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Abstract— The SAT-based attacks are extremely successful in
deobfuscating the traditional combinational logic locking and
IC camouflaging schemes. While several SAT-resilient protection
schemes that increase the minimum query count of the attack
have been proposed recently, none of them satisfy the output
corruptibility (error) criteria. Therefore, most of them were
combined with high corruptibility schemes to achieve both
corruptibility and high query count. These “compound” schemes
are successful since existing SAT attacks are agnostic to the
corruptibility of the protection scheme. In this paper, we propose
an approximate SAT-based attack framework which focuses on
the iterative convergence of an attack toward a better solution.
This helps our attack reduce a compound scheme to a standalone
SAT-resilient scheme. In addition, we relate the problem of
minimum query count to a well-known graph problem, and
we propose a novel technique to increase the corruptibility of
SAT-resilient protection schemes in a controllable manner. This
creates protection schemes that have both high query count and
corruptibility. Furthermore, due to the approximation resiliency
property of these schemes, approximate attacks provide no
advantage over exact attacks when attacking them.

Index Terms— Hardware security, logic obfuscation,
IC camouflaging, logic locking.

I. INTRODUCTION

INTEGRATED Circuits (IC) are the backbone of modern
day computing systems. Modern ICs are produced in a

diversified global supply chain with multiple parties possibly
from different nations, that carry out design, verification, and
fabrication. Therefore, the security and privacy discussions
have been initiated in the IC domain over the past decade [1].
While modeling the adversaries in the supply chain is itself
a complicated task, the primary concerns can be broadly
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categorized as: 1) malicious modification of the design by the
foundry, 2) reverse engineering by the foundry or end users
for gaining critical information to help exploitation, or the
theft of intellectual property (IP), and 3) illegal cloning,
replicating or overproduction by the foundry.

While policy, surveillance, enforcing patent infringement
laws, etc. can help thwart some of the above threats,
design/fabrication-based techniques may provide a more cost
effective solution. Since the majority of the supply chain
threats arise from the fact that the design is being disclosed to
malicious actors, hiding and obscuring the design can hinder
attacks [1]. Logic encryption/locking [2], IC camouflaging [3],
and split-manufacturing [4] are some prominent techniques
for partially hiding the IC design from attackers. The first
two techniques which are the focus of this paper do not
require a trusted foundry and can be implemented by only
modification to the design and in some cases, minor changes
to the fabrication process.

Logic-locking/encryption or key-based obfuscation is based
on corrupting the output of the circuit with additional
key-inputs so that the circuit produces incorrect outputs with-
out the correct secret key. The key bits are programmed
post-fabrication by a trusted party hiding the design from
the foundry and end-users. IC camouflaging is a layout-level
technique based on creating indistinguishable layout structures
for creating obscurity. These techniques can provide a layer of
protection against different supply chain attacks. For instance,
with logic locking, targeted malicious modification of the
design is hindered through the obscurity of the locked circuit
and the foundry cannot overproduce the design without the
correct key. In addition, both IC camouflaging and logic
locking hamper IC reverse engineering. Both schemes have the
same mathematical model, and every logic locking scheme can
be converted to an IC camouflaging scheme. Hence, in the rest
of the paper whenever the term locking is used the discussion
can be applied to camouflaging as well.

The research question is whether these schemes can be made
secure with low overhead. The security is evaluated based
on whether the original circuit can be recovered from the
protected one under certain adversarial assumptions. The focus
of this paper is on the security of combinational logic locking
schemes when the attacker is able to query arbitrary input
patterns and receive correct outputs on an unlocked circuit.
Under this assumption, the most recent and powerful attack
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utilizes Boolean Satisfiability (SAT) solvers, known as the SAT
attack [5], [6]. This attack utilizes a special set of input-output
observations from the unlocked circuit to form a system of
equations and solves it using a SAT solver to resolve the key
bits or camouflaged layout functionalities.

A number of “SAT-resilient” logic locking and IC cam-
ouflaging schemes were proposed in literature [7]–[10].
These schemes exponentially increase the number of
queries required by the SAT attack to complete success-
fully. However, this comes at the cost of reduced output
error/entropy/corruptibility. Hence, most of these schemes pro-
pose to combine low output error blocks (point-functions) with
traditional, high output error schemes to obtain a circuit that
requires exponential queries to be resolved, while maintaining
a sufficiently high output error as well. Hence, we refer to
them as compound schemes.

Compound schemes are succesful in thwarting existing SAT
attacks since such attacks are oblivious to the error of the
logic locking scheme. In this paper however, we focus on the
iterative approach of an attack towards a better approximation
of the original circuit. We present a SAT-based attack called
AppSAT which is able to deobfuscate the high error locking
in a compound scheme and is thus an approximate attack. i.e
the attack reduces a compound scheme to a low error scheme
which itself is a highly accurate approximation of the original
circuit. In addition we propose an approximation-resilient
locking scheme and demonstrate its resiliency to attacks.

Contributions: This paper specifically delivers the following
contributions:
• We provide a formal theory of the combinational lock-

ing/deobfuscation problem and link it with probably
approximately correct (PAC) machine learning. For the
first time we link the error versus query count in logic
obfuscation to a well known and open hypergraph problem.

• We propose AppSAT for approximate deobfuscation based
on the SAT attack augmented with random querying,
intermediate error estimation and query reinforcement.
We show the effectiveness of the attack by running it on
71 ISCAS and MCNC benchmark circuits obfuscated with
the Anti-SAT+RLL (random XOR/XNOR insertion) [8]
compound scheme. We show that the attack is capable
of perfectly deobfuscating the high-error portion of this
defense for 68 of the benchmark circuits.

• We present wire-disagreement analysis during the AppSAT
attack as a tool that can be used to find hot-spots in the
circuit during the deobfuscation process. This allows iden-
tifying the tip of the point-function in all compound-locked
benchmarks that we experimented with. We also present a
new SAT-based termination condition for the attack and
discuss the limitations of such conditions in the general
case.

• We present Diversified Tree Logic (DTL), a small tech-
nique for adding approximation resiliency to SAT-resilient
schemes. DTL has a higher resiliency against removal
attacks, can be used with different SAT-resilient schemes,
and provides a simple way to tune the error versus query
count with a better bound compared to existing work.
We show that an implementation of DTL on benchmark

Fig. 1. (a) IC camouflaging by replacing gates with camouflaged gates.
(b) Logic encryption with tamper-proof key bits.

circuits can prevent AppSAT from improving its approxi-
mation of the circuit throughout the entire attack. As such
an approximate attack on DTL provides no advantage over
an exact attack.

Organization: The paper is organized as follows. Section II
provides necessary background and preliminaries on logic
locking and camouflaging. Section III presents the framework
and the different aspects of the AppSAT attack and its imple-
mentation. Section IV presents the proposed protection scheme
and Section V discusses related work and concludes the paper.

II. PRELIMINARIES

A. IC Camouflaging

IC camouflaging [3] techniques are physical-design
oriented. Some notable schemes include using dummy con-
nections, doping alterations, and dummy cells/wires in the
circuit. A via with a middle gap can deceivingly appear to
be connected during reverse-engineering serving as a dummy
connection [11]. Doping based approaches [12] alter the
doping type of transistors in a gate to change its functionality
while it looks similar to the original gate from the top-
view.1 Inserting dummy gates, dummy wires and/or dummy
filler metals have been proposed as well [3]. Fig. 1(a) shows
gate-level IC camouflaging where gates in the circuit are
replaced with dummy-connection-based camouflaged gates
which look alike but have different functionalities.

B. Logic Locking

Combinational logic locking as seen in Fig. 1(b) is based
on inserting key inputs (k1 and k0 in Fig. 1(b)) and key gates
into the combinational circuit and ensuring that incorrect keys
result in an incorrect output. Some notable traditional logic
locking schemes (methods proposed before the SAT attack)
include: 1) XOR/XNORing randomly selected wires [2] with
key bits, known as Random Logic Locking (RLL) or EPIC;
2) XOR/XNORing wires that have maximum fault impact on
the output with key bits, known as Fault based Logic Locking
(FLL) [13]; 4) XOR/XNORing wires with key bits that result
in a clique among the key bits, known as Secure Logic
Locking (SLL) [14]; 3) replacing slices in the circuit with
look-up-tables (LUTs) that store key bits [15], [16]; 4) insert-
ing multiplexors (MUXs) [13] or switch-boxes (SB) [17] that

1Special scanning-electron microscopy, capacitive imaging, or selective-
etching have succeeded in revealing doping types.
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TABLE I

TRUTH-TABLE FOR THE CIRCUIT IN FIGURE 2. EVERY QUERY
DISQUALIFIES A SINGLE KEY POSSIBILITY

are configured by key bits, as well as other gate insertion
approaches [18].2

C. A Formal Model for Locking and Camouflaging

Consider a combinational circuit. The original combina-
tional circuit is a Boolean function from input I = F

n
2 to

output O = F
m
2 , denoted by co : I → O. Logic locking

can be modeled as transforming co to an augmented function
ce : I × K → O where K = F

l
2 is the key space, and

there exists a correct key vector k∗ ∈ K∗ ∈ K such that
∀i ∈ I, ce(i, k∗) = co(i). In other words, by traversing
the key space a set of Boolean functions denoted by C =
{ce(i, k)|k ∈ K } can be obtained from which only some
elements are equivalent to co. It is useful to think of ce as
a 2-dimensional truth-table with 2l columns each representing
the 2n-high truth-table of a function in C as seen in Table I.

While logic locking directly fits in the above model, IC cam-
ouflaging requires a transformation from the camouflaged
logic to an augmented Boolean function ce(i, k). This can be
done by encoding different function possibilities of camou-
flaged units using key variables. For instance, camouflaged
gates can be modeled as a set of gates arbitrated by a MUX
where the MUX select lines are controlled by key bits [6]
and dummy connections can be modeled with key-controlled
MUXs as well. Note that this transformation can have signif-
icant effects on the performance of an attack.

D. The SAT Attacks

Given the above formal model, the SAT attack is an
algorithm that finds a k∗ given access to: 1) the Boolean
expression/circuit for ce which the attacker obtains by delay-
ering, imaging, and reconstructing the netlist of the protected
chip. 2) input-output or oracle access to co which means that
the attacker can query a black-box with arbitrary i to get co(i).
This is why the SAT attack is considered an oracle-guided
attack. Correct input-output pairs from the oracle can help
disqualify incorrect keys.

Per Algorithm. 1, the baseline SAT attack [6], [19] begins
by using a SAT-solver to satisfy a mitter condition, ce(i, k1) �=
ce(i, k2) with i0, k̂1, k̂2. The input i0 that satisfies the
mitter is referred to as a Discriminating Input Pattern
(DIP). i0 is queried on co and the the resulting constraint,

2Note that any locking scheme can be converted to a camouflaging scheme
by replacing programmable key-bits with camouflaged connectors. Hence the
paper mainly discusses locking

Algorithm 1 Given Oracle Access to co and the Expression
for Ce Return a Correct Key k1 ∈ K∗
1: function SATDECRYPT(ce, co as black-box)
2: j ← 0
3: M ← ce(i, k1) �= ce(i, k2)
4: Fj ← true
5: while Fj ∧ M is solvable do
6: Solve Fj ∧ M with i j , k1, k2
7: o j ← co(i j )
8: Fj+1← Fj ∧ (ce(i j , k1) = o j ) ∧ (ce(i j , k2) = o j )
9: j ← j + 1

10: end while
11: satisfy Fj with k1 and k2
12: return k1 as exact key
13: end function

(ce(i0, k1) = co(i0)) ∧ (ce(i0, k2) = co(i0)) is added to
the mitter SAT problem and the algorithm repeats the DIP
finding with tighter constraints. Once the mitter+constraints
SAT problem can no longer be satisfied, there is only one
possible truth-table in C that conforms to all DIP-output pairs,
which should be the correct function. At this time, solving the
constraints alone will return a k1 = k2 = k+ ∈ K∗.

The SAT attack has been shown to be able to deobfuscate
low overhead traditional logic locking and IC camouflaging
schemes in a matter of minutes. It is observed that large
circuits, and those that are difficult for SAT solvers to handle
such as multiplier circuits can cause slow downs in the
SAT attack. However, all logic locking schemes mentioned
in Section II-A when used with a reasonable number of key
bits and added overhead (up to 20% of the original circuit),
on benchmark circuits with up to thousands of gates, can be
exactly deobfuscated by the SAT attack [5].

Considering the SAT attack it is reasonable to ask: what
constitutes a reasonable overhead for protection? A pro-
tection scheme is considered low overhead if its overhead
is significantly less than implementing the entire design in
programmable logic (FPGA or PLA). Programmable logic
consists of an array of look-up-tables with fully configurable
interconnections. The large set of possible functions that can
be implemented by the regular fabric make it difficult to learn
the function without enlisting the entire truth-table. In fact,
replacing select modules in the ASIC with programmable
units was proposed in [20] as a protection scheme. The main
impediment to using this on the entire chip is losing all the
performance and energy benefits that come with ASICs as
opposed to FPGAs.

E. Increasing Query Complexity

SAT-resilient locking/camouflaging schemes achieve a high
query count by ensuring that each query is capable of omitting
only a limited number of incorrect keys. Most these schemes
are based on point-functions (comparator circuits). A point-
function denoted as P(i, k) outputs 1 when i = k and 0
otherwise. The P function can be implemented in both IC
camouflaging and logic locking by inverting the inputs to an
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AND-tree based on a secret [7], [21]. Almost all SAT-resilient
schemes can be modeled as using a tree logic to generate a
flip signal based on the key and the inputs to a logic cone,
and then XORing the flip signal with the output of that logic
cone. An example is shown in Fig. 2. We list SAT-resilient
schemes based on the functionality at their flip signal given i
as the n	-long cone input vector (n	 ≤ n by picking sub-circuits
in ce) and k as the key vector.

• SARLock by Yasin et al. [7] is a logic locking scheme
based on inserting a tree-like structure into the circuit with
the flip signal being (i = k) ∧ (k �= k∗).

• CamouPerturb, presented by Yasin et al. [21], is an IC
camouflaging technique based on flipping the output of
the cone in the original circuit when i = i∗, and then
correcting the output of the cone by XORing it with the
flip signal (i = i∗) ∨ (i = k).

• Anti-SAT [8], a logic locking scheme by Xie and
Srivastava, uses a 2n	-long key vector, k = �k1, k2, and
uses (i = k1) ∧ (i �= k2) as the flip signal.

• Li et al. [22] proposed to find an AND-tree in the circuit
and camouflage its inputs and use a dummy XOR to make
it appear to the attacker that the output is being flipped
with the condition (i = k).

F. Increasing Output Corruptibility

Intuitively, the output of the protected circuit should be
incorrect when an incorrect key is applied. For combinational
protection schemes we can define the output corruptibil-
ity/error Cr as:

Cr(ce, co) ≡ Pr
i∈I,k∈K

[ce(i, k) �= co(i)]. (1)

A corruptibility criteria for a locking/camouflaging scheme
can then be defined as:

| Pr
i∈I,k∈K

[ce(i, k) �= co(i)] − 1

2
| ≤ α(l) (2)

where α is a negligible function. This ensures that the prob-
ability of a single-output cone disagreeing with the original
circuit should be close to 0.5 when the input and key are
chosen randomly. If the error is too close to 1 then the attacker
can simply take a majority vote of protected circuits with
random keys and pass the result through an inverter to obtain
the correct functionality.

SAT-resilient schemes, if used alone, result in a very skewed
output corruptibility. As seen from Fig. 2 the attacker can
randomly select any incorrect key value, and the locked circuit
will return a correct output for all but one input pattern. It is
easy to show that Cr ∈ O( 1

2n	 ) for SAT-resilient schemes,
when the maximum query count is achieved, with n	 being
the width of the input to the cone.

Most SAT-resilient schemes discussed in Section II-E
acknowledge this limitation and hence propose to combine
the SAT-resilient protection with traditional high corruptibil-
ity schemes. We refer to such combinations as compound
schemes. Since most traditional methods such as XOR/XNOR-
based [2], [11], [13], [23], MUX [13] or SB-based [17], either

Fig. 2. An exmaple of a SAT-resilient locking scheme.

were designed to maximize output corruptibility, or naturally
result in a high corruptibility, adding them will effectively
improve Cr for the overall locked circuit.

III. APPROXIMATE DEOBFUSCATION

As was first noted in [22] oracle-guided deobfusca-
tion attacks can be modeled with a specific problem
in machine-learning called active-learning [24]. In active-
learning terminology the learner intends to find a target
function co, within a hypothesis space C, by querying a
black-box that implements co. The subset of the hypothesis
space that is consistent with the so far observed query set L,
is called the version space V . The main goal in active-learning
is to find an adaptive querying strategy that minimizes the
number of queries required to learn the target function [24].

Among the different active-learning querying strategies, one
ensemble referred to as uncertainty-sampling or query-by-
disagreement (QBD) [25] best represents the SAT attack.
By querying the oracle on input patterns that result in a
disagreement among different functions in the version space,
the attacker trims down the version space to functions equiv-
alent to co. Existing SAT attacks terminate when no more
disagreeing inputs can be found, at which point if C included
co to begin with, the attack guaranties to find it. In this sense
the existing SAT attacks are precise and we thus refer to them
as exact SAT attacks.

However, exact SAT attacks are limited in that they are
completely agnostic to the corruptibility of the protection
scheme. This is why SAT-resilient schemes are successful in
thwarting them even though they do not satisfy any corrupt-
ibility criteria. In this paper we study approximate attacks that
are concerned with the iterative convergence of an algorithm
towards a better key solution. An approximate oracle-guided
attack will require the protection scheme to satisfy stronger
security criteria. Note that if approximation resiliency is not
considered as the resiliency metric, a simple comparison with
a large key vector will secure the IC, which is far from our
intuitive expectation from locking.

One way for formulating approximate learning problems
is the probably-approximately-correct (PAC) setting [26],
in which we specify that an algorithm A, with a probability of
λ (probably), will return an �-approximation (approximately
correct) of the target function co. An �-approximation of the
target function co is a function that disagrees with co on at
most an � proportion of the input space. The approximate
oracle-guided attacks discussed in this paper can be modeled
with this formulation.
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Based on the PAC model we can define
approximation-resiliency criteria. A protection scheme is
approximation resilient if there exists no algorithm that
can learn the original circuit given the obfuscated circuit
with negligible �, and high success rate λ, in feasible
time and space. We show empirically in this paper that
existing compound schemes are not approximation-resilient.
We specifically show that when attacking compound schemes,
we can achieve an accuracy of � ∈ O( 1

2n	 ), in an empirically
similar order of running time that it would take to deobfuscate
traditional schemes with high success rate, assuming the
width of the SAT-resilient scheme is n	. The remainder of this
section we discuss this in more detail by presenting different
aspects of an approximate attack.

A. A SAT-Based Approximate Attack (AppSAT)

The current SAT attacks begin by satisfying the mitter
circuit with a DIP, x0. Subsequently, the oracle is queried with
x0 and a constraint is added to the SAT-formula. Whereas for
the exact SAT attack the algorithm continues to find DIPs until
no more DIPs can be found, we can build an approximate SAT
attack by terminating the attack in any early step, t .

Let us define Lt to be the set of input-output observa-
tion (queries) collected until step t , and Vt be the version
space consistent with Lt . It can be shown that |Vt | < |Vz| for
all z < t . Therefore, the SAT attack is converging on the target
function with each step by shrinking the version space. At any
step, t , of the algorithm we can use the SAT-solver to find a
key vector consistent with Lt by satisfying the conjunction
of all queries. This translates to picking a function from Vt .
We denote the error probability of this function with �t defined
as: �t ( f ) = |{i |i ∈ I, f (i) �= co(i)}|/|I |.

Different functions in Vt can have different � (error) values
with respect to the target function. Therefore, if the SAT-solver
randomly picks a function from the version space, we can see
how this conforms to the probably-correct property of PAC-
learning, as the randomly selected function can have a higher
error rate than previous steps. That is, �t < �z may not be
true for every t > z. However, overall we expect � to decrease
throughout the attack.

B. Error Estimation

In essence, the AppSAT attack avoids the exponential query
count with compound schemes by stopping the querying
process early. An important requirement is knowing when
to stop querying. The intuitive approach is to stop when �t

reaches a desired level. However, calculating � precisely would
require exponential queries itself since the truth-tables of the
hypothesis and oracle need to be compared. We first note that it
is straightforward to analytically represent the error probability
of SAT-resilient schemes specifically. We can simply state that
for any t > 0, we have �t ∈ O( 1

2n	 ) for a maximum query
SAT-resilient scheme. As for traditional schemes or compound
schemes however, finding an analytic, and circuit-independent
error value is difficult.

In this paper we perform random input pattern queries in
order to estimate error. After every d number of DIP queries,

we pick a function from the version space and compare it
on r randomly selected patterns with the oracle to compute �t .
We terminate the attack if �t stays below a threshold for more
than a certain number of iterations (settlement-threshold). Note
that random queries are cheaper than SAT-generated DIPs.
An alternative approach for error estimation is to use the test
patterns of the obfuscated circuit for error estimation as they
result in higher flip coverage of the circuit wires.

C. Random Query Reinforcement

In the AppSAT attack, as was discussed previously,
the accuracy of the resulting function has to be assessed
using queries at every d number of DIP iterations. Since the
learner is already paying the delay penalty for random queries
for assessing error, we can use these queries as constraints
in addition to DIPs. We refer to this technique as query
reinforcement. Specifically, only the random samples on which
the hypothesis disagrees with the oracle, will be added to
the SAT formula as new constraints. Our experimental results
show that this approach significantly improves the attack
performance.

D. SAT-Based Early Termination Conditions

A deobfuscation attack called Double-DIP (DDIP) was pro-
posed in [27] and [10] that targets specifically the SARLock
compound scheme. DDIP modifies the DIP mitter condition to
find input patterns that can create disagreements among 4 key
classes. The DDIP mitter condition is,(

ce(i, k1) = ce(i, k3) = y1

)
∧

(
ce(i, k2) = ce(i, k4) = y2

)

∧ (y1 �= y2)∧(k1 �= k3)∧(k2 �=k4)

The i input that satisfies this condition is called a doubly
differentiating input pattern (DDIP). A DDIP will elimi-
nate at least two incorrect keys when queried. Therefore,
the DDIP condition becomes unsatisfiable when attacking cer-
tain SAT-resilient schemes such as SARLock where each query
is only removing a single incorrect key as seen in Table I.
If SARLock is combined with a traditional scheme, then the
DDIP attack will stop only when SARLock key bits are the
only unresolved key bits ensuring that �t has reached 2−n	 .

The main limitation of the DDIP attack is that slightly
modifying the locking scheme can defeat it. For instance,
if a single dummy key bit which is not affecting the output
of the circuit, is added to SARLock, then the truth-table is
duplicated in the key dimension. This causes all input patterns
to immediately become DDIPs. In fact the Anti-SAT point-
function scheme uses two key vectors resulting in a total
key length of 2n	 replicating the SARLock truth-table 2n	

times. As a result in the truth-table resulting from Anti-SAT
each query disqualifies not one incorrect key but 2n	 − 1
keys rendering the DDIP attack ineffective. Extending the
attack to a q-DIP scenario where q different keys are to
be discarded with each query will not help, since we must
ensure q ≥ 2n	 which results in an exponentially large mitter
CNF-SAT problem.

We discuss a possible improvement herein. While in
Anti-SAT each input pattern disagrees with the oracle on an
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exponential number of keys, an invariant is that each function
in the version space disagrees with the oracle circuit on no
more than a single input pattern. As a result, once the high
corruptibility schemes are resolved during the deobfuscation,
the functions c(i, k) that remain in the version space Vi have
a hamming distance of 2 among their truth-tables. Hence a
terminating condition can be designed to search for 3 different
input patterns that have differing outputs in the version space:
(

ce(i1, k1) �= ce(i1, k2)
)
∧

(
ce(i2, k1) �= ce(i2, k2)

)

∧
(

ce(i3, k1) �= ce(i3, k2)
)

∧ (i1 �= i2) ∧ (i2 �= i3) ∧ (i1 �= i3)

This mitter can be expanded to find t input patterns that
create inter-disagreement in the version space. This will ensure
that the functions in the version space have inter hamming
distances no larger than t . However, the size of this mitter
grows with

(t
2

)
.

This mitter is successful against SARLock with dummy
keys and Anti-SAT when the Anti-SAT block wraps around
the primary inputs and outputs of the circuit. However, this
condition is a dual of the DDIP mitter in the input dimension.
i.e. if a dummy input is added to the circuit or the Anti-SAT
block is attached to the internal wires of the circuit, there is the
possibility that the truth-table can get replicated along the input
dimension. Once this occurs, there will be more than 3 inputs
on which all functions in the version space disagree. Although
the error rate relative to the size of the truth-table remains
at 1/2n	 , however, the termination condition will no longer
assist in detecting that high corruptibility schemes have been
resolved. Hence, it remains difficult to use such conditions in
the general case. SAT-based model counting [28] can provide
a way for counting the error, however, using existing SAT
counting tools we were unable to achieve promising results.
Furthermore, our proposed protection scheme renders such
termination conditions ineffective.

E. Compound Schemes Under Approximate Attacks

As we discussed earlier, due to the low output corruptibility
of SAT-resilient schemes, these methods are often combined
with high corruptibility schemes. An important result of
this paper is that adding a high corruptibility scheme to
the SAT-resilient schemes does not contribute to the overall
security. The AppSAT attack is capable of deobfuscating the
traditional portions of the compound protection as if the
SAT-resilient scheme was not present.

To explain this phenomena, consider the truth table of the
SAT-resilient scheme shown in Table I. Per Table I, in the
beginning of the algorithm all input patterns are potential
DIPs. In other words, the SAT-resilient scheme imposes a loose
constraint on which inputs should be queried. A high corrupt-
ibility scheme can be visualized as adding highly disagreeing
columns to this table. Then it can be seen that the freedom of
the attack algorithm in picking DIPs is equivalent to running
the attack on a standalone high corruptibility scheme as if the
point-function was not present. As we will see in Section III-H,
if the SAT-solver gets trapped into solving the point-function

only, random query reinforcement can still help with excluding
highly disagreeing functions in the version space.

F. AppSAT Wire-Disagreement Maps

It is possible to map the disagreements among functions in
the version space to the internal wires in ce. Every DIP excites
a disagreement at the output wires of the two circuit copies
in M resulting from different key bits in k1 and k2. If we
compare the Boolean state of all the wires in ce(i, k1) with
their corresponding wires in ce(i, k2), we can get a sense of
which parts of the circuit are currently being resolved serving
as a heat-map for unresolved portions of the circuit. In com-
pound schemes once the high corruptibility bits are resolved,
the wire-disagreements form a cone rooted at the flip-signal.
This can assist in removing such structures, or in general
identifying which parts of the circuit graph are being actively
analyzed by the attack and which parts seem to have already
resolved. Note that this is superior to the AppSAT-guided
removal attack in [29] which analyzes the compound obfusca-
tion key-vector throughout AppSAT to find settled key bits and
trace them to the tip of the tree. That attack can be thwarted by
applying a transformation to the compound key that levels the
flip rate across different bits. Conversely, the routine presented
here performs one-to-one wire-disagreement testing starting
from the output and is hence oblivious to transformations
applied to the key. Algorithm. 2 shows the overall flow of
AppSAT including the wire-disagreement analysis.

G. Experiments: Framework

For our experimentation, we implemented both attacks and
defenses in a C++ framework. The framework utilizes Min-
isat [30] for SAT-solving and includes the conventional exact
SAT attack augmented with intermediate key vector extraction,
error estimation/calculation, SAT termination conditions, and
random query reinforcement routines. All tests were performed
on a quad-core Intel Xeon E3 processor with a 3.4GHz CPU,
and 16GB memory.

H. Experiments: Attacking Compound Schemes

We evaluated Algorithm 2 on the benchmark circuits that
are listed in Table II. The benchmark circuits were locked
with Anti-SAT3 integrated with RLL (random XOR/XNOR
locking) [2]. Then the AppSAT attack was launched with the
following parameters: after every 12 iterations of the SAT
attack we query 50 randomly generated patterns to estimate
� and then store the disagreeing patterns as constraints. The
settlement-threshold was set to 5.

The running time of AppSAT against the Anti-SAT+RLL
scheme are shown in Figures 3 and 4. No circuit in these tests
was queried more than 1200 times. We performed SAT-based
equivalence checking to verify the correctness of the RLL key
bits. For 41 out of the 43 combinational circuits the RLL key
bits were recovered correctly. The 2 failed cases both were the

3While our experiments are based on the Anti-SAT method, the attack
can easily be used against other SAT-resilient schemes including CamouPer-
turb [31], SARLock [7], and Li’s [22] Methods.
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Algorithm 2 Given Oracle Access to co and the Expres-
sion for ce Return an Approximate Key k1 With Parameters
ErrorTheshold, and SettleThreshold
1: function APPROXSATDECRYPT(ce , co as black-box)
2: j ← 0
3: M ← ce(i, k1) �= ce(i, k2), F ← true
4: while F ∧ M is solvable do
5: Solve F ∧ M with î , k1, k2
6: ô← co(î)
7: F ← F ∧ (ce(î, k1) = ô) ∧ (ce(î , k2) = ô)
8: every d rounds do
9: ANALYZEERROR(F , k1, ce, co)

10: CHECKTERMINATION(F , ce, co)
11: WIREDISAGREEMENT(i j , k1, k2, ce)

12: end while
13: satisfy F with k̂1, k̂2
14: return k̂1 as exact key
15: end function

16: function ANALYZEERROR(F, k1, ce, co as black-box)
17: satisfy F with k1, k2
18: for x̂ ∈ Random Patterns do
19: if ce(x̂, k1) �= co(x̂) then
20: Failed Patterns ← Failed Patterns + 1
21: F ← F ∧ (ce(x̂, k1) = co(x̂))
22: end if
23: end for

24: � ← Failed Patterns

num Random Patterns
25: if � < ErrorThreshold then
26: SettleCount ← SettleCount + 1
27: if SettleCount > SettleThreshold then
28: return k1 as approximate key
29: end if
30: else
31: SettleCount ← 0
32: end if
33: end function

34: function WIREDISAGREEMENT(i, k1, k2, ce)
35: for wires we in BFS search from outputs of ce do
36: if we(i, k1) �= we(i, k2) then
37: mark w as live
38: end if
39: end for
40: end function

c2670 circuit which has an internal AND-tree and hence key
bits behind the tree could not be found. 1 out of 28 sequential
benchmarks failed the equivalence test, again due to internal
low corruptibility blocks. In both cases the invariant is that the
recovered function is a highly accurate approximation of the
target function. The wire-disagreement analysis also settled
towards a cone-shaped structure that we expected once the
RLL bits are resolved, allowing an attacker to spot the output
of the Anti-SAT block on all benchmarks.

TABLE II

BENCHMARK CIRCUITS

Fig. 3. Running time for decrypting ISCAS and MCNC combinational
benchmarks.

Fig. 4. Running time for decrypting unrolled ISCAS sequential benchmarks.

I. Experiments: Error Profiles

The AppSAT error profile can serve as a visual tool for
analyzing the approximation resiliency of protection schemes.
We generated a set of random circuits with a small number of
inputs (9), so that the error value can be precisely calculated
by a sweep of the 512 input patterns. We used ABC [32]
to synthesize randomly generated truth-tables resulting in
circuits with 200-300 gates, and then locked them using
FLL [13], MUX based obfuscation [13], SLL [23], and
RLL [2] using [5]. We first performed AppSAT with no
query reinforcement on these circuits and recorded � with
each iteration as seen in Figure 5a. We then added a 9-input
point-function using Anti-SAT’s approach and performed a
similar attack with the error plotted in Figure 5(b). As can
be seen, Anti-SAT is able to heavily delay achieving a good
accuracy due to the SAT-solver getting trapped in the point-
function. We then attack the same circuits using AppSAT
with 10 random samples being reinforced each iteration and
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Fig. 5. Exact SAT attack error values (�) versus iterations for: a) high corruptibility schemes, and b) the circuits in (a) augmented with an Anti-SAT block.
Figures in the (c) row show the error trend when 10 random queries were reinforced in each step resulting in less iterations and time.

the improvements can be seen in Figure 5(c). Furthermore,
the FLL [13] method shows a higher approximation resiliency
as seen from its square shape � plot. This is primarily due to
the fact that even a single key bit not being resolved correctly
can have a high effect on the corruptibility of the circuit.

J. Deobfuscating SAT-Resilient Schemes

AppSAT reduces a compound locking scheme to a
SAT-resilient scheme. While this in many cases is sufficient for
the attacker, the question is whether a standalone SAT-resilient
scheme can be broken. There are several methods for attacking
such schemes. First is removal attacks [29] where the attacker
finds the flip signal in the circuit and sets it to a constant which
can be assisted by the wire-disagreement analysis in AppSAT.
However, CamouPerturb [31] and [33] proposed designing a
circuit with a striped functionality and then using a flip signal
to correct the functionality. As a result, removing the flip signal
will not return the original circuit. Another possible attack
is the “bypass attack” presented in [10]. In this attack using
the SAT-solver, two different keys, k1 and k2, are selected
from the version space of the point-function scheme. The
disagreeing input pattern set B I = {i ∈ I |ce(i, k1), ce(i, k2)}
is collected using iterative calls to the SAT-solver and then
the output of the circuit is fixated to the value of the oracle
circuit for all patterns in B I . Another method for attacking
a standalone SAT-resilient schemes is to use a majority vote
of 3 or n different ce replicas which are fed with different
randomly selected keys. Such a circuit will always produce
the correct output due to the low corruptibility of the locking
scheme. The second two methods leave the attacker with a
functionally-correct circuit, however, the size and delay of this
circuit will be more than the original circuit.

IV. APPROXIMATION RESILIENT PROTECTION

A. Query Complexity Versus Output Corruptibility

In this paper we present a tree-based approximation resilient
obfuscation scheme. Before we discuss the scheme, we show

that there is a fundamental trade-off between the minimum
number of queries required to resolve a locked circuit using
oracle-guided attacks, and different corruptibility/error mea-
sures. Consider the truth-table view of the locked circuit. The
error matrix E = (eik) of a locking scheme is a 2n×2l binary
matrix where eik = 1 if ce(i, k) �= co(i) and eik = 0 otherwise.

If there are a total of M 1s in this matrix, corruptibility is:

Cr(ce, co) = Pr
i∈I, k∈K

[ce(i, k) �= co(i)]

= |{(i, k)|ce(i, k) �= co(i)}|
|I ||K | = M

2n+l
. (3)

Hence the overall corruptibility is determined by the total
number of disagreeing locations in the 2D truth-table. The
minimum query count depends on how these ones are dis-
tributed throughout the matrix and is generally a complicated
covering problem. Here we focus on when the ones are
distributed evenly where each column has a fixed number of
ones X . This ensures that every incorrect key has at least X
incorrect locations. Approximation resiliency can be achieved
by exponentially growing X .

A hypergraph H is a generalization of a graph denoted by
(V , E), where V = {vi |i ∈ I }, is the set of vertices where I
is the set of vertex indices, and E = {e j |e j ⊆ V ∧ j ∈ J },
is the set of hyperedges, J being the edge index set, and each
hyperedge can group several vertices together. A hypergraph
can be represented by a |V |× |E | incidence matrix A = (ai j )
where ai j = 1 if vi ∈ e j and ai j = 0 otherwise.

An r -uniform hypergraph is a hypergraph where each hyper-
edge connects a fixed number of vertices r . i.e. ∀ei ∈ E,
|ei | = r . A hitting-set or transversal in a hypergraph is a
set T ⊆ V such that T has a non-zero intersection with all
of the |E | edges. The size of the smallest transversal in a
hypergraph is referred to as the transversal number of the
hypergraph τ (H ). As a result, the following connection can
be made between transversals in r -uniform hypergraphs, and
the minimum query set required to disqualify all keys in a
locking scheme that ensures a fixed error count X for each
incorrect key:
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Proposition 1: The minimum number of queries QC
required to deobfuscate a circuit ce to co, where ce has exactly
X erroneous truth-table entries per incorrect key, is equal to the
transversal number of the X-uniform hypergraph H described
by the error matrix for ce versus co.

It is rather obvious that increasing X reduces the size of
the minimum transversal, also that τ (H ) is bounded by a
function of |V | and X . However, a tight analytic bound for
general regular hypergraphs remains an open problem [34].
Some noteworthy results include Alon’s bound [35]:

QC ≤ (2n + 2l)
ln X

X
, (4)

and the bound obtained by Chvátal and McDiarmid [36]:

QC ≤ 2n + 2l� X
2 �

� 3X
2 �

(5)

Zhou [37] presented the bound QC.X ≤ 2n + 2l for logic
locking for the special case when n = l using a matrix
covering problem. However, the above hypergraph bounds
clearly exceed Zhou’s bound which we found to be due to
an error in their proof. In fact the locking scheme that we
present herein exceeds their proposed bound on error.

B. Diversified Tree Logic (DTL)

Consider the point-function tree logic that generates a flip
signal shown in Figure 6. The comparator circuit is comprised
of a layer of XOR gates that lead to an AND-tree. The
AND-tree has an onset size of 1 (it outputs 1 for only a single
input pattern). Assume the AND-tree is constructed only with
2-input AND gates. The idea in DTL is to replace some gates
in this AND-tree with OR/NAND/XOR gates, to control the
onset size and shape. For instance, if t gates in the first layer
of the AND-tree are replaced with OR/NAND gates, the onset
size increases from 1 to 3t , and if replaced with t XOR gates,
the onset size increases from 1 to 2t . Integrating such a tree
carefully into existing SAT-resilient schemes results in locking
schemes with a controllable minimum error count X for all
incorrect keys.

The DTL technique described herein has several benefits.
The designer can tune the error value by selecting the number
and level of AND gates to replace ensuring a certain error
per key value. Replacing several gates in the tree results in
a diversified tree which helps hinder removal attacks that use
functional analysis and signal probability [38] as compared
to tree constructed solely by AND or OR gates. In addition,
an exponentially large X renders SAT termination conditions
and bypass attacks ineffective.

Replacing an AND gate in the tree with an OR/NAND/XOR
gate loosens the equality condition on the inputs to the point-
function. The original AND-tree point-function P(i, k) out-
puts 1 only when (i = k). If we replace a gate in the first layer
of the tree with an OR, the tree outputs 1 for two additional
cases since the OR gate has an onset of size 3. For a general
layer lr the onset consists of 1 case where the two sub-vectors
in the tree match, and two cases for when one sub-vector
matches the key but the other does not, allowing it to take on

Fig. 6. Diversifying the tree logic by replacing AND gates with
OR/NAND/XOR gates results in an increased controllable corruptibility.

22lr−1 − 1 possibilities. This results in X = 1 + 2(22lr−1 − 1)
erroneous locations in each column. Replacing t gates in layer
lr raises this value to the power of t . A similar number
holds when using NAND gates whereas when using XOR
gates, the 1 is dropped from the X value since the onset
size of XOR is 2 rather than 3. The minimum query count
for gate replacements in a general layer lr (lr ranges from
1 to �log(n)�), or combining different gates can be difficult
to represent in closed-form. However, an invariant is that the
minimum query count remains above 2n/X since each query
can remove at most X incorrect keys and X is the onset size
of the diversified tree. These results can be seen in Table III.

C. Integrating DTL With SAT-Resilient Schemes

The DTL block can be integrated with existing SAT-resilient
schemes in order to increase their corruptibility. Three integra-
tion methods are described herein.

1) SARLock: the circuit diagram for this method is depicted
in Figure 8(a). In this scheme we begin by constructing a flip
signal using the output of a DTL block dtl(i, k). However,
the output of the DTL block dtl(i, k) as seen in Figure 7
has no correct key columns as there is at least a single one
in each column. Therefore, a P block can be used to mask
the flip signal when the correct key is applied. The resulting
flip signal which is XORed with a wire in the circuit is:
dtl(i, k) ∧ (k �= k∗). In this integration method the P block
that forms part of the flip signal is “key-only logic”; i.e.
there are no primary inputs that affect the wires in this block.
Therefore, the attacker can remove this logic and model the
entire key-only logic cone with a single new key bit. Inserting
a shuffler that shuffles input signals and keys before they enter
the block can alleviate this issue at the cost of higher overhead.

2) Anti-SAT: unlike SARLock, Anti-SAT does not contain
key-only logic. DTL can be integrated with the double-key
style in Anti-SAT. This is seen in Figure 8(b). In this scheme
a DTL tree is constructed and is replicated to form the
flip condition: dtl(i, k1) ∧ dtl(i, k2) where k = �k1, k2 is
the overall key vector. In this scheme, the first condition in
the flip signal, dtl(i, k1) creates the DTL error matrix seen
in Figure 7. The second condition replicates this matrix in the
key dimension 2|k1| times resulting in 22|k1| columns. In each
replica a number of the rows in the matrix are masked (all set
to 0) creating a number of correct keys in each table replica.
Due to this masking, this integration style can degrade the
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TABLE III

QUERY COMPLEXITY VERSUS CORRUPTIBILITY PER KEY FOR DIFFERENT DTL GATE FLIPS AND INTEGRATION METHODS

Fig. 7. Output pattern of dtl(i, k) for 8-bit i and k. (a) AND-tree. (b) one NAND gate in the first layer (X = 3). (c) one OR gate in the first layer (X = 3).
(d) one XOR gate in the first layer (X = 2). (e) one OR gate in second layer (X = 7). (f) two OR gates in first layer (X = 32).

Fig. 8. Different SAT-resilient schemes integrated with DTL. (a) SARLock-DTL. (b) Anti-SAT-DTL. (c) corrupt and correct DTL scheme.

corruptibility for some keys. However, as seen in Table III the
X value stays within some bound depending on the number
of replaced gates.

SARLock-DTL
3) Corrupt and Correct: and Anti-SAT-DTL can be vulner-

able to removal attacks. Removal-resiliency can be created by
modifying the original logic cone to corrupt its output, and
then using a P block to correct the output of the modified
cone [21], [33]. DTL can be incorporated in a corrupt and
correct manner as well where a controllable number of input
patterns are first corrupted, and then they are corrected using
a DTL generated flip signal. As seen in Figure 8(c) a DTL
block with a fixed pattern i∗ can be used to first corrupt the
output of the original circuit: ccrpt = co ⊕ dtl(i, i∗). Then
the ccrpt is resynthesized to mix the added logic into the
selected cone. Note than since DTL has a more diverse tree
structure, it has a higher chance of getting mixed in with the
original logic after resynthesis improving its stealthiness. Then
the output is corrected using a flip signal: ce = ccrpt ⊕ f li p.
The flip signal is generated as f li p = dtl(i, k) ∨ dtl(i, i∗).

This flip signal will mask (set to 0) a number of rows in the
DTL error matrix, effectively creating a number of correct
key columns. This integration style similar to Anti-SAT-DTL
can degrade corruptibility for some keys, however, it has an
enhanced resiliency against removal attacks [21]. Note that an
additional P(k, k∗) block can be added to the flip signal to
minimize the effect of masking to only the correct key column
at the cost of additional overhead and creating key-only logic.
In order to prevent the attacker from deriving the corrupted
patterns from the DTL structure, functional obfuscation can
be added to the correction DTL.

D. Experiments

We implemented DTL in our C++ framework. We used the
DTL method applied to SARLock, where only the first layer
of tree logic was diversified with OR gates since it produce the
highest corruptibility in a robust manner. The c432 benchmark
circuit which has 36 input wires and 160 primitive gates
was locked with SARLock-DTL with varying tree widths and
number of OR gates inserted in the first layer. The SAT
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TABLE IV

RUNNING TIME AND QUERY COUNT OF SAT ATTACK ON SARLOCK-DTL FOR VARIOUS TREE SIZES AND OR GATE COUNTS
IN THE FIRST LAYER. OVERHEAD IS IN TERMS OF PRE-SYNTHESIS GATE COUNT

Fig. 9. AppSAT error profile for SARLock-DTL with first layer OR gates
inserted.

attack was then run on the locked netlists. It can be seen
from Table IV, with 25 inputs to the tree and 10 OR gates
inserted in the first layer, the SAT attack runtime reaches the
two hour time limit. Such a scheme ensures that 215 queries
are required to resolve the key and that each incorrect key
has 310 = 59049 erroneous locations in the function that it
selects. Since c432 is our smallest benchmark these results
can be significantly improved with larger circuits.

We also ran AppSAT on an 8-input netlist and plotted the
error profile for different number of OR gates inserted into
the circuit. The result can be seen in Figure 9 which shows
how the AppSAT error value does not improve throughout the
attack since every incorrect key ensures a fixed number of
erroneous input patterns. However, as the error is increased,
the query count is also exponentially reduced due to the funda-
mental trade-off. Using the OR-gate diversified tree however,
the corruptibility increases with 3t but query count drops
with 2t which is better than the XOR-based tree proposed
in [37].

V. DISCUSSIONS AND CONCLUSION

In this paper we showed that there is a fundamental trade-off
between corruptibility and query count. This trade-off was
first shown in [37]. However, the OR-gate based DTL method
proposed herein exceeds the bound presented in [37] due to
an error that we discovered in their proof. The bound that we
proposed is based on a well known and long standing problem
in graph theory.

We presented DTL which can be used to improve the cor-
ruptibility of several existing SAT-resilient schemes. To com-
pare this to related work, Anti-SAT’s construction [39] uses

an arbitrary p value which is the onset size of the Anti-SAT
function. By increasing this p higher error values may be
achieved but the paper discouraged this and instead proposed
compounding for increasing error rates which was proven
insecure in this paper. It also did not provide a systematic
way for constructing higher p values which is what DTL
does. In other related work, Yasin et al. [33], [40] presented
SAT-resilient schemes that creates per key corruptibility values
higher than one. They use several methods for this. One is to
use m different P blocks to create m erroneous truth-table
entries and another is to use a hamming-distance detection
block that will create

(n
m

)
erroneous entries. The DTL methods

are lighter since they use a single tree for creating an onset
of size X . Another method is based on using a look-up-table
(LUT) for corrupting and correcting arbitrary input patterns.
The LUT based method can only hide a linear number of input
patterns while our X values are exponential (3t for OR-gate
based DTL). Zhou et al. also presented a construction in [37]
that uses an AND-tree with all first layer gates replaced with
XORs. This scheme is a special case of DTL and has a lower
error-query product compared to OR/NAND-diversified trees.
Furthermore, we proposed several integration methods that can
hinder key-only logic removal and functional-analysis-based
removal with a diversified tree while the construction in [37]
uses a fixed tree with key-only logic.

Another idea for preventing SAT attacks is to use cryp-
tographic functions. Cryptographic functions are known to
be difficult to invert. In fact using SAT solvers to solve
a system of input-output equations to resolve the key is
commonly studied in the cryptography domain. [37] proposes
using the Goldraich’s one-way function to hinder the SAT
attack. In our work we also studied inserting rounds of
a light-weight cipher such as PRESENT into the circuit.
However, the main challenge is that cryptographic functions
defeat SAT solvers either through large integer multiplica-
tion (RSA family of cryptosystems) or through a repetition
of diffusion and confusion layers (block ciphers). Inserting
multiplication units can incur enormous overhead which can
exceed that of implementing the circuit in programmable
logic. Iterative block ciphers on the other hand, achieve their
one-wayness only after repeating a round a significant number
of times. For instance, up to 3 rounds of PRESENT each
of which containing a 1000 gates where reversed with our
SAT attack when PRESENT [41] was inserted in the path
of the key in RLL. Plus it results in key-only logic as it
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is a key-only transformation. Optimized SAT solver based
algebraic attacks [42] can significantly increase the number
of rounds that can be attacked. Hence, overhead and hiding
the cipher round in the circuit can become a limiting factor in
using such methods.

Cyclic logic locking was proposed in [43] as a SAT-resilient
method. However, it was later shown that a variant of the SAT
attack called the CycSAT [44] is able to deobfuscate cyclic
logic locking in seconds by prepossessing the circuit. Even
though cyclic locking may not contribute to the SAT-resiliency
of DTL, it can still be added to the overall circuit to disrupt
structural and wire-disagreement analysis of the locked circuit
helping to hide the DTL logic.

To conclude, in this paper a general approximate SAT-based
attack was presented and a new theoretical foundation for the
problem of logic locking and deobfuscation was proposed.
Furthermore, a novel technique was proposed that with minor
modifications can improve the corruptibility of several existing
SAT-resilient logic locking schemes at low overhead.
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