : 𝐾 × 𝑋 → 𝑌 , for which given random secret key 𝑘∗,
𝑓 (𝑘∗, 𝑥) is computationally indistinguishable from a randomly
selected function with |𝑥 | inputs given 𝑞 chosen queries of 𝑥 on
𝑓 . Computational indistinguishably is defined as no efficient
adversary having nonnegligible distinguishing success rate4.

4The definition of “efficient” and “negligible” vary from application to
application but one typically defines efficient as an algorithm with 𝑡 operations
(and queries in the case of PRF) where 𝑡 is poly-bounded. Negligible is
typically defined as at least super-polynomially small. For AES-128 which
is a pseudo-random-permutation (PRP), key-recovery success rate is next to
zero for adversaries running in time less than 2120.
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The main approach for building efficient PRFs and other
such high entropy cryptographic functions is to mix linear
(XOR in the Boolean finite field) with nonlinear (AND/OR)
operations along with shuffles and permutations of bits to
create a “round” function that has decent entropy but is not
by itself secure. Then the round function is iterated (applied
back-to-back) multiple times to build a deep/wide/nonlinear
circuit. Note that this is a heuristic endeavor guided by decades
of practical cryptanalysis experience rather than a provably-
secure or provably-optimal approach. AES for instance, which
is a modern standardized block cipher and can be used as a
PRF, is composed of 10 such rounds.

PRF indistinguishability from a random function requires
that both finding its key 𝑘∗, and approximating any output bit
of the function be difficult given arbitrary chosen queries of
the form 𝑓 (𝑥𝑖 , 𝑘∗). This implies that the system of equations
formed from 𝑞 queries of the form 𝑓 (𝑥𝑖 , 𝑘) = 𝑦𝑖 for a PRF
must be hard to solve computationally.

For the purpose of our discussion, we are interested in
an important result that can be derived regarding the query-
complexity of breaking a PRF. We can prove that learning 𝑘∗
given the ability to query 𝑓 (𝑘∗, 𝑥) does not and cannot need
exponentially many queries if 𝑓 is a PRF.

Lemma 1. Given a PRF 𝑓 (𝑥, 𝑘) : {0, 1}𝑛 × {0, 1}𝑙 → {0, 1},
and a secret key 𝑘∗ a system of equations derived from 𝑂 (𝑙)
adaptive chosen queries on 𝑥 of the form { 𝑓 (𝑥𝑖 , 𝑘∗) = 𝑦𝑖} will
have a unique solution. Therefore, computationally solving this
system for 𝑘∗ must be hard for the PRF to be secure.

Proof. For 𝑓 to be a PRF, every output bit of 𝑓 will have
to be indistinguishable from a randomly selected function
from all possible functions from {0, 1}𝑛 to {0, 1}. If we fix
𝑥 in 𝑓 (𝑘, 𝑥) to 𝑥 and look at the distribution of some bit of
𝑓 (𝑘, 𝑥) over 𝑘 ∈ {0, 1}𝑙 , this distribution should be compu-
tationally indistinguishable from a random Boolean variable.
Otherwise, an adversary can use 𝑓 (𝑘∗, 𝑥) to distinguish 𝑓

from a random function. Therefore, { 𝑓 (𝑘, 𝑥) |𝑘 ∈ {0, 1}𝑙} must
statistically have an equal number of 0s and 1s. This means
that 𝑓 (𝑘∗, 𝑥) ≠ 𝑓 (𝑘, 𝑥) for half of the possible 𝑘 , all of which
can be disqualified by the query. For an 𝑙 bit key therefore,
𝑂 (𝑙) queries must disqualify all bad keys and identify a 𝑘∗. �

The above lemma highlights a core point regarding PRFs,
which is that their learning hardness cannot come from query
complexity and instead should come from algebraic complex-
ity, i.e. the small system of equations being hard to solve,
rather than relying on the size of the system exploding.

While a PRF is great at hiding 𝑘∗, a fundamentally different
way for hiding the secret input of a function from its output
observations is to simply have the secret input not affect the
output that much. Consider the point function 𝑃𝑘∗ (𝑥) that
activates only when 𝑥 is equal to 𝑘∗. If an attacker wants to
find the value of 𝑘∗ from queries of 𝑃𝑘∗ (𝑥𝑖), they will have to
perform in the worst case 2𝑛 − 1 queries until a 1 is observed
at the output at which point 𝑘∗ is revealed. This is the opposite
of the PRF case in several regards. The output of the point-
function is highly skewed (low-activity) as opposed to the
PRF which has a balanced output (high-activity). The query

complexity of the point-function is exponential in the number
of key bits while the PRF is linear in the same number of bits.
The algebraic complexity of the point-function defined loosely
as its nonlinearity/invertibility/circuit-complexity is very low
since a SAT solver can easily come up with input guesses for
even a large point-function (AND-tree comparator) in less than
a fraction of a second, as opposed to the large/deep/nonlinear
PRF which can overwhelm the solver.

Despite these differences, both functions are in fact hiding
the secret input 𝑘∗. Whereas the PRF unlike the point-function
is not approximable, in some sense the point-function is hiding
the most important fact about itself, which is the single point
on which it is activated. Hence, depending on the original
circuit, both these cases can provide intuitively what we
expect from locking, that is, hiding important features of the
functionality of the original circuit.

B. Low-Activity Wires
Given the dichotomy between query hardness and algebraic

hardness, we begin first by devising an attack that intends
to separate these cases during deobfuscation. An important
property of point-function-driven query complexity is the
presence of nets with highly skewed signal probability in the
circuit. In general, the presence of such skewed wires typically
leads to high query complexities and causes problems for the
baseline SAT attack. When facing a query-heavy locked circuit
𝑐𝑒 (𝑘, 𝑥) with a small onset of size ℎ, the baseline SAT attack
will iteratively come up with new DIPs on 𝑥, query them on the
oracle, and then add two copies of 𝑐𝑒 (𝑘, 𝑥𝑖) to the miter circuit.
This process continues until either all 𝑥𝑖 patterns are queried
and the output never activates, or the output activates on a few
patterns and the attack may stop. This results in a super-linear
increase in runtime and a linear increase in memory of the
attack. This is while we know that fundamentally, the point-
function deobfuscation problem is one of “scan”-querying the
entire input range and waiting for the rare occasion where the
output activates. This in theory should have linear runtime in
the number of queries 𝑂 (2𝑛) and a memory footprint linear in
the size of the rare inputs of the low-activity function 𝑂 (ℎ).
The RFQ attack tries to achieve these limits.

Our RFQ attack relies on skewed wires therefore as indica-
tors of a query-heavy scenario signaling to the attack that the
baseline SAT approach may be suspended for such wires. We
can use this because we know that for query complexity 𝑞 we
need

��Pr𝑥∈𝐼,𝑘∈𝐾 [𝑐𝑒 (𝑘, 𝑥) ≠ 𝑐𝑜 (𝑥)]− 1
2
��< 𝐿(1/𝑞, 2𝑛, 2𝑙). While

the precise behavior of 𝐿 is somewhat of an open problem on
hypergraphs [9], we know that asymptotically an exponential
query complexity in the key size leads to an exponentially
small error rate for at least one net in the circuit and we can
expect the reverse to hold as well.

Therefore, the RFQ attack’s first step is to find low-
activity/skewed wires. Finding the precise signal probability
of wires in a circuit is an NP-hard problem [21]. Nonetheless,
there has been a significant amount of work on precise and
approximate practical algorithms for the problem. One can
retrieve precise probability values from the circuit nodes’
BDDs if they have manageable sizes [22]. Another approach
is to propagate the signal probability values from input wires
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(unconstrained wires assumed 0.5) to internal and output
wires via propagation rules along a topological order. For
example, a probability propagation rule would compute the
signal probability of an output of an AND-gate as 𝑝𝑎 × 𝑝𝑏
where 𝑝𝑎 and 𝑝𝑏 are the probability values of the gate’s inputs.
This approach however can produce large inaccuracies since
reconvergent paths in the circuit violate the independence of
the input probabilities of gates, which is an assumption that
the multiplication propagation rule demands.

Another approximate approach is to simulate the circuit on
𝑁 random patterns and record the 1/0-ness rate of each wire.
One can estimate confidence intervals from these statistics as
well [21]. It is possible to use the propagation rules for non-
reconvergent nets and resort to random simulation otherwise,
yielding a hybrid scheme as in [23].

For the RFQ attack, we experimented with several ap-
proaches: Random simulation with 𝑁 patterns, precise-BDD,
naive propagation, and the hybrid method in [23]. The BDD-
based approach while being the most precise fails on BDD-
exploding nodes. In our experiments, we used the hybrid
method from [23] which was shown to perform better than
naive propagation. Plus, with the hybrid method, the number
of tested patterns can be adjusted to trade-off runtime with
accuracy.

The skewed-net-detection via signal probability estimation
is performed every 𝑗 DIP-mining steps. The probability of
net 𝑤(𝑥, 𝑘) is performed using unconstrained 𝑥 but several
different 𝑘 extracted from the current IO-constraints. This
makes it such that the signal probability values are based
on the most recent hypothesis on the key which is bound to
improve over the course of the attack.

In the RFQ attack, we are interested in skewed
“cones”/functions rather than single nets. Consider the AND-
tree cone in the circuit in Fig. 2a. In this typical point-
function structure the internal nodes in the tree have skewed
probabilities and this skewness increases as we get closer to
the tip of the tree. In order to extract the tip of the skewed
cone, after finding skewed nets, a containment analysis is
performed which prunes the skewed nets that are contained
within the transitive-fanin of another (possibly more) skewed
net. The end result is a set of skewed cones identified by their
tip. This procedure can be seen in FindSkewedNets as the
major part the RFQ algorithm RFQSATAttack in Algorithm
2. Note that one can combine or replace this procedure with
a tree-finding approach such as the one in [24] to focus on
point-function locking trees rather than any skewed net in the
circuit.

C. Outside-of-Skewed-Cone Querying
Once the skewed cones are detected the first important

novelty in the RFQ attack is its ability to conditionally
deobfuscate the remainder of the circuit. Given a set of skewed
cones 𝑔𝑖 , what the RFQ attack can do, is launch a SAT attack
that aims to learn everything there is to learn about the key
absent precise knowledge of the skewed cones 𝑔𝑖 .

The way this works is simple. The miter circuit in the SAT
attack has two copies of 𝑐𝑒. 𝑐𝑒 (𝑘1, 𝑥) and 𝑐𝑒 (𝑘2, 𝑥). During the
attack, the SAT solver makes the outputs of these two circuits

differ by keeping 𝑥 common among them, and coming up with
two different keys �̂�1 and �̂�2 for which the difference between
the two keys propagates to a difference at the output. What
the “outside-of-skewed-cone” querying (OSCQ) subroutine of
the RFQ attack does for a single skewed cone 𝑔𝑤 , is to tie
𝑔𝑤 (𝑘1, 𝑥) in 𝑐𝑒 (𝑘1, 𝑥) to its corresponding net 𝑔𝑤 (𝑘2, 𝑥) in
𝑐𝑒 (𝑘2, 𝑥). This forces the SAT solver to come up with 𝑥, �̂�1 and
�̂�2 for which 𝑔𝑤 ( �̂�1, 𝑥) = 𝑔𝑤 (𝑘2, 𝑥), but 𝑐𝑒 ( �̂�1, 𝑥) ≠ 𝑐𝑒 (𝑘2, 𝑥).
i.e. the skewed cone is not the source of difference in the miter.
Essentially by keeping the skewed cones invariant, we ask the
SAT solver: querying what input pattern helps disqualify keys
that are producing ambiguity outside of 𝑔𝑤?

One may be tempted to think that tying the key bits that
are in the transitive fanin of 𝑔𝑤 in the two 𝑐𝑒 copies in the
miter achieves the same goal. However, the two approaches
result in slightly different Boolean conditions. The divergence
appears in cases where difference in the keys does not lead to
a difference at 𝑔𝑤 , but does lead to a difference at the output
between 𝑐𝑒 (𝑘1, 𝑥) and 𝑐𝑒 (𝑘2, 𝑥). This happens when key bits
inside a skewed-cone have paths to the output that do not
necessarily go through 𝑔𝑤 .

Once the above DIP-mining and IO-constraint addition
concludes with the constrained miter becoming unsatisfiable,
what we have is a guarantee that the only way to improve the
attacker’s hypothesis on the key is to learn the functionality of
𝑔𝑤 . This task is discussed later in this section. The algorithm
for this OSCQ is provided in the OutSkwConeQuery routine
in Algorithm 2.

D. A Deeper Look into EFS-OG Security
Before describing the various algorithms for querying the

inside of the skewed cone, we take a much-needed deeper look
into EFS-OG security. Since the advent of EFS schemes such
as AntiSAT [12], SARLock [13], SFLL, etc. there have been
numerous proposed so-called “removal” attacks [15], [9]. The
idea in these attacks is that since point-function schemes insert
these tree-like structures in the circuit if the attacker finds
them, they can be removed from the locked circuit to obtain
the original circuit. The signal-probability-skew (SPS) attack
[15], the wire-disagreement analysis of AppSAT [9], and the
RFQ attack itself, all have the ability to detect low-activity nets
which in the case of point-function schemes is typically the
output of the inserted point-function structure. After detection,
the attacker can proceed with a removal attack.

However, there is a very important caveat here regarding
the correctness of removal attacks that to the best of our
knowledge has not been discussed before. This point reveals
itself once we embrace the formal definition of EFS security.
All three notions of security defined in [8], and reiterated
here, start with the locking being performed on a family
of original circuits C𝑜. While this may seem like a minor
formality in the security definition, it plays a critical role
in deciding the security of a given scheme. For instance,
AFS-OG’s impossibility results apply only to certain circuit
families. This restriction on circuit families can be encoded-
in/represented-by C𝑜.

As for EFS, the success and validity of removal attacks
relies heavily on the family C𝑜. To illustrate this point,
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consider the AntiSAT locked circuit in Fig. 1a. Here the
inserted structure, i.e. the AntiSAT block, is XORed with a
wire in the circuit. We know from the description of AntiSAT
that under the correct key this block outputs 0 on all input
patterns 𝑥 and therefore never affects the circuit. Hence an
attacker that finds the tip of this block in the circuit, can
proceed with a removal and recover the original circuit 𝑐𝑜
uniquely. The caveat here is that, if C𝑜 is not restricted in any
way, then there exists numerous other 𝑐′𝑜 ∈ C𝑜 which 1) are
not equivalent to 𝑐𝑜, but 2) could have been locked with a
non-AntiSAT locking algorithm to produce the same 𝑐𝑒.

To elaborate, consider that the AntiSAT block 𝑎𝑛𝑡 (𝑘, 𝑥) is
the AND of two complementary blocks 𝑔(𝑘1, 𝑥) and 𝑔(𝑘2, 𝑥)
where 𝑘1 and 𝑘2 are two equal-length subkeys. If 𝑘1 = 𝑘2
then 𝑎𝑛𝑡 (𝑘, 𝑥) is always 0. If 𝑘1 ≠ 𝑘2, if the 𝑔 functions are
AND-trees (maximum-query-complexity configuration), then
𝑎𝑛𝑡 (𝑘, 𝑥) will serve as a point-function that flips the output on
𝑥 = 𝑘1. This is because 𝑔(𝑘2, 𝑥) will be 1 allowing the 𝑔(𝑘1, 𝑥)
point-function to propagate, except for when 𝑥 = 𝑘2 where
𝑔(𝑘2, 𝑥) will turn 0 and block an already 0 𝑔(𝑘1, 𝑥). Now
here is the critical question for the removal attacker: Who is
to say that the original circuit did not naturally include a point-
function 𝑃(𝑥∗, 𝑥) which was then subsequently obfuscated to
𝑔(𝑘1, 𝑥) through some unknown locking scheme, with the
correct key being 𝑘1 = 𝑥∗?

What is the attacker’s advantage if he goes ahead and
performs a removal attack despite the above warning? If
𝑎𝑛𝑡 (𝑘, 𝑥) is the only low-activity cone in the circuit, besides
the possible 𝑐𝑜 that results from assuming that 𝑎𝑛𝑡 (𝑘, 𝑥) is
constant 0, C𝑜 includes 2𝑙 (𝑙 being the length of 𝑘1) other
possible original circuits 𝑐′𝑜 which could have been locked to
produce the same 𝑐𝑒. Hence, the success rate (advantage) of
the removal attacker in the EFS game is exponentially low in
the width of the point-function 𝑂 (1/2𝑙).

What if we begin restricting C𝑜? What this restriction means
in practice is that the attacker has some sort of “a priori”
knowledge on 𝑐𝑜. This can be represented with a probability
distribution on C𝑜 or by simply limiting C𝑜 to a subset of
equiprobable original circuits. The attacker for instance knows
that size(𝑐𝑜) ≤ size(𝑐𝑒) and depth(𝑐𝑜) ≤ depth(𝑐𝑒). This
immediately disqualifies an enormous portion of the space
of all possible 𝑛-to-1-bit Boolean functions. Does this help
in improving the advantage of the removal attacker? The
answer is no, because, the 2𝑙 possible 𝑐′𝑜 that can lock to the
same 𝑐𝑒 in the case of AntiSAT, all lie within this size and
depth limit. Point-functions are log-depth poly-size circuits
and hence could easily fit in the size/depth-limited C𝑜.

If we continue this restriction, we will realize that the advan-
tage of the removal attacker does not rise significantly until we
start specifically omitting from C𝑜 circuits that include point-
functions. This in practice is a strong/restrictive/unrealistic
assumption. Practical circuits as we will show in our experi-
mental case study, are replete with (multi)-point-functions in
the form of comparator logic.

What about knowledge of the LockC𝑜 algorithm? If the
attacker knows precisely that AntiSAT is the sole locking
scheme used to obfuscate the design, he can match the double-
AND-tree structure to that of AntiSAT if no other naturally
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Fig. 2: (a) And-tree with progressively more skewed nets where we
are interested in 𝑠𝑤0 as the tip of the skewed cone. (b) A skewed
cone inserted into a larger circuit. The red wires are the nets that
first come into contact with the key. An AllSAT on these wires will
capture all the important queries required for precise learning of the
skewed net 𝑠𝑤.

occurring such structures exist in the circuit. However, in
practice, this is a brittle assumption. The attacker may have
a distribution on a family of Lock algorithms but it is not
plausible to assume that an attacker reverse engineering a
design can vouch that a specific version of AntiSAT was
solely used to lock the design. The defender can simply mix a
couple of different point-function schemes to confuse such an
attacker. We will discuss simple defense tricks like this further
in Section IV.

We can summarize the above discussions in the following
lemma.

Lemma 2. (informal) The advantage of a removal attacker
against SFLL, AntiSAT, and SARLock when 1) the attacker
does not know the precise description of LockC𝑜 , and 2) C𝑜
is only size/depth-limited by 𝑐𝑒, is 𝑂 (1/2𝑙) in the EFS-OG
game, 𝑙 being the width of the point-functions used.

An import result of Lemma 2 is that under the assumption
that C𝑜 is only slightly size/depth-limited and LockC𝑜 is
ambiguous to the attacker, then EFS security is quite easy
to achieve. The mere XORing of a single keyed multi-point-
function with a net in the circuit, without removing anything
from the circuit, will satisfy the formal definition of EFS with
exponential security. Given the abundance of point-functions
in practical circuits, the first assumption seems quite realistic.
As for the second assumption of unknown LockC𝑜 , despite
it being reasonable in practical settings, we will present a
randomized Lock scheme in Section IV which allows for
loosening this assumption.

E. Faster Inside-of-Skewed-Cone Querying
Better informed about the limitations of removal attacks, we

now come back to the RFQ attack. After the first phase of the
RFQ attack, low-activity nets are extracted and the circuit is
correct for all patterns that do not disturb these rare nets. As we
discussed in the previous subsection, it is rather easy to achieve
EFS-OG under weakly restricted C𝑜 and randomized LockC𝑜 .
i.e., given these low-activity nets if they result from keyed
point-functions with (effective)-key-width 𝑙, then it is highly
likely that at least 2𝑙 input patterns will all have to be queried
to learn this point-function precisely. This may disparage us
from further investing in deobfuscating these skewed nets if
𝑙 > 100 and exiting the attack after the outside-skewed-cone
querying step. This is certainly an option for approximate
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Algorithm 2: Given oracle access to 𝑐𝑜 and the expression
for 𝑐𝑒 performs two-tier deobfuscation with possible speed-
up for deobfuscating skewed nets.

1 Function RFQSATAttack(𝑐𝑒, 𝑐𝑜 as black-box):
2 𝑀 𝑐𝑒 (𝑘1, 𝑥) ≠ 𝑐𝑒 (𝑘2, 𝑥), 𝐹 𝑡𝑟𝑢𝑒

3 while 𝐹 ∧ 𝑀 is solvable do
4 𝑥, �̂�1, �̂�2 SAT(𝐹 ∧ 𝑀)
5 �̂� 𝑐𝑜 (𝑥)
6 𝐹 𝐹 ∧ (𝑐𝑒 (𝑘1, 𝑥) = �̂�) ∧ (𝑐𝑒 (𝑘2, 𝑥) = �̂�)
7 if 𝑑 rounds passed then
8 Skw FindSkewedNets(𝐹, 𝑐𝑒, 𝑐𝑜)
9 OutSkwConeQuery(𝐹, 𝑐𝑒, 𝑐𝑜, Skw)

10 InSkwConeQuery(𝐹, 𝑐𝑒, 𝑐𝑜, Skw)

11 satisfy 𝐹 with �̂�1, �̂�2
12 return �̂�1 as correct key

13 Function FindSkewedNets(𝐹, 𝑐𝑒, 𝑐𝑜):
14 ProbMap ComputeSigProb(𝑐𝑒, 𝐹, NumKeyPatt,

NumInputPatt)
15 for 𝑤 ∈ Wires(𝑐𝑒) do
16 if ProbMap[𝑤] < ProbThreshold then
17 Skw← Skw ∪ {𝑤}

18 for 𝑤𝑖 ∈ Skw do
19 for 𝑤 𝑗 ∈ Skw do
20 if 𝑤 𝑗 ∈TransFanin(𝑤𝑖) then
21 Skw ← Skw \ {𝑤 𝑗 }

22 return Skw

23 Function OutSkwConeQuery(𝐹, 𝑐𝑒, 𝑐𝑜, Skw):
24 for 𝑤 ∈ Skw do
25 𝑤1 ≡ 𝑔𝑤 (𝑘1, 𝑥) and 𝑤2 ≡ 𝑔𝑤 (𝑘2, 𝑥)
26 𝐹 ← 𝐹 ∧ (𝑤1 = 𝑤2)
27 SATAttack(𝐹, 𝑐𝑒, 𝑐𝑜)

28 Function InSkwConeQuery(𝐹, 𝑐𝑒, 𝑐𝑜, Skw):
29 𝑄 𝐹

30 for 𝑤 ∈ 𝑆𝑘𝑤 do
31 𝐾𝑡𝑙𝑤 FirstKeyTouching(𝑤)
32 𝐴𝑐𝑡𝑤 = (𝑤1 = RareVal[𝑤])
33 𝐴𝑐𝑡

∨
𝑤∈𝑆𝑘𝑤 𝐴𝑐𝑡𝑤

34 𝐾𝑡𝑙
⋃
𝑤∈𝑆𝑘𝑤 𝐾𝑡𝑙𝑤

35 while 𝑀 ∧𝑄 ∧ 𝐴𝑐𝑡 solvable do
36 for 𝑤 ∈ Skw do
37 if 𝑀 ∧𝑄 ∧ 𝐴𝑐𝑡𝑤 is UNSAT then
38 if 𝑤 never activated then
39 ResolvedNodes[𝑤] ∼RareVal[𝑤]
40 𝑄 𝑄 ∧ (𝑤 ⊕ RarVal[𝑤])
41 𝐹 𝐹 ∧ (𝑤 ⊕ RarVal[𝑤])
42 Skw← Skw \ 𝑤
43 else
44 𝑥𝑟 ,Vars,Model SAT(𝑀 ∧ 𝐹 ∧ 𝐴𝑐𝑡𝑤)
45 �̂�𝑟 𝑐𝑜 (𝑥𝑟 )
46 𝑏𝑡 BackTrack(𝐹, 𝑐𝑒, 𝑐𝑜, 𝑤, 𝑥𝑟 , �̂�𝑟)
47 if 𝑏𝑡 = PROVENINACTIVE then
48 𝑏𝑎𝑛 {𝑢 ⊕ Model[𝑢] | 𝑢 ∈ 𝐾𝑡𝑙𝑤}
49 else
50 if 𝑏𝑡 = PROVENACTIVE then
51 𝐹 𝐹 ∧ (𝑐𝑒 (𝑘1, 𝑥𝑟 ) = �̂�𝑟 )
52 ∧(𝑐𝑒 (𝑘2, 𝑥𝑟 ) = �̂�𝑟 )
53 𝑏𝑎𝑛← {𝑢 ⊕ Model[𝑢] | 𝑢 ∈ 𝐾𝑡𝑙}
54 𝑄.AddClause(𝑏𝑎𝑛)

1 Function BackTrack(𝐹, 𝑐𝑒, 𝑐𝑜, 𝑤, 𝑥𝑟 , �̂�𝑟):
2 𝐵 (𝑐𝑒 (𝑘1, 𝑥𝑟 ) = 𝑦𝑟 ) ∧ 𝐹
3 if 𝐵 ∧ ∼(𝑤 ⊕ RareVal[𝑤]) is UNSAT then
4 return PROVENACTIVE
5 else if 𝐵 ∧ (𝑤 ⊕ RareVal[𝑤]) is UNSAT then
6 return PROVENINACTIVE
7 else
8 return ACTIVATIONUNCLEAR

attackers.
However, there are two reasons why RFQ does not terminate

here and performs a second phase focusing on these skewed
cones. First, there are many naturally occurring low-activity
nets practical circuits that require an exponential but man-
ageable number of queries (e.g. 𝑙 < 230 or 1B), which cause
problems for the baseline SAT attack, AppSAT, and DDIP, due
to the excessive clause build-up. This is while we know that
if a particular net is query-complex with an onset of size ℎ,
scan-querying runs in 𝑂 (2𝑙) with memory 𝑂 (ℎ) without any
NP-complete SAT solver calls. This is a performance gain
that can significantly boost deobfuscation speed for circuits
with low-activity nets with manageable sizes in an automatic
generic fashion. Consider a point-function with size 30. 230 is
around a thousand mega-queries. With a 1Mhz clock frequency
for a combinational circuit, we can perform one mega-queries
every second, and in a thousand seconds (16 minutes) we can
learn a point-function of size 230. Compare this to the baseline
SAT attack which will require storing and then solving a
SAT problem with 230 copies of the obfuscated circuit 𝑐𝑒
corresponding to a terabyte of data if each circuit copy takes up
only a kilobyte. KC2 [25] which is the main existing approach
for generically dealing with such excessive clause buildup, will
have to simplify incrementally a circuit that is growing to size
230.𝑠𝑖𝑧𝑒(𝑐𝑒) using complex circuit simplification techniques.

Second, via a smarter more complicated inside-skewed-
cone strategy we can end up with an automatic generic
early termination in certain cases, avoiding excessive querying
altogether. Consider the (SFLL) family of schemes. These
schemes are based on first corrupting the functionality of a
net using point-functions, and then correcting the functionality
using a restore-unit which is typically a look-up-table (LUT).

The corruption part of SFLL can leak to the attacker the
location of the corruption. This in some cases can violate EFS
security even under the two assumptions discussed earlier.
Consider the case of an SFLL scheme where a point-function
is used to corrupt a net 𝑤 at 𝑥∗ creating 𝑤𝑐𝑟 𝑝𝑡 = 𝑤 ⊕ 𝑃(𝑥∗, 𝑥).
Then a single point-function 𝑃(𝑘, 𝑥) is used to correct the
functionality of 𝑤𝑐𝑟 𝑝𝑡 getting 𝑤𝑐𝑟𝑐𝑡 = 𝑤𝑐𝑟 𝑝𝑡 ⊕ 𝑃(𝑘, 𝑥). In
this case, the circuit even after resynthesis is highly likely to
contain two point-functions leading to low-activity nets. The
RFQ attack can pick them up and analyze them. If we find
the 𝑃(𝑥∗, 𝑥) net in the circuit, and then try to activate it, the
DIP that we discover will be 𝑥∗. Querying this on the oracle
will cause the corrective function to kick in and correct for the
activation of 𝑃(𝑥∗, 𝑥). By observing the output we will be able
to tell in certain cases that this correction has occurred on 𝑥∗.
Since we know that there is only one point on which corrective
𝑃(𝑘, 𝑥) activates, then we must have 𝑘 = 𝑥∗. The key will be
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resolved instantly with no need for additional queries.
The FALL attack proposed in [26] uses various functional

analysis techniques to find comparator logic and then extracts
input patterns that might activate them to resolve cases like the
above in SFLL. The RFQ attack uses a much more generic
approach by trying to activate skewed nets. We discuss the
various parts of this inside-of-skewed-cone querying (ISCQ)
of the RFQ attack herein. The subroutine begins by receiving
a set of detected skewed wires 𝑆𝑘𝑤.

Attempting to Activate/Learn the Rare Net. ISCQ-RFQ first
tries to activate the skewed wires and produce an output ambi-
guity in the process. This is done by demanding that of the two
miter copies of net 𝑤, 𝑤1 = 𝑔𝑤 (𝑘1, 𝑥) and 𝑤2 = 𝑔𝑤 (𝑘2, 𝑥), one
take the rare value: 𝐴𝑐𝑡𝑤 = (𝑔𝑤 (𝑘1, 𝑥) = RareVal[𝑤]). When
𝐴𝑐𝑡𝑤 is ANDed with the miter condition 𝑀 , the result is that
either both 𝑤1 and 𝑤2 take their rare values, and the miter is
asserted via ambiguity in the path from 𝑤 to the output; or that
the miter condition is asserted via an ambiguity at 𝑤 itself, i.e.
𝑤 taking its rare value under some key, and its common value
under another key hypothesis. The result is that 𝑤 staying
inactive is avoided.

The 𝐴𝑐𝑡𝑤 are activated individually in a round-robin fash-
ion, and if asserting an 𝐴𝑐𝑡𝑤 term is UNSAT, this means that
the functionality of the wire 𝑤 may be fully resolved and it
can be excluded from further activation attempts.

Backtracking to Verify Activation. If the fanin of the skewed
cone includes no keys, asserting 𝐴𝑐𝑡𝑤 will produce input
patterns that will definitively activate an internal skewed wire.
If however, the cone includes yet-unresolved key-bits, then,
forcing 𝑔𝑤 (𝑘, 𝑥) to its rare output in the solver can yield a
DIP 𝑥𝑟 that in fact does not lead to a rare output in the oracle.
This is because the rare query was extracted based on a yet
incomplete key hypothesis, i.e. 𝑔𝑤 (𝑘∗, 𝑥𝑟 ) ≠ 𝑔𝑤 (𝑘, 𝑥𝑟 ). To
deal with this, the RFQ attack performs a backtracking step
asking: given an input pattern 𝑥𝑟 that we suspected would
rare-activate a skewed net, and observed output 𝑦𝑟 = 𝑐𝑜 (𝑥𝑟 ),
can we prove that the skewed net 𝑤 has been activated/not-
activated?

This can be done by running a couple of SAT queries. First,
given 𝑦𝑟 = 𝑐𝑒 (𝑘, 𝑥𝑟 ) under the current key condition, can
𝑤 take its common value? If the result is UNSAT, then 𝑤

must have been activated to its rare value, which means we
have found a rare query and we can add it as a valuable IO-
condition. If not, we ask the opposite, i.e. can 𝑤 be assigned
its rare value? If the call is UNSAT, then 𝑤 has definitely not
been activated. If the call is SAT, this means that under the
current key condition it is not immediately possible to prove
whether 𝑤 was activated or not.

Expanded Input Exploration. ISCQ-RFQ performs the
above query+backtrack in a loop to query every input pattern
that might activate a rare wire. This exploration must avoid
redundant queries as much as possible.

Consider a keyed tree-based point-function 𝑇 (𝑘, 𝑥) inserted
in the circuit. If this tree is attached to the primary inputs,
when studying the skewed cone that results from this tree,
𝑔(𝑘, 𝑥) = 𝑇 (𝑘, 𝑥), i.e. the skewed cone precisely matches the
tree. Hence in order to query-learn 𝑔(𝑘, 𝑥) we can simply
go through all possible patterns of 𝑥 which achieves the
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Fig. 3: Circuit examples for inside-of-skewed-cone querying.

complexity 𝑂 (2 |𝑥 |) precisely. However, assume the case where
𝑇 is instead connected to a set of internal nodes in the circuit
𝑤 = {𝑤0, ..., 𝑤𝑡 } as seen in Fig. 2b. Then the fanin cone
of 𝑇 (𝑘, 𝑤), includes all the fanins of each of the 𝑤𝑖 nets
as well. This results in an expansion of the domain of 𝑇
from 𝑤 to 𝑥 = {𝑥 𝑗 |𝑥 𝑗 is PI ∈ transfanin(𝑤𝑖), 𝑤𝑖 ∈ 𝑤}. The
naive approach of querying the entire domain of 𝑥𝑤 will now
query a much larger space than the domain of the inserted tree
𝑇 . For each extra bit 𝑥 𝑗 that is added, the query space size
is doubled. Furthermore, it might become the case that even
though 𝑇 (𝑘, 𝑤) is a point-function with small onset, 𝑔(𝑘, 𝑥)
will have an exponentially larger onset.

In the case of such expansion, ISCQ-RFQ uses a specific
SAT-based approach to query only necessary patterns in the
domain of 𝑇 . The approach is as follows. Take the skewed cone
𝑔𝑤 (𝑘, 𝑥). We perform a breadth-first-search from the inputs 𝑥
of 𝑔 towards the skewed tip. In this search, the first wires
to come in contact with key-logic are recorded as “first-key-
touching” wires (shown in Fig. 2b with red). It is easy to
prove that by assigning all possible values to these first-key-
touching wires, we will exhaust all key-dependent ambiguity
in 𝑔𝑤 (𝑘, 𝑥) since the interaction of key-wires with non-key-
wires is contained in these contact points. The exploration is
done by banning the state of these wires by adding a ban-
clause to the SAT solver.

Backtrack-Dependent Exploration. In the presence of multi-
ple skewed cones, the above exploration in the RFQ attack is
done with respect to the backtracking status. If the skewed net
𝑤 is proven activated, this is a rare query that is immediately
added to the solver as an IO-condition and exploration contin-
ues with the new information. If the skewed net 𝑤 is proven
inactive, the IO-condition is discarded, but the state of the key-
touching-wires in the fanin of 𝑤 is banned to avoid exploring
this portion of the input again. If the activation status is
uncertain, a weaker condition is banned. The state of the union
of the key-touching-wires is banned. The following example
shows how the above approach can avoid some unnecessary
queries.

Example. Take the circuit in Fig. 3a. Assume that the 𝑋

inputs and 𝐾 keys are all of width 4. Also assume that the
wires 𝑎 and 𝑏 have been selected as skewed nets for inside-
of-cone querying. The 𝐴𝑐𝑡 condition hence captures that 𝑎
or 𝑏 take on their rare value and propagate their difference
to the output. On the first call to the solver, a pattern like
�̂�𝑎 = �̂�𝑏 = 0000 and �̂�𝑎1 = �̂�𝑏1 = 0000 ≠ �̂�𝑎2 = �̂�𝑏2 =

0010 can be returned, which under the current key hypothesis
should activate both of 𝑎 and 𝑏 and propagate their effect to
the output. This is queried on the oracle. The oracle returns
𝑦 = 𝑐(𝐾∗𝑎, 𝐾∗𝑏, �̂�𝑎, �̂�𝑏) = 0. From this 0 at 𝑦, backtracking will
not be able to say whether 𝑎 or 𝑏 were provably activated.
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Hence, the union of the key-touching-logic state is banned.
i.e. the condition ((𝑋𝑎, 𝑋𝑏) ≠ (0000, 0000)) is added to the
solver. This process will ban a single input on every iteration
and conclude in 28 iterations if no activation is ever proved,
which is the theoretical minimum number of queries required
to resolve the circuit in Fig. 3a.

For the circuit in Fig. 3b, the same occurs, except that
when a 𝑦 = 0 is observed at the output, this means that
𝑎 and 𝑏 must have both been 0, which backtracking will
prove. Hence on every iteration, the key-touching-logic state
of the individual skewed cones are banned. i.e. After querying
(𝑋𝑎, 𝑋𝑏) = (0000, 0000) the condition (𝑋𝑎 ≠ 0000) ∧ (𝑋𝑏 ≠

0000) is added to the solver. After 24 queries, 𝑎 and 𝑏 will
be activated at some point and the result stored as a rare IO-
condition. Hence, the overall procedure will query the oracle
at most 2 × 24 times.

Limitations. Despite the backtracking, ISCQ-RFQ still uses
a somewhat “blind” querying procedure to learn functions with
an input space of size 2𝑛 with 2𝑛 queries. The SAT attack
however, can terminate in less queries than this given the
long list of input-output observations that ISCQ-RFQ simply
discards. For instance take the case of diversified-tree-logic
(DTL) from [9], [27]. In AntiSAT-DTL, 𝑡 of the first-layer
AND gates in the AND-trees in AntiSAT are replaced with
OR gates. Against this, the baseline SAT attack can terminate
at 2𝑛/3𝑡 queries, using facts about the onset shape/size of the
diversified trees. However, ISCQ-RFQ will blindly exhaus-
tively query the 2𝑛 input space. Also if dummy key logic is
used to artificially expand the input space of the skewed net
ISCQ-RFQ can explore more than the minim query count. In
such cases, ISCQ-RFQ will only win against the SAT attack
if the super-linear growth in the SAT attack space and runtime
is more severe than the extra querying resulting from ISCQ-
RFQ’s blind approach.

The InSkwConeQuery routine in Algorithm 2 shows the
procedure for the ISCQ part of RFQ.

F. Sequential RFQ Attack
The RFQ attack can be extended to sequential circuit

deobfuscation. Sequential deobfuscation is based on replacing
the SAT calls in the SAT attack with model-checking (MC)
queries [25], [7]. Bounded-model-checking (BMC) produces
the fastest sequential attacks for shorter depth state graphs.
Essentially, a sequential miter is built similar to the combina-
tional case, and then a BMC query up to round 𝑢 is used to
find a discriminating input sequence (DIS). The DIS is queried
on the sequential oracle and then added as a condition to the
model-checking model, or in the case of SAT-based BMC,
directly to the SAT solver responsible for the BMC routine.

The RFQ routine can be adapted to the sequential case,
especially that sequential circuits, due to counter-logic and
control finite-state-machines (FSM), have a lot more compara-
tor logic than arithmetic circuits. For a sequential RFQ attack,
skewed signals can be detected similar to the combinational
version, except the pattern simulation will have to be done
with random sequences of randomly selected depth up to the
current bound in the attack. Then since the BMC has an
unrolled circuit, the skewed nets can be tied to each other

in the unrolled miter circuit for outside-cone querying which
will yield correct-under-skewed-assumption sequential keys.
We were able to deobfuscate conditionally some query-heavy
sequential benchmarks such as s400 with this approach in less
than a few seconds.

Inside-skewed-cone querying however is more difficult for
sequential circuits since the skewed cone 𝑔 may include state-
elements. Therefore, since we do not have direct control of
𝑠, bounded unrolling is necessary to enumerate all sequences
of 𝑥. There likely exists much better sequential RFQ inside-
cone-querying strategies that we leave for future work.

G. Experiments
We implemented the RFQ attack on combinational circuits

in C++ using the Gluecose SAT solver. All tests were run
on an AMD Threadripper 128 core machine with 256GB of
memory running Linux. We used the combinational ISCAS
benchmarks for testing as seen in Table I.

TABLE I: ISCAS combinational benchmarks used.

bench #in #out #gate bench #in #out #gate
c432 36 7 160 c2670 157 64 1193
c499 41 32 202 c3540 50 22 1669
c880 60 26 383 c5315 178 123 2307
c1355 41 32 546 c6288 178 123 2307
c1908 33 25 880 c7552 206 107 3512

Skewed-net Detection. Table II shows the results of skewed
net detection using probability propagation versus the hybrid
approach from [23] with a 1000 input patterns under 5
different IO-conforming key patterns. The benchmark circuits
were locked with various AntiSAT parameters such as width,
number of inserted blocks, level of obfuscation of the tree
itself, and added RLL keys. The probability of catching all
AntiSAT tips after 20 iterations with RFQ analysis performed
every 5 DIPs is listed. As can be seen from the data, the
hybrid approach does somewhat better in finding AntiSAT tips.
Fig. 4 shows the signal probability of the different classes of
nets in the c432 benchmark for AntiSAT, SFLL-point (corrupt
and correct on a single point), and AntiSAT-DTL for different
parameters. It can be seen that the tree tips maintain a high
probability skew throughout the attack.

Outside-of-Skewed-Cone Querying. We performed some
compound locking schemes, by combining AntiSAT with
RLL. The goal was to see the correctness of the keys outside of
the skewed nets. The runtime and iterations count of OSCQ for
the benchmark circuits locked with AntiSAT+RLL is shown in
Table III comparing OSCQ of the RFQ attack, to the baseline
SAT attack running on the RLL locked circuit before the
insertion of the AntiSAT block. It can be seen that RFQ’s
OSCQ recovers the non-skewed part of the circuit precisely in
time/query-count on par with the baseline SAT attack running
against the non-skewed part of the circuit.

Inside-of-Skewed-Cone Querying. To demonstrate the
speed-up of the ISCQ-RFQ, we ran the ban-clause-based
exploration of the skewed-net’s input with backtracking on
the benchmark circuits versus the baseline SAT attack and
KC2 with ABC simplification every 50 DIPs. The proportion
of input space traversed is shown in Fig. 5, and runtime is
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TABLE II: Success rate of finding all skewed tips in different locked benchmark circuits using random pattern simulation and probability
propagation. (𝑛, 𝑚, 𝑡, 𝑒) represents 𝑡 AntiSAT trees of width 𝑛 inserted in a circuit with 𝑒 RLL keys, where each tree is itself obfuscated

with 𝑚 XOR gates.

params (12,0,1,0) (12,0,2,16) (12,4,2,32) (12,4,3,64) (16,0,1,0) (16,0,2,16) (16,4,2,32) (16,6,2,64) (32,0,1,0) (32,8,1,32)
bench hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop hybr nprop
c432 100% 100% 100% 100% 97.5% 70% 90% 27.5% 100% 100% 100% 100% 100% 80% 100% 62.5% 100% 100% 100% 100%
c499 100% 100% 100% 100% 97.5% 55% 97.5% 37.5% 100% 100% 100% 100% 100% 85% 100% 77.5% 100% 100% 100% 97.5%
c880 100% 100% 100% 100% 97.5% 70% 97.5% 67.5% 100% 100% 100% 100% 100% 85% 100% 70% 100% 100% 100% 95%
c1355 100% 100% 100% 100% 97.5% 50% 95% 25% 100% 100% 100% 100% 100% 62.5% 97.5% 55% 100% 100% 100% 97.5%
c1908 92.5% 92.5% 100% 100% 97.5% 55% 95% 57.5% 100% 100% 100% 100% 100% 80% 100% 57.5% 100% 100% 100% 97.5%
c2670 100% 100% 100% 100% 97.5% 80% 92.5% 52.5% 100% 100% 100% 100% 100% 97.5% 95% 82.5% 100% 100% 100% 97.5%
c3540 100% 100% 100% 100% 100% 65% 97.5% 55% 97.5% 97.5% 100% 100% 100% 87.5% 100% 77.5% 97.5% 97.5% 100% 100%
c5315 100% 100% 100% 100% 95% 75% 97.5% 55% 100% 100% 100% 100% 100% 82.5% 100% 77.5% 100% 100% 100% 95%
c6288 100% 100% 100% 100% 100% 80% 97.5% 75% 100% 100% 100% 100% 100% 95% 100% 80% 100% 100% 100% 100%
c7552 100% 100% 100% 100% 95% 67.5% 92.5% 52.5% 100% 100% 100% 100% 100% 87.5% 100% 67.5% 100% 100% 100% 97.5%

average 99.2% 99.2% 100% 100% 97.5% 66.8% 95.2% 50.5% 99.8% 99.8% 100% 100% 100% 84.2% 99.2% 70.8% 99.8% 99.8% 100% 97.8%

TABLE III: Circuit locked with (𝑛, 𝑚, 𝑡, 𝑒) AntiSAT+RLL. The baseline SAT attack is run on the RLL locked circuit alone. OSCQ-RFQ is
run on the compound RLL+AntiSAT. 𝑚 is irrelevant to these results.

params (10,0,1,16) (15,0,1,32) (25,0,1,64) (30,0,1,128)
method base rfq base rfq base rfq base rfq
bench time iter time iter time iter time iter time iter time iter time iter time iter
c432 0.02 10 0.03 11 0.02 11 0.04 15 0.06 27 0.11 30 2.3 142 28 431
c499 0.04 13 0.05 7 0.06 7 0.09 11 0.17 14 0.24 17 1.2 47 1.5 53
c880 0.07 7 0.09 7 0.08 15 0.1 8 0.13 17 0.13 14 0.16 22 0.32 25

c1355 0.08 10 0.12 18 0.14 13 0.36 31 0.32 30 0.63 40 6.1 80 4.8 73
c1908 0.12 9 0.15 10 0.19 15 0.25 17 0.28 19 0.51 27 8.9 50 6.3 53
c2670 0.16 9 0.19 9 0.21 13 0.32 26 24 384 20 320 67 539 390 1045
c3540 0.93 8 1.5 7 1.2 14 1.2 17 1.4 22 1.1 18 2.1 37 2.8 33
c5315 0.92 7 1.1 8 1 17 1 13 1.2 28 1.6 30 2.8 47 3.1 41
c7552 1.4 11 1.5 9 1.5 17 1.5 14 1.9 28 2.1 22 5.8 68 3.3 34
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Fig. 4: Signal probability of different wires in the c432 benchmark locked with different schemes. The parameters are in the following format:
(AntiSAT, width, num-RLL-keys), (SFLL-point, width, num-RLL-keys), and (AntiSAT-DTL, width, num-XOR-gates-first-layer, num-RLL-
keys). Probability skew here is 2|0.5 − 𝑝𝑤 |. The tree cone wires leading to tree tips and the remainder of the nets are color-coded per the
legend. The SFLL-point instances have two skewed tree tips.

shown in Fig. 6. Fig. 6 demonstrates that the runtime of the
ban-clause-based routine is slightly super-linear. Using better
AllSAT approaches [28] instead of ban-clause addition can
improve this trend.

In addition, we ran ISCQ-RFQ on 5 different locked in-
stances of the circuits from Table I with SFLL-point (single
point corrupt+correct) with widths of 12, 20, and 30 resynthe-
sized with ABC before being attacked. The attack was able to
find the corruption comparator and early terminate in all cases
in under 10 minutes each. The round-robin assertion of 𝐴𝑐𝑡𝑤
in line 36 of Algorithm 2 is crucial to this outcome.

IV. BOOSTING EFS
A. EFS Scheme Range/Capacity Expansion

We now begin to focus on improving upon EFS defenses.
We first start with how the RFQ attack (and FALL attack for
that matter [26]) succeed in breaking specific EFS schemes
without exponential querying. Take the simplest SFLL scheme
in which a point-function 𝑃(𝑥, 𝑥∗) is used to corrupt the
original circuit, and a single point-function 𝑃(𝑥, 𝑘) is used to

restore/correct the output. In this case, if the attacker queries
𝑥∗, he can observe with backtracking from the output that the
restore comparator must have activated. Because the restore
comparator can only correct a single pattern, 𝑥∗ must have
been the flipped pattern and the attack can conclude with
a key-correctness guarantee. This can easily be extended to
the 𝑁-pattern case. In general, if an 𝑁-point SFLL scheme is
used, and 𝑁 rare queries are encountered during the attack and
successfully backtracked to definite restore-unit activations,
the attack can exit without having to query the remainder
of the input space. This is precisely what allows RFQ and
FALL to break certain SFLL schemes. We call the number of
patterns that the restore-unit can correct for, the capacity of
the restore-unit which is 𝑁 in this case.

Another important factor of an SFLL point-function
scheme’s security is the width of the point-function used. The
width 𝑝 is the (maximum) length of the patterns that are
corrupted/corrected. For a point-function/restore-unit of width
𝑝 there are 2𝑝 input patterns in its domain that need to be
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Fig. 5: Proportion of input range of 2𝑛 (𝑛 on x-axis) queried within 2 hours with the RFQ, KC2, and baseline SAT attacks.
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Fig. 6: Time in seconds for full recovery of circuit locked with AntiSAT of width 𝑛 (x-axis) which requires 2𝑛 queries for cases that were
completed in less than 2 hours using RFQ, baseline SAT attack, and KC2. c6288 being a multiplier is not solved in 2 hours with KC2 and
the baseline SAT attack.

queried. Consequently, the maximum query complexity of any
SFLL scheme that uses a corrupt/restore-unit of width 𝑝 is 2𝑝 .

Before we go deeper into improving EFS schemes we
describe a special restore-function that will prove useful later
on. Recall that in AntiSAT/SARLock AND-trees fed with
XORs of input and key bits are used, and in SFLL [29], [14]
fixed size look-up-tables or hamming-distance (HD) units [19]
are used for corruption and restoration. In [8] a new primitive
was presented which we call a “row-activated” look-up-table
(RA-LUT). With this LUT each entry has an additional key-
bit that can be programmed to deactivate that entry. Hence, a
row-activated LUT with 𝑝 rows can be programmed to never
activate (i.e. output a 0), or to activate on up-to-𝑝 distinct
patterns.

Capacity Boosting. As we discussed earlier, given the
definition of EFS under the assumption of weakly restricted
C𝑜, removal attacks have exponentially low success rate. We
can use this fact through Lemma 2 to prevent early attack
termination and ensure always-exponential-query-count EFS.

Consider an RA-LUT of capacity 1 inserted in the circuit
and XORed with a random wire. Unlike the fixed point-
function, the RA-LUT can in fact be programmed to deacti-
vate, i.e. output a constant-0 leaving no effect on the original

circuit operation. Now from the attacker’s perspective, the
presence of the 1-capacity RA-LUT means that there might
be a single pattern on which it activates/corrects. As per our
discussions in Lemma 2 the original circuit may have naturally
had a point-function that was absorbed intelligently by the
defender into the RA-LUT, and the attacker has no reason to
rule out this possibility.

This notion can be used to boost the query complexity
of any SFLL scheme. If an SFLL scheme has corrupted 𝑁

patterns and is correcting them with a restore-unit of capacity
𝑁 , then by introducing 𝑝 additional detachable-rows we can
create the illusion for the attacker that more than 𝑁 patterns
are flipped. This will send him onto the task of finding these
extra 𝑝 patterns by scanning the entire input space, just to find
out that they were fake to begin with.

Width Boosting. In addition to masquerading the capacity of
the restore-unit to the attacker, it is possible to artificially boost
the width of the restore-unit as well. A column-activated LUT
(CA-LUT), has additional key-bits that will decide which bits
in the incoming vector in a specific row are activated. When
a certain column in the CA-LUT is deactivated the incident
bits on that column will not affect the outcome, i.e. will be
don’t-care bits. By connecting dummy wires from randomly
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selected (but nearby) nets, and connecting them to the column-
activated LUT we can boost artificially the apparent width of
the restore unit. The attacker does not know which input bits
are active and is hence forced to query a doubly larger input
space per each added dummy input.

Site Selection. We know now that inserting a row-column-
activated-LUT (RCA-LUT) without any previous corruption
will satisfy the theoretical EFS-OG notion with exponentially
small advantage under weakly restricted C𝑜. However, if our
Lock algorithm insists on inserting only dummy superfluous
RCA-LUTs, 1) if the attacker knows that this is the Lock
strategy, a removal attack will have perfect success rate 2) we
can miss out on area savings that can come from absorbing
naturally occurring existing point-logic in the original circuit.

A simple look at RT-level designs will immediately reveal
that HDL is replete with comparator logic. Besides arithmetic
units such as adders and multipliers, the remainder of RTL de-
signs are dominated by decode/control logic, count-up/down-
to-value logic and other syntax dominated by equality condi-
tions. In fact, the microcode ROM used as a way to dispatch
control signals in processors if implemented using switch-
case/memory-like RTL that can be mapped to an RCA-LUT.

We advocate hence for performing RCA-LUT EFS locking
with a footing in the RTL. Many RTL equality conditions will
be mapped and/or removed during optimization or translated
to combinational logic, from which extracting the word-level
information becomes difficult. In addition to equality logic,
constant values are present in the RTL which can also be
mapped to keyed-logic. Constants hold critical information
when it comes to control logic.

Hence, our proof-of-concept EFS locking flow is inte-
grated with a Verilog parser (yosys), that finds RTL equality
conditions which always map to comparator/AND-trees and
replaces some of them with RCA-LUTs. With this approach
there will exist RCA-LUTs that are in fact absorbing existing
logic, making sure that the attacker is forced to query these
blocks rather than assuming that they are all fake. Note that
randomizing this absorption and boosting in the above scheme
allows one to weaken the second assumption of Lemma 2
(unknown Lock for the attacker), since even an attacker that
knows Lock’s description does not know which LUTs are
dummy, and which ones absorbed existing logic.

B. Circuit Implementation
How can the RCA-LUT which is the heart of provably

strong EFS-OG locking be implemented in silicon? The most
straightforward way is to simply build a gate-level circuit that
implements this. A gate-level implementation of this is rather
straightforward. Per Fig. 7a, for a 𝑝-entry LUT of width 𝑛

we need first 𝑝 different AND-trees of width 𝑛. The incoming
input bits are XORed with key-bits once for each row and
these key-bits are the patterns stored in the LUT’s rows. The
output of these XORs can be killed with a key-controlled AND
gate, the key to which will decide whether a particular bit is
active on a particular row. An entire row can be deactivated
by setting each one of these activation key bits in that row to
0.

The RCA-LUT may be implemented with much less over-

head at the transistor-level. (Ternary)-Content-Addressable-
Memory or (T)CAM [30] arrays are special transistor-level
circuits that can be used to perform value-lookup. The struc-
ture of a CAM is similar to that of an SRAM memory array
with vertical and horizontal lines and a regular layout. Each
cell in the CAM array is a special cell that will pull down a
line that is shared across all cells in a row called the match-
line (ML). Existing CAMs are sequential elements, in that they
need a clock to precharge the ML line and read out the result
using sense-amplifiers. These sequential CAMs can be used to
absorb sequential comparators, i.e. point-functions for which
the result need not be ready until the next clock cycle. An
RTL synthesis engine can easily recognize such patterns.

Per Fig. 7b, a combinational CAM may be designed by
adding a pull-up resistor to the ML line so that when no
pull-down is asserted (a match case) the ML line can rise.
An inverter can be used to amplify this. The rise-time of the
signal will be decided by the RC circuit formed by this pull-
up resistor and the pull-down network. ML segmentation is
a technique used to speed up CAMs by breaking down the
ML into smaller pieces. CAMs have been the topic of circuit
design research for decades. Better combinational CAMs will
lead to better EFS locking per our discussions.

C. Experiments
RCA-LUT Overhead. We first implement standalone RCA-

LUTs of different widths and capacities and synthesis them
using the NanGate15nm standard-cell library with Design
Compiler (DC). The power/delay/area of these LUTs is com-
pared to that of a 16-bit comparator in Fig. 8. A linear growth
in overhead can be observed as the width and capacity of the
RCA-LUT increases.

RTL-level Absorption-based Locking. We used the pyverilog
parser to detect equality conditions and constants in the RTL.
We use the code-generator in pyverilog to then replace these
conditions/constants with black-box modules and produce a
locked-RTL. An example of this replacement can be seen
in Fig. 9. The transformed design is then synthesized using
DC. DC will treat these modules as undefined blocks and
synthesis/map the rest of the design to gates. The flattened
design is then written out.

We then implemented a C++ tool that reads the synthesized
gate-level design, and maps the condition/constant modules
based on user configuration parameters to RCA-LUTs or
key-bits. The widest conditions are mapped to RCA-LUTs
first as to maximize absorption. The user can choose to
insert additional dummy RCA-LUTs into the design as well.
While we perform this site-selection automatically herein for
profiling purposes, it is advised that designers manually choose
which conditions/constants to hide given that they have more
intimate knowledge of their design.

The above flow was applied to an RS232 design from
OpenCores. The flattened design seen in Fig. 11 contains 14
different comparator units 9 of which are bare “==” syntax,
and the rest fall into switch-case statements. One of the bare
comparators has a width of 16 which is the widest comparison
in the design. We can artificially boost these values with
RCA-LUTs. The comparators and constants from the yosys-
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Fig. 7: RCA-LUT implementations. The 𝑘𝑐𝑖: 𝑗 keys “activate” the comparison at row 𝑖 column 𝑗 . The 𝑘𝑣𝑖 are the “compared-to” key values for
row 𝑖. An entire row can be deactivated by setting each activation key in it to 0. (a) Combinational gate-level implementation of RCA-LUT.
(b) Possible transistor-level CAM-based implementation of RCA-LUT. The key values can be implemented with one-time-programmable
devices.
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Fig. 8: Area/power/delay overhead ratios for standalone synthesized
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LUTs of width 𝑤 and capacity 𝑐.

module design(a, b, o0, o1);

  input wire [15:0]a;
  input wire [15:0]b;
  output wire o0;
  output wire [15:0] o1;

  assign o0 = (a == b);
  assign o1 = a + 16'h0;

endmodule

module design_locked(a, b, o0, o1);

  input wire [15:0]a;
  input wire [15:0]b;
  output wire o0;
  output wire [15:0] o1;

  wire locked_condition0;
  wire [15:0] locked_constant0;

  assign o0 = locked_condition0;
  assign o1 = a + locked_constant0;

  condition0_inst ueq0(.lhs(a), .rhs(b),
.eqo(locked_condition0));

  constant0_inst  uc0(.ci(16'h0), 
.co(locked_constant0));

endmodule

Fig. 9: RTL rewrite detecting constants and equality conditions and
mapping them to modules. Later on the modules are mapped to RCA-
LUTs or key-bits based on user parameters.

generated flow-graph of the design can be seen highlighted in
Fig. 11.

Fig. 10 shows the area/power/delay overhead with different
locking parameters. It can be seen that absorbing 2 compara-
tors in the design, one of which absorbs the native 16-bit
comparator, with widths boosted to 64 and capacities of 2 leads
to an area overhead below 60%, power overhead of below
35%. The trees land off of the critical path and hence do not
induce a delay overhead. This produces EFS security with a
264 minimum query count.

Note that the locking security here is EFS meaning that
approximation resiliency is not guaranteed at all. However,
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Fig. 10: Area/power/delay overhead ratios for RS232 module locked
with boosted EFS. (𝑤, 𝑛, 𝑐) represents 𝑛 RCA-LUTs of width 𝑤 and
capacity 𝑐 inserted in the design. In this design, the first RCA-LUT
absorbed an existing 16-bit comparator, and the remaining 𝑛 − 1 are
dummy inserted RCA-LUTs.
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Fig. 11: RS232 RT-level flattened design. The red boxes are com-
parators that can be mapped to boosted RCA-LUTs, and the blue
circles are constants. Constants can also be stored in a tamper-proof
memory as secret keys for locking.

the equality conditions typically govern critical control signals
that guide arithmetic units to process data. Often times these
control signals are more unique to the design and valuable to
the designer than arithmetic circuits which are instantiations
of mostly publicly available and well-known adder/multiplier
structures. Note that some arithmetic circuits already have
look-up structures that can be mapped to keyed-RCA-LUTs
providing secure locking. For instance, the S-Boxes in cryp-
tographic modules or other translation tables can be mapped
to (one-time) programmable logic as well.

V. CONCLUSION

In this paper we presented a novel SAT attack that can deal
with query-complex deobfuscation tasks with near-constant
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memory avoiding exponential blow-up of SAT solver times.
We believe the two-pronged framework of the attack to be the
best current approach to generic deobfuscation in the presence
of rare nets. We further explored the notion of EFS security
showing how with a few simple tricks, EFS security may be
the first truly provably secure locking with bearable overhead
and sound mathematical foundations. EFS can be a great
option for hiding a critical part of modern designs, i.e. that
of control/decode/FSM/counter-logic at least in the absence
of low-overhead AFS solutions.
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