2430

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

Data Secrecy Protection Through Information Flow
Tracking in Proof-Carrying Hardware IP—Part II:
Framework Automation

Mohammad-Mahdi Bidmeshki, Student Member, IEEE, Xiaolong Guo, Student Member, IEEE,
Raj Gautam Dutta, Student Member, IEEE, Yier Jin, Member, IEEE,
and Yiorgos Makris, Senior Member, IEEE

Abstract—Part II of this paper series focuses on automation
of the extended proof-carrying hardware intellectual
property (PCHIP) framework for data secrecy protection
in third-party IPs, which was presented in part I. Specifically,
we introduce: 1) VeriCoq-IFT, an automated PCHIP framework
for information flow policies and 2) VeriCoq-H, a hierarchy-
preserving Verilog-to-Coq converter. VeriCoq-IFT aims to:
1) automate the process of converting designs from an HDL to
the Coq formal language; 2) generate security property theorems
ensuring compliance with information flow policies; 3) construct
proofs for such theorems; and 4) check their validity in a design,
with minimal user intervention. VeriCoq-H, on the other hand,
seeks to convert the entire functionality of a Verilog design
to its Coq representation while preserving design hierarchy.
It facilitates the development of hierarchical proofs and enables
the construction of hybrid module libraries containing the
HDL code and the corresponding reusable lemmas for each
module. Applicability of our automated VeriCoq-IFT framework
is demonstrated by evaluating trustworthiness of two DES
encryption circuits and several genuine and Trojan-infested
advanced encryption standard (AES) designs, along with the
utility of VeriCoq-H in preventing malicious modification of
sensitive data, such as the secret key of an encryption circuit.

Index Terms—Hardware trust, proof-carrying code,
proof-carrying hardware IP, information flow tracking.

I. INTRODUCTION

N PART I of this paper series, we reviewed the fundamen-
tals of the proof-carrying hardware IP (PCHIP) methodol-

Manuscript received June 26, 2016; revised January 20, 2017;
accepted May 10, 2017. Date of publication May 23, 2017; date
of current version July 20, 2017. This work was supported in part
by the National Science Foundation under Grant NSF-1318860 and
Grant NSF-1319105 and in part by the Army Research Office under
Grant ARO W911NF-12-1-0091 and Grant ARO W91INF-16-1-0124. The
associate editor coordinating the review of this manuscript and approv-
ing it for publication was Prof. Jean-Luc Danger. (Corresponding author:
Yiorgos Makris.)

M.-M. Bidmeshki and Y. Makris are with the Department of Electrical
and Computer Engineering, The University of Texas at Dallas, Richard-
son, TX 75080 USA (e-mail: bidmeshki@utdallas.edu; yiorgos.makris@
utdallas.edu).

X. Guo, R. G. Dutta, and Y. Jin are with the Department of Elec-
trical and Computer Engineering, University of Central Florida, Orlando,
FL 32816 USA (e-mail: guoxiaolong@knights.ucf.edu; rajgautamdutta@
knights.ucf.edu; yier.jin@eecs.ucf.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the authors. The material includes all
RTL source code, the Coq representation, the data secrecy theorems and their
proofs. Contact the authors for further questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2707327

gz
&
Design
in Coq
t w
7 b o
/// § = _g- Pass/Fail
E—, o
HDL Code IFT Policy
Theorems
—
//// Proofs of
IFT Policy Theorems
Fig. 1. Automated PCHIP framework for information flow policies.

ogy and we developed frameworks for information flow track-
ing (IFT) to ensure that a hardware design is secure in terms of
information flow policies. We also presented a new hierarchy-
preserving methodology for the PCHIP framework, on which
our solution for protecting the hardware design against mali-
cious modification of data is based. Despite their tremendous
potential, broad deployment of PCHIP-based solutions faces
certain challenges. Converting HDL code to a formal repre-
sentation, such as the Coq [1] language used in PCHIP, and
developing proofs for security properties, requires additional
knowledge of formal methods, theorem proving environments,
and proof writing. Even for someone who has this exper-
tise, the process is tedious and time-consuming, making IP
developers hesitant to adopt PCHIP. In this paper, we present
our efforts toward automation of the PCHIP framework and
we demonstrate the applicability of our methods in detecting
design flaws and hardware Trojans in cryptographic cores.
The dynamic information flow tracking method presented
in part I of this paper series offers the opportunity to
develop a fully automated PCHIP framework, specifically
geared towards enforcing information flow policies. An initial
attempt in this direction was described in our earlier work [2].
VeriCoq-1FT, shown in Fig. 1, is an automated PCHIP frame-
work for enforcing information flow policies, covering various
tasks such as conversion of the design from HDL to the Coq
formal language, generating security property theorems that
ensure information flow policies, constructing proofs for such
theorems, and checking their validity for the design, with

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

minimal user intervention. Herein, we extend the capabilities
of VeriCog-IFT so that it is able to protect not only outputs
but also intermediate signals in the design. Additionally,
we provide a procedure for automatically establishing the
initial sensitivity levels of all signals.

Applicability of VeriCoq-IFT is demonstrated on two differ-
ent implementations of the data encryption standard (DES) [3],
as well as on the genuine and several Trojan-infested versions
of the advanced encryption standard (AES) [4]. Based on
minimal input provided by the user, trustworthiness of these
circuits with respect to information flow policies is automat-
ically checked. VeriCoq-IFT gathers the required information
through special comments (pragmas) inserted in the HDL
code by the IP designer. IP consumers, on the other hand,
only need to check the validity of these special comments
and utilize VeriCoq-IFT to assess the trustworthiness of the
acquired design. Any alteration of circuit description against
information flow policies causes proofs to fail. This method-
ology is a first essential step towards establishing PCHIP
as a valuable method for assessing credibility of third party
IPs with minimal extra effort. We note that, while both a
static and a dynamic IFT method were introduced in part I,
VeriCoq-IFT is established atop the dynamic one, which
supersedes its static counterpart.

An alternative way through which hardware Trojans may
introduce harmful actions, and which may not always be
detectable through the enforcement of information flow poli-
cies using VeriCoq-IFT, is the malicious modification of
data, such as the key in a cryptographic core. To prevent
such attacks, in part I of this paper series we proposed
a solution based on the general PCHIP framework, which
involves manual development of security theorems and their
proofs. To assist in the process, in our earlier work we
introduced VeriCoq [5], which automates conversion of the
design from Verilog to its Coq representation. However,
VeriCoq performs the flattened functional conversion presented
in part I, removing design hierarchy and, therefore, making
manual proof development very challenging. Therefore, herein
we introduce VeriCog-H, an enhanced version of VeriCogq,
which automatically converts the Verilog design to its Coq
representation following the hierarchy-preserving methodol-
ogy presented in part I. VeriCog-H, whose role in the general
PCHIP framework is shown in Fig. 2, enables hierarchical
proof development. Additionally, hybrid libraries of hardware
modules including proofs of various reusable lemmas can be
developed to expedite the proof development for higher-level
designs. Consequently, the hierarchy-preserving methodology
reduces the proof-writing burden in the PCHIP framework.

Application of VeriCog-H towards facilitating proof devel-
opment for security properties which prevent malicious mod-
ification of data in cryptographic cores is detailed through
an example. We note that this approach is different from the
methodology for detecting malicious modification of data in
third-party hardware IPs which was introduced in [6]. The
latter employs a formal state-space exploration approach for
this purpose, which is limited in verifiable clock cycles and
cannot guarantee the trustworthiness of the design beyond a
given time-stamp. In contrast, the PCHIP-based solution does

2431
IP Developer Trusted IP Bundle IP Consumer
Security Functional .
Properties Specifications HDL Code oy Design
| — o . in Coq
T QP 7
fi < —
i ZZ
Design \:\
in Coq
@ L
=K= ~
S V
S
Coq IDE
Proofs of
Proof Development Security
P Property Pass/Fail
Theorems
Preparation Delivery Evaluation

Fig. 2. General PCHIP framework and VeriCog-H.

not have such a restriction.

The rest of this paper is organized as follows. In Section II,
we illustrate the details of the VeriCog-IFT framework includ-
ing conversion to Coq, generation of security property the-
orems and construction of proofs. In Section III, we depict
the hierarchical conversion of the entire functionality of a
Verilog design to Coq representation within the general PCHIP
framework, as performed by VeriCog-H. Section IV provides
a case study of the static IFT method presented in part I of this
paper series and demonstrates the capabilities of VeriCog-IFT
on two implementations of the DES encryption algorithm, and
several AES designs including a genuine and various Trojan-
infested versions. Additionally, it details the application of
VeriCog-H in preventing malicious modification of the secret
key in a DES core. A discussion is provided in Section V and
conclusion are drawn in Section VI.

II. VeriCoq-IFT IN DETAIL

VeriCoq-IFT is a comprehensive solution for enforcing
information flow policies on hardware designs, as depicted
in Fig. 1. It automates the three intricate tasks of (i) converting
the HDL code to Coq representation, (ii) generating theo-
rems enforcing information flow policies, and (iii) providing
proofs of such theorems. Then, these three essential pieces
are delivered to Coq-IDE, which evaluates the validity of
the proofs for the design. While information flow policies
appear to be simple in principle (e.g., no sensitive data
should leak through untrusted channels), enforcing them in
a design is complicated. In the following sections, we explain
how VeriCoq-IFT automates these three main tasks in the
PCHIP framework to ensure trustworthiness with respect to
information flow policies.

A. Conversion to Coq Representation

VeriCoq-IFT builds upon the HDL-to-Coq conversion rules
defined in the original PCHIP framework [7]-[10] and in
part I of this paper series and enhances them with additional
rules which consider not only precise tracking of signals in
the design but also automation requirements. In this section,

2432

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

module des (desOut, desIn, key, decrypt, roundSel, clk);

desOut;

Rout;

19 assign Lout

(roundSel == 0) 2
20 assign Xin ?

(roundSel == 0) =

22 /+ vericoq sensitiv
23 ass:.gn Rout = X1n -
24 assign FP = { Rout, Lout)
R(Lout), .K_sub(K_sub));

26 crp uO(.P(out),

28 always @ (posedge clk)

29 L #1 Lout;

30

31 always @ (posedge clk)

32 R <= #1 Rout;

33

34 // Select m key.

35 key sel ul ('Kfsub (K;sub); .K (key),
.decrypt (decrypt));

36 .roundSel (roundSel),

39 assign Ié[
40 assign desOut =

42 endmodule

44 module

(K sub K, roundSel,

key sel . decrypt) ;

46 end.module

48 module crp (P
49x’"~4r,~1,
50 endmodule

Fig. 3. Partial Verilog source code of a DES core [11].

we illustrate the conversion of Verilog constructs to their Coq
representation, as performed by VeriCog-IFT. For this purpose,
we utilize the partial Verilog source code of a DES encryp-
tion core [11], shown in Fig. 3, and its Coq representation
generated by VeriCog-IFT, as it appears in Fig. 4.

1) Sensitivity (Secrecy) Tags: To enforce information flow
policies, functionality and result of operations are not impor-
tant. However, a mechanism is required whereby each signal
is accompanied by an attribute, or tag, which demonstrates
its secrecy or sensitivity level, so that the flow of the signal
through the design can be tracked precisely. To this end,
VeriCoq-IFT defines the following types in the Coq repre-
sentation.

sensitivity:=(nat* (option nat))
Stype.

bus_sensitivity := list sensitivity.

sen_list:= list bus_sensitivity.
sensitivity is the type of the tag maintained for each
signal. The first nat in this tuple represents the time stamp in
which the secrecy level has been updated, the usage of which
is described later. The second one, defined as option nat,
represents the actual secrecy level of the signal which evolves
in time. Type bus_sensitivity represents the secrecy
level of buses and is defined as 1ist sensitivity. Note
that VeriCoq-IFT considers all signals in the design, even
single-bit ones, as buses. This allows treating single-bit and
multi-bit signals in the same manner, without the need for
additional definitions. To be able to track the sensitivity levels
of buses through the design, as well as their transitions,
VeriCoq-IFT defines sen_list which is a list storing the
sensitivities of all buses. Each bus has a position in this list,
maintaining its current secrecy level.

Require Import Vericogq ift.

Inductive module :=
| module_des : bus->bus->bus->bus->bus->bus->bus->bus->bus->bus->bus
—>bus->bus->bus->module->module->module
| module_key_sel : bus->bus->bus->bus->bus->bus->bus->bus->bus->bus
—>bus->bus->bus->bus->module
| module_crp : bus->bus->bus->bus->bus->bus->module->module->module
—>module->module->module->module->module->module
I S ... *)

CEURN U R W —

13 Fixpoint module_inst
14 match m with
15 | (module_des desOut desIn key decrypt roundSel clk Lout R IP Xin L

(m:module) :=

16 Rout out FP module_key_sel_ul module_crp_u0) =>

17 (assign Lout (cond (ebinop (econb roundSel) (econb (Const None)))
18 (econb (IP [(64 33), (64 64)1)) (econb R)));
19 (assign Xin (cond (ebinop (econb roundSel) (econb (Const None)))
20 (econb (IP [(64 - 1), (64 - 32)]1)) (econb L)));

21 (assign Rout (ereduce (ebinop Aeconb Xin) (econb out))));

22 (assign FP (ecat (econb Rout) (econb Lout)));

23 (assign L (econb Lout)),

24 (assign R (econb Rout

25 * m les L.

26 (module 1nst module key sel _ul) ;

27 (module_inst module_crp_u0)

28 | (module_key_sel K_sub K roundSel decrypt roundSelH decryptH K8 K7
29 K6 K5 K4 K3 K2 K1) =>

30 + module_ke dy *)

31 (module crp PR K_. sub E X Ss module_sbox8_u7 module_sbox7_u6

32 module_sbox6_u5 module_sbox5_u4 module_sbox4_u3

33 module_sbox3_u2 module_sbox2_ul module_sboxl_u0) =>
34 (*)

35 end

36

37 Definition desOut : bus := Id (

38 Definition desIn : bus := Id L

39 Definition key : bus := Id 2.

40 Definition decrypt : bus := Id 3.

41 (* ... #)

43 Definition des:=
44 module_inst (module_des desOut desIn key decrypt roundSel clk

45 Lout R IP Xin L Rout out FP

46 (module_key_sel K_sub key roundSel decrypt ul_roundSelH
47 ul_decryptH ul_K8 ul_K7 ul_K6 ul_K5 ul_K4
48 ul_K3 ul_K2 ul_KI1)

49 (module_cr

out Lout K _sub u0_E u0_X u0_s

54 Definition init_state : sen_list :=

55 ((0, None):: (0, None):: (0, None) (+ ... #)::

56 ((0, Some 1): 0, Some 1) (0, Some 1) (* *)
57 ((0, Some 2)::(0, Some 2 C 2) (*

58 ((0, None)::nil) :: (=

59 (% ... *)

60 nil

Fig. 4. Partial VeriCoq-IFT generated Coq code for the DES core.

2) Basic Circuit Elements in Coq Representation: VeriCogq-
IFT considers every signal in the design as a bus. Selecting
part of a bus is common in HDLs such as Verilog. Also,
constants have wide usage in expressions and module instanti-
ations. To facilitate manipulation of buses, partial bus selection
and use of constants, and to allow treating them uniformly,
VeriCoq-IFT defines inductive type bus as follows.

bus : Type :=
| Id : nat -> bus
| Part : bus -> nat -> nat -> bus
| Const : option nat -> bus.

Constructor Id is the main constructor for type bus, which
gets a nat representing the corresponding position in the
sensitivity list. Part is used for partial selection of a bus and
VeriCoq-IFT uses [, 1 notation for it. Note that the current
definition of Part restricts indices to constants. Extension
to non-constant indices is feasible but is deferred to future
extensions of this framework. Const creates a bus from
constants. These do not have a position in the sensitivity
list and their sensitivity level is fixed. VeriCog-IFT defines
read and update functions to read or update the current
sensitivity level of a bus, whole or partial, respectively.
VeriCoq-IFT considers all Verilog signal definitions such as

s ,wire and reg as bus in Coq representa-
tion. As an example, note the definition of desOut, desIn,
key, and decrypt inlines 3, 5, 7 and 8 of the Verilog source

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

code in Fig. 3. These signals are defined as bus in the Coq
representation of Fig. 4.

A challenge for partial selection is that Verilog does not
restrict the range of buses to ascending/descending order or to
start/end by index 0. Therefore, to prevent complexities in the
Coq representation, VeriCog-IFT normalizes indices in partial
selection of buses such that the least significant bit (LSB) of
a bus is always referred to by index 0. The Verilog source
of Fig. 3 shows two methods of defining and using ranges.
Specifically, the LSB of the IP bus has index 64, while it has
index 0 in desOut. VeriCoq-IFT normalized the LSB of IP
to index 0, as seen in lines 18 and 20 of the converted code
in Fig. 4.

3) Module Definitions: VeriCoq-IFT converts module def-
initions in the Verilog source code to an inductive type in
the Coq representation, similar to what we described for
the flattened functional model in part I of this paper series.
It creates a constructor for the module and considers module
inputs and outputs as parameters of this constructor. The body
of the module is created in a function named module_inst.
For example, lines 3-11 in Fig. 4 show the created module
type definition for the modules defined in the Verilog source
code of Fig. 3. Then, as shown in lines 13-35 of Fig. 4,
VeriCoq-IFT also creates the module_inst function which
constitutes the body of the modules. More details on the
structure of this function are provided below.

4) Local Signals: VeriCoq-IFT traces all the signals in a
module and, whenever a local signal is needed, it adds it to
the parameter list of the module in the Coq representation,
even though such signals are not present in the port list
of the module in Verilog. For example, consider the local
signals defined in lines 12-17 of the des module in Fig. 3.
As lines 15-16 of Fig. 4 show, these signals are considered as
parameters for this module in its Coq representation. However,
if a local signal is used only to connect module instantia-
tions and is not assigned or read directly inside a module
(e.g. K_sub in des module of Fig. 3), there is no need to treat
it as a module parameter. VeriCoqg-IFT can correctly identify
such local signals and accurately create their equivalent Coq
description.

5) Parameters: VeriCoq-IFT supports Verilog numeric
parameters which are often defined within modules. Since
such parameters can be modified by each module instance,
VeriCoq-IFT considers them as additional parameters when
defining the module in its Coq representation. It also tracks
the parameter definitions in the Verilog source code and passes
the correct values for these parameters when creating module
instances.

6) Module Instantiations: ~ To support hierarchy,
VeriCoq-IFT tracks module instantiations inside a module
and defines them as parameters of the module definition
in the Coq representation. For example, the des module in
Fig. 3 instantiates two modules named crp and key_sel.
As lines 5 and 16 in Fig. 4 show, these modules are added to
the definition of the des module in its Coq representation.

VeriCoq-IFT automatically creates a definition for the top
module of the Verilog source code, representing the top mod-
ule instantiation. For this purpose, VeriCogq-IFT creates the

2433

appropriate variables, parameters and module instantiations.
As lines 37-52 in Fig. 4 show, to instantiate des, VeriCog-IFT
defined the required buses with their corresponding position
in the sensitivity list. It also created two module instances
required for the des module, namely module_key_sel and
module_crp, in order to instantiate module_des. Each of
these two module instances require other module instantiations
which VeriCog-IFT creates recursively and are not shown in
Fig. 4 due to space limitations.

7) Verilog Operations and Expressions: VeriCoq-IFT
defines an inductive type expr in order to build expressions
based on basic mathematical and logical operations of Verilog
as follows.

expr :=
| econb bus -> expr (*bus to expr*)

| euop expr -> expr (*unary operator¥*)

| euop_bit expr -> expr (*unary

operator - 1 bit result*)

| ebinop expr -> expr -> expr (*binary
operator*)

| ebinop_bit expr -> expr -> expr (*binary

operator - 1 bit result¥*)

| ereduce expr -> expr (*sensitivity
reduction*)

| ecat expr -> expr -> expr (*concatenation*)
| cond expr -> expr -> exXpr -> expr.
(*query (?)*)

Note that this definition of expr is meant to work on
the sensitivity tags in Coq representation, not the binary
values of the signals, which we omitted in the conversion
to Coq for information flow tracking purposes, and covers
almost all basic Verilog operations. For example, addition,
subtraction, or logical AND operation are all considered as
binary operations built by the ebinop constructor. Such
definition for expr reduces the effort required for proof
development yet accurately tracks the flow of information
in the hardware design. VeriCoq-IFT identifies the type of
operators and creates their corresponding Coq representation
accordingly, using the appropriate constructors. For example,
we point out the eXclusive-OR operation in line 23 of Fig. 3,
which is converted as line 21 in Fig. 4 using ebinop.

In the PCHIP framework for information flow tracking
presented in part I, certain operations of each design are
considered as sensitivity level reducers (or declassifying
operations). In order to identify such sensitivity reducing oper-
ations, VeriCog-IFT defines a special comment (pragma) as
/* vericoqg sensitivity_reducer */, and wher-
ever it finds this comment in the Verilog source code, it consid-
ers the next operation a sensitivity reducer. For cryptographic
hardware, we consider the eXclusive-OR operation on secret
input and sub-keys as a sensitivity reducer. Consequently,
notice the eXclusive-OR operation of line 23 in Fig. 3 which is
preceded by this special comment. This operation is contained
in the ereduce constructor, as shown in line 21 of its
Coq representation in Fig. 4. We note that not all eXclusive-
OR operations are considered sensitivity reducers. Sensitivity
reducing operations should be individually marked and these
decisions should be verified by the IP consumers using a clean
high-level architecture or block diagram of the design.

2434

VeriCoq-IFT also defines the eval function to evaluate
expressions and produce the corresponding sensitivity levels.
Evaluation of the query operator requires special consider-
ation, which we illustrate next, along with the conditional
statements.

8) Assignments and Conditional Statements: To build the
code block in Coq representation, VeriCog-IFT defines induc-
tive type code as follows.

code :=
| assign bus -> expr -> code
| ifsimp expr -> code -> code
| ifelse expr -> code -> code -> code
| code_cons code -> code -> code.

assign, ifsimp, and ifelse are constructors used for
Verilog assignments, if, and if-else statements, respectively.
The current definition of assign restricts the left hand
side to bus. Nevertheless, this definition does not impose
actual restrictions on the Verilog code, since assignments
which do not follow this rule (e.g. concatenation on the
left hand side) can be broken into several assignments
by the designer. code_cons connects code together and
VeriCoq-IFT uses ; notation for its representation. For further
details, notice the body of the des module in lines 19-36 of
Fig. 3, which are converted to lines 17-27 of Fig. 4 as their Coq
representation. One point to elaborate on in this conversion is
that VeriCog-IFT treats sequential and combinational blocks
in the same way. Actually, when evaluating the code to update
the sensitivity levels of the signals, all statements are treated
sequentially. This does not create any problems for information
flow tracking purposes. It may only delay the evolution of the
sensitivity levels by a few clock cycles.

The importance of maintaining a time stamp together with
the sensitivity levels of signals reveals itself in the evaluation
of conditional statements. Since we omit the functionality
of the operations in the conversion to Coq representation,
there is no way to find out which branch of the condition
is taken upon evaluation. Therefore, VeriCog-IFT evaluates
all branches in Coq representation; when updating the sen-
sitivity levels of buses in the assign statements, it uses the
maximum value of the sensitivity level produced for a signal
on each (virtual) clock cycle. To prevent implicit information
leakage through conditions, when evaluating statements inside
conditional statements VeriCoq-IFT considers the sensitivity
level produced by the condition expression together with each
branch.

9) Initial Sensitivity List: To create the initial sensitivity list
for the hardware design, VeriCog-IFT requires knowing which
signals carry sensitive information and their sensitivity levels.
Thus, to make gathering of such information easier, VeriCog-
IFT defines a special Verilog comment (pragma) in the form of
/* vericoqg init_sensitivity_ level_2 */. This
special comment should appear before signal definition in
the Verilog source code. Its numeric value, which appears
last, is considered as the initial sensitivity level of the signal.
Designers determine this value by considering the number
of sensitivity reducing operations that the signal experiences
through the design. For signals that VeriCoqg-IFT finds no such
information, it assumes the initial sensitivity to be None.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

Note that the initial sensitivity list is comprehensive, con-
taining information for all signals in the design, including
inputs, outputs and local signals. When instantiating the
top module, VeriCog-IFT also creates the initial sensitivity
list using the information gathered through these comments.
To elaborate further, note that the definition of desIn and
key in lines 5 and 7 of the des module in Fig. 3 is preceded
by such special comments. As seen in lines 54-61 of Fig. 4,
VeriCoq-IFT assumes an initial sensitivity of 1 for desIn and
2 for key in the init_state created in Coq representation.

Finding the exact sensitivity level of sensitive signals
requires an understanding of the overall flow of information in
the design, and as mentioned before, determining how many
sensitivity reducing operations act on those signals before
reaching the outputs. To facilitate this task, we can take
advantage of VeriCog-IFT auxiliary capabilities to help the
users. For this purpose, designers need to mark the sensitivity
reducing operations in the design as explained before. They
can use the following procedure to get recommendations on
the initial sensitivity levels.

For each sensitive signal bit b:

1) Set the initial sensitivity level of b to a high value,

e.g., 100, in the initial sensitivity list.

2) Set the sensitivity level of all other signal bits in the
initial sensitivity list to zero.

3) Evaluate the code using the updated initial sensitivity
list until a stable list is reached.

4) Check all output bits in the resulting stable sensitivity
list and consider the minimum reduction in the sen-
sitivity of the signal seen in the output as the initial
sensitivity level of the signal bit b.

We note that this procedure should be performed on a
clean architecture of the design which only comprises high
level blocks and operations, without detailed implementation
information. This ensures that any design flaws or malicious
design modifications will not interfere with the the task of
finding the initial sensitivity levels.

As we explained in this section, the conversion procedure
from Verilog code to its Coq representation is completely
automated in the VeriCoq-IFT framework, without any user
intervention. IP developers are only required to provide nec-
essary information by inserting special comments defined in
the VeriCoq-IFT framework into the HDL code. Similarly, IP
consumers only need to check the validity of those comments
for the corresponding signals and operations.

B. Security Property Theorems

VeriCoq-IFT generates functions and theorems which are
required to ensure the trustworthiness of the design in terms
of information flow policies. For this purpose, it has a function
which is used to evaluate the statements in the code and to
update the sensitivity level based on a time-stamp parameter,
named check_code_sen. VeriCoq-IFT generates theorems
for all the outputs of the top module to ensure that their
sensitivity level remains safe at all times. To elaborate further,
notice the theorem starting at line 7 of Fig. 5, which is
generated as part of the conversion from Verilog to Coq

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

I Definition check_sensitivity t := check_code_sen des init_state t.
2 Definition stable := find_stable_list des init_state 20.

3
4 Definition is_safe_bef_stable_desOut :=
is_safe_bef_stable desOut des init_state (fst stable).

EN

7 Theorem desOut_secrecy : forall (t :
8 ((fst stable) < t) ->

9 is_safe_op_bus_sensitivity (read desOut
10 /\ is_safe_bef_stable_desOut.

11 Proof.

12 intros. split.

13 assert (get_sen_val_sen_list (check_sensitivity t) =

14 get_sen_val_sen_list (check_sensitivity (fst stable))).
15 apply check_code_sen_eq_st.

16 vm_compute. reflexivity.

17 apply H. simpl. omega.

18 assert (get_sen_val_op_bus (read desOut (check_sensitivity t)) =
19 get_sen_val_op_bus (read desOut

20 (check_sensitivity (fst stable)))).

21 apply read_sen_eq_st. apply HO.

22 assert (is_safe_op_bus_sensitivity (read desOut

nat),

(check_sensitivity t))

23 (check_sensitivity t)) =
24 is_safe_op_bus_sensitivity (read desOut
25 (check_sensitivity (fst stable)))).

26 apply op_bus_same_sen_val_is_safe. apply Hl. rewrite H2.
27 vm_compute. tauto. vm_compute. tauto.

28 Qed.

Fig. 5. VeriCoq-IFT generated theorem and proof for the DES core.

representation in the VeriCoq-IFT framework. Since the des
module in Fig. 3 has only one output, namely desOut,
VeriCoq-IFT generates a theorem stating that the sensitivity
level of desOut remains safe at all times. This theorem
covers all 4 requirements presented as theorem generation
functions in part I. Assuming that the initial sensitivity level
information and sensitivity reducing operations are provided
accurately, proving this theorem ensures that no sensitive
information is leaked through this primary output of the
design. We describe the details of these theorems in the next
section, which illustrates the proof.

Some Trojans may not leak sensitive information to an
output of the hardware IP design. Instead, they establish a side-
channel inside the design, e.g., by manipulating the power con-
sumption or the leakage current, to facilitate leaking sensitive
information indirectly [12]. While VeriCoq-IFT cannot auto-
matically detect such side-channels, it provides a special com-
ment as /* vericoq force_nonsensitive */ for
the designers or, more importantly, the IP consumers, to mark
specific signals which they might be suspicious of leaking
sensitive information. VeriCoq-IFT also generates security
theorems for these specific internal signals, in order to ensure
that no sensitive information reaches them.

C. Proofs of Security Theorems

Proofs of security theorems generated by VeriCoq-IFT
are constituted in two parts. Since the sensitivity level of
the primary inputs does not change and we do not have
any sensitivity enhancing operator, the sensitivity list should
reach a stable condition in which further code evaluations
do not change the sensitivity values in the list. To find
the clock cycle at which the sensitivity list becomes stable,
VeriCoq-IFT defines a function named find_stable_
list. Using this function, VeriCoq-IFT can automatically
find the stable clock cycle, and its usage is found in line
2 of Fig. 5. This function evaluates the code cycle-by-cycle
and returns the clock cycle at which the resulting sensitiv-
ity list evaluated in two consecutive clock cycles is equal.
Before the sensitivity list stabilizes, VeriCogq-IFT evaluates
the code cycle-by-cycle and checks whether the sensitivity of

2435

the target signals is safe. This is performed using a function
is_safe_bef_stable called specifically for desOut in
lines 4-5 of Fig. 5. To prove this part, VeriCog-IFT evaluates
this function by computation.

After the sensitivity list becomes stable, VeriCoq-IFT
uses proof-by-induction. VeriCog-IFT proves a lemma named
check_code_sen_eq_st, which states that after stabiliza-
tion of the sensitivity list, further evaluation of the code does
not change the sensitivity values, and its application is shown
in lines 13-17 of the proof in Fig. 5. Using this lemma,
the theorem for not leaking sensitive information is proven.
Since the lemma is proven generally for all codes, proofs of
all generated security property theorems can be constructed
similarly and automatically, which is a big advantage of the
VeriCog-IFT framework.

II1. VeriCoq-H: HIERARCHICAL VERILOG
TO CoQ CONVERTER

Although information flow polices, enforced automatically
by VeriCoq-IFT, are able to capture sensitive information
leakage through the outputs or suspicious signals, they can-
not thoroughly prevent or capture malicious modifications
of sensitive data in the design. As an example of such
malicious modifications, consider a hardware Trojan which,
upon activation, sets the key to a constant or a value created
from the plaintext or the original key through a transformation
known to the attacker. Such action might not be detected by
functional tests due to its rare activation, yet can disrupt the
core functionality and leak sensitive information because the
attacker obtains the key.

In order to protect the hardware design against such attacks,
in part I of this paper series we presented a solution based
on the general PCHIP framework. As opposed to the PCHIP
framework for information flow policies implemented by
VeriCoq-IFT, which does not consider the functionality of
operations and only tracks the flow of information, the general
PCHIP methodology converts the exact functionality of the cir-
cuit to the Coq representation. Using this general framework,
security properties which prevent malicious modifications of
data can be developed and proven. We note that, besides
conversion of the design to its corresponding Coq representa-
tion, generating these security properties and proving them is
design-dependent, still requires the developer’s effort, and is
not yet automated.

Earlier, we introduced VeriCoq [5] for automated conversion
of the exact functionality of a hardware design in Verilog to
its corresponding Coq representation based on the hierarchy
flattening methodology presented in Part I. A key limitation in
VeriCoq is, that similar to VeriCoq-IFT, it flattens the design
hierarchy. For information flow policies, flattening the hier-
archy helps to automate the entire framework including the
proofs. In case of the general PCHIP, however, it makes the
manual development of proofs for security property theorems
complicated. In this section, we introduce an enhanced version
of VeriCoq, namely VeriCoq-H, which converts the design to
its Coq representation according to the hierarchy-preserving
methodology of part I. As we mentioned earlier, this conver-
sion approach enables the development of hierarchical proofs

2436

| Require Import Vericoq.
2

3 Module Type module_sboxl.
4

5 Definition instantiate (addr dout : bus) (t:nat) :=
6 (+ ... #)

7.

8 End module_sboxl.

9

10 (* Other sub-modules *)

11

12 Module Type module_crp.

13

14 Parameters E X Ss : wire.

15

16 Declare Module sboxl_u0 : module_sboxl.

17 Declare Module sbox2_ul : module_sbox2.

18 (+ ... #)

19

20 Definition instantiate (P R K_sub : bus) (t:nat) :=
21 (adoif (

22 (* oo *)

23) t)

24 /\

25 (% oo. *)

26 (sbox2_ul.instantiate (X [(48 7), (48 12)1)
27 (Ss [(32 - 5), (32 - 8)]) t)

28 (sboxl_u0.instantiate (X [(48 - 1) (48 - 6)1)
29 (Ss [(32 - 1), (32 - 4)]) t)

31 ﬁ:nd module_crp.
(* e #)
34 Module Type module_des.
wire.

:36 Parameters K_sub IP FP L R Xin Lout Rout out :

38 Declare Module crp_u0 : module_crp.
39 Declare Module key_sel_uk : module_key_sel.

41 Definition instantiate (desOut desIn key decrypt roundSel clk

42 : bus) (t:nat) :=

43 (adoif (

44 (anoif (expr_assign Lout (cond (eeq (econb roundSel)
45 (econv (lo::nil)))

46 (econb (IP [(64 — 33), (64 — 64)]))

47 (econb R))));

48 (anoif (expr_assign Xin (cond (eeg (econb roundSel)
49 (econv (lo::nil)))

50 (econb (IP [(64 1), (64 32)1))

51 (econb L))));

52 (% ... %)

53) t)

54 /\

55 (doif (

56 (noif (upd_expr L (econb Lout))) [

57 (noif (upd_expr R (econb Rout)))

58) t)

59 /\

60 (crp_u0l.instantiate out Lout K _sub t) /\

61 (key_sel_uk.instantiate K_sub key roundSel decrypt t)

63 ﬁ:nd module_des.
65 Module Type module_des_top.
67 Parameters desOut desIn key decrypt roundSel clk : bus.

68

69 Declare Module des_top :
70

71 Axiom des: forall (t:nat),

72 des_top.instantiate desOut desIn key decrypt roundSel clk t.
73

74 End module_des_top.

module_des.

Fig. 6. Partial VeriCoq-H generated Coq code for the DES core.

and proof reuse. Lemmas proven in sub-modules can be
applied to prove theorems in higher level modules. A similar
hierarchical security theorem proving process has also been
demonstrated on a large-scale SoC design [13]. Moreover,
a library of modules can be created, including the lemmas
and proofs for each module, and utilized for the development
of new designs as well as the proof of their security properties.
The evolution of such a module library will extensively reduce
the burden of proof development for IP designers who choose
to utilize the PCHIP framework in production.

Fig. 6 shows the partial hierarchical Coq representation of
the DES core of Fig. 3 generated by VeriCogq-H, following
the hierarchical formal model presented in Part I. To assist
with understanding it, a few details or additional capabilities
of VeriCoq-H are described below.

A. Parameters

VeriCoq-H handles Verilog numeric parameters similar to
VeriCoq-IFT and considers them as additional arguments when
defining the module through the instantiate function in

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

its Coq representation. It also tracks the parameter definitions
in the Verilog source code and passes the correct values for
these parameters when creating module instances.

B. Top Module Instantiation

VeriCoq-H automatically creates an axiom for the top
module of the Verilog source code, representing the top
module instantiation. For this purpose, VeriCog-H creates the
appropriate variables, parameters and module instantiation.
As lines 65-74 in Fig. 6 show, a Type is defined
for the top module and an axiom is created to instantiate des,
corresponding to des module as the top module in the Verilog
source code of Fig. 3.

C. Part Selection

VeriCog-H handles part selection similar to VeriCoq-IFT
and uses the same [,] notation. Likewise, it normalizes
indices in part selection of buses such that the least significant
bit (LSB) of a bus is always referred to by index 0. As an
example, note the part selection of signal IP in lines 46 and 50
of the Coq representation in Fig. 6, corresponding to
lines 19-20 of the Verilog source code of Fig. 3.

The code generated by VeriCoq-H, as partially shown
in Fig. 6, is directly usable in the Coq environment to
develop proofs for the desired security properties, such as
theorems which prevent malicious modification of data in
cryptographic cores, as we show in Section IV-C. The first
line of Fig. 6 imports a Coq library containing the general
PCHIP definitions.

IV. DEMONSTRATION ON CRYPTOGRAPHIC HARDWARE

In this section, we demonstrate the capabilities of the
extended PCHIP frameworks by evaluating trustworthiness
of two DES cores provided in [11] and several genuine
and Trojan-infested AES cores offered in [14]. We first
demonstrate the static IFT approach on an area efficient DES
implementation. We then show how the dynamic IFT method-
ology implemented by VeriCog-IFT can be used to eval-
vate trustworthiness of various genuine and Trojan-infested
cryptographic cores. Finally, using two Trojan-infested DES
cores, we showcase the effectiveness of the PCHIP framework,
as enhanced through the hierarchy-preserving capabilities of
VeriCog-H, in detecting malicious data modifications. Details
of the Verilog source codes, the corresponding Coq represen-
tations and proofs can be found in the supplementary material.

A. Evaluation of DES Cores

A block diagram of the DES [3] algorithm is shown in
Fig. 7. It includes 16 rounds, preceded and succeeded by initial
and final permutations. We mark the eXclusive-OR operations
of each round and the one inside the cipher function as sen-
sitivity reducing operations. Since permutations and rotations
are deterministic, we do not consider them as sensitivity reduc-
ing operations. Input text and key are considered sensitive and
their initial sensitivity levels are assigned accordingly.

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

Input (64 bits)

Left Half (32 bits) |

Key (64 bits)

[Left Haf 28 bits) |

Initialization

[Right Half (32 bits) | [Right Half (28 bits) |

| Binary Rotation | | Binary Rotation |

[pemumtion |-

| Binary Rotation | | Binary Rotation |

[pemumtion -

Cipher

R d 1
oun Function

—l Sub-Key #1 (48 bits)

Cipher

R d 2 .
oun Function

—| Sub-Key #2 (48 bits)

v v

| Binary Rotation | | Binary Rotation |

L[rermusstion |

Cipher
Function

Output (64 bits)

Fig. 7.

—l Sub-Key #16 (48 bits)

Finalization

DES block diagram [3], [15].

1) Area Efficient DES Core: Since encryption rounds in the
DES algorithm are similar, the first DES core, of which part
of the Verilog code is shown in Fig. 3, implements a single
round. Several iterations are then invoked to perform the entire
encryption. The iteration number, which is determined by the
roundSel input, is also considered sensitive.

a) Static methodology: First, we show how the static
IFT approach can be used for evaluating this core. The des
module of Fig. 3, instantiates two sub-modules, the Feistel
function (crp . v) and the key generator (key_sel . v) to per-
form round encryption/decryption and round key generation,
respectively. Detailed analysis of the code reveals a potential
sensitive information leakage for this DES core, which might
occur in the first round. As is evident in Fig. 7, the right
half of the input text, after the initial permutation, does not
go through a sensitivity reduction operation (eXclusive-OR).
Rather, it goes directly to the second round. Analysis of the
partial Verilog source code of Fig. 3, focusing on desIn,
IP, Lout, FP and desOut, reveals the same observation.
Since the permutation operations are deterministic, at least
part of the sensitive input desIn can leak to desoOut.
In essence, this area-efficient design only implements one
round of the algorithm and has a potential risk in leaking
information, which can be caught by PCHIP-based static IFT,
as we show below.

Based on the Verilog-to-Coq conversion rules and the formal
semantic model of part I, this design is converted to Coq.
The complete version of the converted Coq representation for
des.v is shown in Fig. 8.

Static Property Proofs: For each module, we need to denote
the signal secrecy tags and prove the data secrecy properties.
For the des.v module, among all input, output and inter-
nal signals, the input key (key), input plaintext (desIn),
input round count (RoundSel), and internal generated round
keys (K_sub) require protection. Reflected in Coq formal
logic, three axioms are added to indicate the semantics that
the key, desIn, RoundSel, and K_sub have sensitive
tags in all clock cycles. The separation of signal property

2437

1 Definition des : code :=

2 outb desOut;

3 inb desIn;

4 inb key;

5 inb decrypt;

6 inb roundSel;

7 inb clk;

8 wireb K_sub;
wireb IP;

10 wireb FP;

11 regb L;

12 regb R;

13 wireb Xin;

14 wireb Lout;

15 wireb Rout;

16 wireb out;

18 assign_ex Lout (cond (eqg (econb roundSel)

19 (econv (lo o::lo::1lo0::nil))) (econb (IP @ [33, 64])) (econb R));
20 assign_ex Xin (cond (eq (econb roundSel)
21 (econv (lo::lo::lo::lo::nil))) (econb (IP @ [1, 32])) (econb L));

22 assign_ex Rout (exor_key (econb Xin) (econb out));
23 assign_ex FP (econb (bus_app Rout Lout));

25 module_inst2in out Lout K_sub;

27 nonblock_assign_ex L (econb Lout);
28 nonblock_assign_ex R (econb Rout);

30 module_inst3in K_sub key roundSel decrypt;

32 assign_ex IP (perm (econb desIn));
33 assign_ex desOut (perm (econb FP)).

Fig. 8. Coq representation of area efficient DES core for static information
flow tracking.

denotation axioms and circuit code constitutes a key character-
istic of the Coq platform. These axioms act as preconditions
for all security properties extracted from the Coq circuit.
secret_key : (t nat),
bus_sen key t = sensitive.
secret_desIn : (t
bus_sen desIn t = sensitive.
secret_K_sub : (t
bus_sen K_sub t = sensitive.
secret_RoundSel : (t
bus_sen roundSel t = sensitive.
With both the preconditions and the DES circuit itself
available in Coq representation, the next step is to construct
the data secrecy property that we wish to prove and express
it also in Coq. Our requirement that “no internal sensitive
information is leaked through a primary output” is formalized
into the following no_leaking_des theorem in Coq.

nat),
nat),

nat),

no_leaking_des : (t nat),

chk_code_sen des t = non_sensitive.

If the proof can be successfully constructed for the
no_leaking_des theorem given the Coq circuit and the
preconditions, we can then declare that the delivered HDL
code is trusted with respect to data secrecy protection policy.
However, the theorem cannot be proven. In fact, we can prove
the opposite conclusion, i.e. the DES output is sensitive. This
vulnerability stems from the single-round implementation of
DES, which is repeatedly used to perform the entire encryp-
tion. As illustrated in partial Verilog source code of Fig. 3,
in this implementation the intermediate results are visible at
the primary outputs; hence, the right half of the plaintext,
which does not go through a sensitivity reducing operation
in the first round, becomes exposed and causes the security
theorem proof to fail. From an IP customer perspective, this
implies that an IP vendor cannot provide a trusted bundle for
this DES core since a proof cannot be constructed. While this
static IFT approach is effective in successfully revealing design
flaws, such as the one mentioned above, it involves a tedious
manual process and is more suitable for single-stage or small
designs.

2438

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

TABLE I

SUMMARY OF TROJAN INFECTED AES DESIGNS

Group Trojan Trigger Leaking mechanism Detected by VeriCoq-IFT?
1 T100 Always on CDMA like modulation, LFSR initialized by a constant ~ Yes
T200 Always on CDMA like modulation, LFSR initialized by plaintext Yes
T700 Specific plaintext value CDMA like modulation, LFSR initialized by a constant ~ Yes
T800 Specific plaintext sequence CDMA like modulation, LESR initialized by a constant ~ Yes
T1000 Specific plaintext value CDMA like modulation, LFSR initialized by plaintext Yes
T1100 Specific plaintext sequence CDMA like modulation, LFSR initialized by plaintext Yes
T900 Specific number of encryptions ~ CDMA like modulation, LFSR initialized by a constant Yes
T1200 Specific number of encryptions ~ CDMA like modulation, LFSR initialized by plaintext Yes
2 T400 Specific plaintext value AM modulation Yes
T1600 Specific plaintext sequence AM modulation Yes
T1700 Specific number of encryptions ~ AM modulation Yes
3 T600 Specific plaintext value Internal load for side-channel Yes (with guidance)
T300 Always on Enabling internal shift registers for side-channel Yes (with guidance)
T1300 Specific plaintext value Enabling internal shift registers for side-channel Yes (with guidance)
T1400 Specific plaintext sequence Enabling internal shift registers for side-channel Yes (with guidance)
T1500 Specific number of encryptions Enabling internal shift registers for side-channel Yes (with guidance)
4 T1800 Specific plaintext value No leak - deplete battery Not evaluated
T500 Specific plaintext sequence No leak - deplete battery Not evaluated
T1900 Specific number of encryptions ~ No leak - deplete battery Not evaluated

b) Dynamic methodology implemented by VeriCoq-IFT:
We also applied the VeriCoq-IFT framework to evaluate the
trustworthiness of this DES core. This automatically converted
the design to Coq representation and generated the security
theorems and proofs. When provided to Coq-IDE for checking,
however, we observed that the checking of proofs fails. This
is expected, since as we mentioned in the evaluation by the
static approach, this area efficient DES core has the potential
of leaking sensitive information. VeriCog-IFT exposes such
inherent potential problems as well as deliberate violation of
information flow policies by malicious modifications, auto-
matically and accurately, and is therefore capable of handling
larger and more complex designs, as we discuss next.

2) Performance Optimized DES Core: This DES core is
implemented in a 16-stage pipeline, optimized for high perfor-
mance requirements. Evaluation of this pipelined core using
the static methodology is difficult, since we need to verify
every round of encryption implemented by each pipeline
stage separately. For each round, we need to consider its
eXclusive-OR operations as sensitivity reducers while consid-
ering these operations in other stages as normal and verify
the data secrecy property. Using the dynamic IFT method,
however, which can automatically propagate the sensitivity
levels, is much easier and accurate for this purpose. Therefore,
we evaluate this core using only the dynamic methodology.

We converted the design to Coq representation utilizing
VeriCoq-IFT and used its automatically generated theorems
and proofs to evaluate the trustworthiness of this DES core
with respect to information flow policies. Coq-IDE success-
fully passes the proofs of the security property theorems for
this design, thereby guaranteeing that, indeed, it does not
violate any information flow policies.

B. Evaluation of AES Cores

AES [4] is a more sophisticated encryption algorithm as
compared to DES, and can be performed using 128-, 192-,
and 256-bit keys. Fig. 9 shows the block diagram of AES-128
which requires 10 rounds. Along with the genuine AES-128,

[Plaintext (128 bits) | |

9 w0, 3]

Substitute Bytes |

Key (128 bits) |

i [i [Expand Key
([shiftRows]!

3 |

iRound 1 i Wi4, 7]

W[40, 43]
Fig. 9. AES-128 block diagram [4].

the Trust-Hub website [14] provides various Trojan-infested
AES cores. Given the complexity and pipelined structure
of these designs, we only use the dynamic methodology
implemented by VeriCoq-IFT to evaluate these AES cores.
Also, since the Trojan-infested AES designs combine several
leaking mechanisms with various trigger conditions, we group
them by their leaking mechanism for a clearer presentation.
Table I summarizes the Trojan infected AES designs which we
evaluated using VeriCogq-IFT. For each of these designs, on a
Windows 7 computer with 8§ GB of RAM and an Intel Core
i7 processor, the conversion process takes less than a second,
while proof verification completes in about 30 minutes.

1) Genuine AES Core: The genuine AES-128 core is a
10-stage pipelined design based on the block diagram shown in
Fig. 9. We marked adding round key operations (4 operations)
as sensitivity reducers and we defined appropriate sensitivity
levels for the inputs. Then, we used VeriCoq-IFT to convert
this design to its Coq representation and we evaluated the

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

Plaintext . Plaintext .
Ciphertext > Ciphertext
Key AES-128 —> Key AES-128 [—>
Load Load
&) &)
AES-T100 AES-T200
Plaintext . Plaintext .
Ciphertext Ciphertext
Key AES-128 —> Key AES-128 |—>
Comparator/ Comparator/
State Seq. State Seq.
Trigger

Load Load

&) &)
AES-T700/AES-T800 AES-T1000/AES-T1100
Plaintext Plaintext
Ciphertext Ciphertext
Key AES-128 > Key AES-128 —>

Load

&

AES-T900 AES-T1200

Fig. 10. First group of Trojan-infested AES designs with different triggers
and LFSR initializations.

automatically generated proofs for the security property theo-
rems in Cog-IDE. The checking of proofs passes, confirming
that this design abides by the information flow policies.

2) Group 1 of Trojan-Infested AES Designs: These Trojan-
infested AES designs have an additional output in which
the Trojan tries to leak 8 bits of the key using a CDMA
like modulation [12], [16]; their block diagrams are shown
in Fig. 10. The intention is to connect this output, named
load in Fig. 10, to a large capacitive load, and create a power
side channel. The Trust-Hub website provides this Trojan with
various trigger conditions. As Fig. 10 shows, AES-T100 and
AES-T200 are always on. AES-T700 and AES-T1000 are
triggered by a specific plaintext input, while AES-T800 and
AES-T1100 require a predefined sequence of plaintext values
to be activated. AES-T900 and AES-T1200 are triggered after
a predefined number of encryptions. Another variation in these
Trojans is the value used to initialize the LFSR for generating
pseudorandom numbers. In Trojans shown on the left column
of Fig. 10, the LFSR is initialized using a predefined constant
value. Trojans on the right column use a subset of bits from
the plaintext input to initialize the LFSR instead.

We used VeriCoq-IFT to convert these designs to their Coq
representation and we evaluated the automatically generated
proofs of the security property theorems in Cog-IDE. Thereby,
we observe that checking of these proofs fails for the load
output in all of these designs, indicating that VeriCog-IFT
can successfully detect the sensitive information leakage by
these Trojans. Also, as expected, Coq successfully verifies
the proofs of the security property theorems for Ciphertext
outputs, as these do not leak any sensitive information.

2439

Plaintext Plaintext
Ciphertext | — > Ciphertext
Key AES-128 —> Key AES-128 |—>
Comparator/
Trigger Trigger

Antenna Antenna

AM
Modulator

AES-T400/AES-T1600

AM
Modulator

AES-T1700

Fig. 11. Second group of Trojan-infested AES designs which leak the key
by AM radio.
Plaintext . Plaintext .
Ciphertext Ciphertext
Key AES-128 | —> Key AES-128 [—>
—_—|
«
Trigger '§ m'_'
s]
Circuit En8
AES-T600 AES-T300
Plaintext . Plaintext)
Ciphertext Ciphertext
Key AES-128 |—> Key AES-128 [—>
—
I
» Somparator/ » Counter
b State Seq. z
~ - x y
2 Trigger 2 Trigger
Al [] e
"l ! EEEE
Eng En8
AES-T1300/AES-T1400 AES-T1500

Fig. 12. Third group of Trojan-infested AES designs which leak the key by
establishing an internal side channel.

3) Group 2 of Trojan-Infested AES Designs: This group
of Trojan-infested AES designs leak the key by generating
a radio-frequency (RF) signal on an output pin, which is
intended to work as an antenna. They leak the key through
amplitude modulation (AM), easily received and interpreted by
a regular AM radio as meaningful beeps [17]. The difference
between the Trojans in this group is the trigger mechanism,
as shown in Fig. 11. AES-T400 is activated by a predefined
plaintext value. AES-T1600 is triggered by a specific sequence
of plaintext input and AES-T1700 is activated after a prede-
fined number of encryptions.

Evaluation of these Trojan-infested AES designs using
VeriCoq-IFT shows that checking the proofs of the security
theorems for the Antenna output fails for these designs.
Therefore, VeriCoq-IFT can successfully detect this group of
Trojans. Since these Trojans do not modify the AES core itself,
checking the proofs of security theorems for the Ciphertext
output in these designs passes in Coq-IDE, showing that no
sensitive information is leaked by these output ports.

4) Group 3 of Trojan-Infested AES Designs: The third group
of Trojan-infested AES designs that the Trust-Hub website
provides, shown in Fig. 12, do not have a dedicated output
to create the side channel for leaking the key. AES-T600,
one of the Trojan-infested designs in this group, creates an
internal load using a few inverters to leak the entire key and
is activated by a predefined plaintext input. Another type of

2440

Plaintext
Ciphertext : —————]

DES —> DES

==

S

Trigger

Plaintext
> Ciphertext
—>

Key

Key Gen

Trojan
Key Gen

DES-T1 DES-T2

Fig. 13. DES Trojans which modify the secret key.

Trojan-infested design in this group generates § enable signals
as a function of the plaintext input and 8 sub-keys. Each enable
signal is used to activate rotation of the value in an 8 bit
shift register, initialized with “10101010”, to create a power
side channel [12]. As Fig. 12 shows, this type of Trojans are
provided with four trigger conditions similar to Trojans in
the previous groups. AES-T300 is always on, AES-T1300 is
activated by a predefined plaintext, AES-T1400 is triggered
by a specific sequence of plaintext input, and AES-T1500 is
activated after a predefined number of encryptions.

Since these Trojans do not use an explicit output, VeriCog-
IFT cannot automatically generate the information flow policy
theorems for the internal load signals and shift registers.
However, by marking the suspicious signals and registers as
explained in Section II-B, we can instruct VeriCog-IFT to
generate such theorems for these signals. Following this step,
checking the automatically generated proofs for the security
theorems on these signals does not pass in Coq-IDE. This
reveals that these signals obtain sensitive values, thereby
alerting designers to perform further evaluations in order to
either justify existence or remove such assignments.

5) Group 4 of Trojan-Infested AES Designs: The last group
of Trojan-infested AES designs that the Trust-Hub website
provides consists of Trojans which do not leak sensitive
information. These Trojans increase the power consumption
of the design, with the intention of depleting the energy
source (battery) more quickly, and use three different Trig-
ger conditions: predefined plaintext (AES-T1800), specific
sequence of plaintext input (AES-T500) and predefined num-
ber of encryptions (AES-T1900). Since these Trojans do not
leak sensitive information, we exclude them from evaluation
by VeriCoq-IFT. However, since the Trigger condition in two
of these Trojans depends on the plaintext input, which is
sensitive, we can use the same procedure as in Section IV-B.4
to check their safety. Such checking, however, requires design
review by the IP consumers and cannot be performed auto-
matically by VeriCog-IFT.

C. Preventing Malicious Modification of Data

To evaluate our methodology for preventing malicious mod-
ification of data, we developed two Trojan-infested DES cores
by slightly modifying the pipelined DES implementation,
shown in Fig. 13. These Trojans set the secret key to a
constant value once they are triggered and have a simple
structure.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

The first DES Trojan is activated by a specific plaintext
value. Using VeriCog-IFT, we converted this design to the
Coq representation and verified the information flow policy
theorem. Since assignment of a malicious (modified) key
is triggered by the plaintext input, this Trojan alters the
sensitivity level of the key (due to a conditional assignment
based on the trigger value), which then propagates in the
design and violates the information flow policies. There-
fore, the proof of theorems generated by VeriCog-IFT fails
Coqg-IDE evaluation and the Trojan is detected.

Unfortunately, VeriCoq-IFT cannot always detect a mali-
cious modification of sensitive data. As an example, the second
DES Trojan is activated after a predefined number of clock
cycles and does not change the sensitivity level of the secret
key, because the trigger in this case has a sensitivity level
of zero. Therefore, checking the proof of the information
flow policy theorem passes for this design and the Trojan
evades detection. Other methods are also possible to hide
these Trojans. Hence, malicious modification of data cannot
always be prevented by enforcing information flow policies.
To prevent such meddling, we resort to the general PCHIP
framework. In this case, we utilized VeriCog-H to convert
the genuine pipelined DES core to the corresponding Coq
representation and developed theorems ensuring the authentic-
ity of key bits throughout the design. Proving these theorems
was performed hierarchically, wherein lemmas are first proven
in sub-modules and then applied in theorems of higher-level
modules to construct proofs.

As an example, lines 65-69 in the partial Coq representation
of Fig. 14 define a theorem named key_subl_genuine
stating that the first round of encryption is done by an
eXclusive-OR operation on the first sub-key (K1) and the
corresponding signal created from the plaintext input (E).
Also, this theorem ensures that the LSB of the first
sub-key is indeed coming from the corresponding key
input, according to the specifications. To prove this the-
orem, we used theorems crp_u0_X_eq E xor_kl and
kl_bit48_decrypt0_genuine which are proved in
module_des, as seen in lines 27-50 of Fig. 14. To prove
crp_ul0_X_eq E_xor_kl in module_des, we applied
a theorem proved in module_crp which is a sub-
module instantiated in module_des. Similarly, the proof
of theorem k1_bit48_decrypt0_genuine uses theorem
k1l_bit4d8_decrypt0_key_r which subsequently applies
a theorem proven in module_key_sel, a sub-module of
module_des. For Trojan-infested DES designs which mod-
ify the secret key, evaluation of proofs of these theorems in
Cog-IDE results in failure, thereby enabling their detection
by this generalized PCHIP-based framework. Crucially, this
success relies on the hierarchical approach, facilitated by
VeriCog-H, which makes proof construction more streamlined
and facilitates the creation of design libraries consisting of
modules and corresponding reusable lemmas.

In order to compare the hierarchical to the flattened func-
tional model, we also converted the DES core to the Coq
representation using the flattened option and we developed the
corresponding proof for the same theorem. The details of the
converted code can be found in the supplementary material.

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

| Require Import Vericoq ift.
2 (% ... #*)

3 Module Type module_des.
4 Parameters key_r desIn_r (#* ... #)
5 (« ‘)

6

7 Declare Module crp_u0 :
8 Declare Module crp_ul :

: owire.

module_crp.
module_crp.
9 (% ... %)

10 Declare Module key_sel_uk : module_key_sel.
12 Definition instantiate

13 (desOut desIn key decrypt clk :
4 (+ ... %)

bus) (t:nat) :=

17 Theorem kl_bit48_decryptO_key_r:

18 forall (t : nat) (desOut desIn key decrypt clk : bus),
19 module_des.instantiate desOut desIn key decrypt clk t
20 decrypt t = lo::nil ->

21 K1 [(48 - 48), (48 - 48)]
22 Proof.

t = key_r [28, 28] t.
(* oo *)
24 apply key_sel_uk.kl_bit48_decryptO_genuine with (+ ... *)
Qed.

27 Theorem kl_bit48_decrypt0_genuine:

28 forall (t : nat) (desOut desIn key decrypt clk : bus),

29 module_des.instantiate desOut desIn key decrypt clk t —>

30 module_des.instantiate desOut desIn key decrypt clk (S8 t) —>
31 decrypt t = lo::nil

32 decrypt (S8 t) = lo::nil >
33 K1 [(48 48), (48 48)1 (8 t)
34 Proof.

= key [28, 28] t.

(% ... *)

36 apply kl_bit48_decryptO_key_r

37 with desOut desIn key decrypt clk.
38 apply HO. apply H2.

39 Qed.

40

41 Theorem crp_u0_X_eq E_xor_kl:

42 forall (t : nat) (desOut desIn key decrypt clk : bus),
43 module_des.instantiate desOut desIn key decrypt clk t —>
44 crp_u0.X t = bv_xor (crp_u0.E t) (K1 t).

45 Proof .

46 intros.

47 apply crp_u0.X_eq E_xor K_sub

48 with out0 (IP (64 — 33), (64 - 64)]).

49 (% oo *)

50 Qed.

52 End module_des.
54 Module Type module_des_top.

56 Parameters desOut desIn key decrypt clk : bus.
57 Declare Module des_top : module_des.

59 Axiom des: forall (t:nat),
60 des_top.instantiate desOut desIn key decrypt clk t.

62 Axiom decryptO: forall (t:
63 decrypt t = lo::nil.

nat),

65 Theorem key_subl_genuine: forall (t :

66 des_top.crp_u0.X (S t) =

67 bv_xor (des_top.crp_u0.

68 des_top.K1l 48 - 48),
(* / sta at

nat),

(des_top.K1l (S t))
(8 t) = key [2

70 Proof .
71 intros
72 split.

73 apply des_top.crp_u0_X_eq E_xor_kl

74 with desOut desIn key decrypt clk.

75 apply des.

76 apply des_top.kl_bit48_decryptO_genuine
77 with desOut desIn decrypt clk.

78 apply des. apply des.

79 apply decrypt0. apply decryptO.

80 Qed.

81

82 End module_des_top.

Fig. 14. Partial hierarchical proof construction to prevent malicious modifi-
cation of data in the pipelined DES core.

While proof development style varies across developers
(e.g., by proving different intermediate lemmas or employing
different Coq tactics), the key advantage of the hierarchical
functional model is that it provides separate Type
definitions for each Verilog module. This modularity enables
development of lemmas inside a module, independent of the
higher-level module that instantiates it and without the need to
track and globally define local module signals, as required by
the flattened model. In turn, this supports lemma reusability,
which can significantly shorten proof development time.

As an additional experiment to corroborate the advantages
of the hierarchical over the flattened functioal model, we also
developed theorems to protect the key in a basic RSA core.
A clean and Trojan-infested version of an RSA core, which
replaces the secret key based on a trigger condition, can be
found on TrustHub [14] in VHDL format. After converting

2441

both versions to Verilog and applying the proposed method,
we concluded that checking the corresponding proof passes
for the clean design but fails for the Trojan-infested one. The
codes for both the hierarchical and the flattened functional
model, as well as the pertinent theorems and proofs, are
provided in the supplementary material.

V. DISCUSSION

VeriCoq-IFT provides an automated PCHIP framework for
information flow tracking in hardware cores, which is highly
effective in preventing infestation of malicious capabilities
seeking to leak sensitive data. However, similar to any other
information flow tracking methodology, VeriCoq-IFT relies on
trusted and accurate labeling of the initial sensitivity values
and declassifying operations, in order to effectively track the
flow of sensitive information in the design. In Section II,
we described a procedure to find the initial sensitivity values
of sensitive signals. Nevertheless, to make the best use of
VeriCoq-IFT, designers and IP consumers should carefully
review the VeriCog-IFT labels in the design and should be
able to justify them with precise reasoning based on a clean
high-level architecture or block diagram of the design.

The scope of protection provided by PCHIP is limited
by what is covered by the agreed upon security properties.
Therefore, a carefully selected set of security properties is
required, commensurate with the protection level sought by
each application. Additionally, while enforcement of informa-
tion flow polices can effectively protect the design against
leakage of sensitive information, the scope of these security
properties pertains only to information flow. For example,
such security properties and, consequently, VeriCoq-IFT, are
not geared towards guaranteeing functional correctness of the
hardware design. Moreover, tampering with sensitive infor-
mation cannot always be captured by enforcing information
flow policies. Nevertheless, the general PCHIP framework is
extensive enough to address such aspects of security require-
ments in a cryptographic hardware IP design by combining
VeriCoq-IFT with the original PCHIP method, enhanced with
VeriCog-H to convert the functionality of a design to a
hierarchy-preserving Coq representation whereon formal rea-
soning on functionality can be hierarchically performed.

Moreover, the generalized PCHIP-based framework is
mainly geared towards design-level attacks which use primary
outputs to digitally leak sensitive information. Stealing infor-
mation through other means, such as side-channels (e.g. power,
timing, etc.), is not directly addressed through the proposed
methods. Nevertheless, such side channel-based Trojans may
still be detected indirectly, as we presented through a few
examples in Sections IV-B.2 to IV-B.4. This happens when
a primary output, for which VeriCog-IFT automatically gen-
erates security theorems, is proven by the proposed method to
carry sensitive information due to malicious design modifica-
tions. If this signal is the source from which the side channel-
based hardware Trojan obtains the sensitive data, such as in
the MOLES [16] side-channel attack, the Trojan is indirectly
detected. The same holds true when an internal signal is used
as the source of leakage for the side-channel attack. In this
case, however, the user needs to annotate the internal signals

2442

which are deemed suspicious, so that VeriCoq-IFT will auto-
matically generate the corresponding security theorems. Such
user guidance is not inconsistent with the practice required
by many other hardware Trojan detection methodologies such
as FANCI [18], VeriTrust [19] or ATPG-based methods for
Trojan detection [20], [21]. Moreover, these methods focus
on identifying nearly unused circuits or rare triggers as signa-
tures for hardware Trojans and do not incorporate a notion
of information flow. Hence, detection of a trigger is the
only mechanism through which these methods may detect a
side channel-based hardware Trojan. However, as summarized
in Table I, several among the hardware Trojans that we studied
in our experiments are always on and, therefore, evade these
Trojan detection methodologies, while still being detected by
the PCHIP-based solutions proposed herein.

Finally, our conservative information flow model imple-
mented by VeriCog-IFT is less accurate as compared to
recently introduced methodologies such as SecVerilog [22] and
the gate-level based information flow tracking for hardware
Trojan detection [23]. Therefore, even though we have not
encountered this situation in our experiments, it is possible
that it may introduce false positives during circuit evaluation.
SecVerilog, on the other hand, is not geared towards hardware
Trojans, which is specifically considered in our methods, while
hardware Trojan detection based on gate-level information
flow tracking relies on model checking which is limited due
to the state explosion problem in larger designs. Overall,
the proposed work constitutes a powerful alternative approach
for addressing data secrecy protection based on PCHIP-based
information flow tracking, whose limitations may be further
mitigated through further research and development.

VI. CONCLUSION

In part II of this paper series we described our efforts
towards automating the extended PCHIP frameworks whose
foundations we presented in part I. We first introduced
VeriCoq-1FT, which provides a fully automated PCHIP frame-
work for enforcing dynamic information flow policies, wherein
designers only need to annotate the HDL code with minimal
required information, such as the initial sensitivity levels
and the declassifying operations. Based on this informa-
tion, VeriCoqg-IFT automatically generates the Coq representa-
tion, theorems and proofs required for enforcing information
flow policies. In our experiments, VeriCoq-IFT successfully
revealed design flaws and/or malicious capabilities hidden
inside various genuine and Trojan-infested DES and AES
implementations. We then presented VeriCog-H, a method
for converting the exact functionality of a design from HDL
to its Coq representation, based on the hierarchy-preserving
functional model described in part I. We demonstrated how
it can be used to hierarchically develop proofs of security
properties for a design and we detailed its utility through an
example of preventing and/or capturing malicious modification
of sensitive data in hardware cores. Notably, VeriCog-H facil-
itates proof construction and development of hybrid hardware
module libraries containing HDL code and proof of reusable
lemmas for the module, thereby significantly reducing the
burden of proof writing.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 10, OCTOBER 2017

In our ongoing research, we plan to expand the capabilities
of VeriCoq-IFT and VeriCoq-H by adding support for a few
additional Verilog constructs, such as and
Enhancing the information flow model and reducing its lim-
itations by improving its accuracy, as well as studying the
trade-off between the degree of functionality preserved in the
converted code in the Coq representation and the protection
level achieved, is another direction of our current efforts.
We also plan to explore further automation possibilities in the
general PCHIP framework for various hardware designs, such
as microprocessor IPs and communication cores. Expansion of
the automated PCHIP framework will help its wide adoption
by the hardware design community, resulting in more secure
and trustworthy third-party IP acquisition transactions.

REFERENCES

[1] INRIA. The COQ Proof Assistant, accessed on Jun. 1, 2016. [Online].
Available: http://coq.inria.fr/

[2] M.-M. Bidmeshki and Y. Makris, “Toward automatic proof generation
for information flow policies in third-party hardware IP)” in Proc.
IEEE Int. Symp. Hardw.-Oriented Secur. Trust (HOST), May 2015,
pp. 163-168.

[3]1 Data Encryption Standard (DES), Federal Information Processing Stan-
dards Publication, NIST, Gaithersburg, MD, USA, 1999.

[4] Announcing the Advanced Encryption Standard (AES) Federal Informa-
tion Processing Standards Publication, vol. 197, Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, 2001, pp. 1-51.

[5] M.-M. Bidmeshki and Y. Makris, “VeriCoq: A Verilog-to-Coq converter
for proof-carrying hardware automation,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 29-32.

[6] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proc. ACM
Design Autom. Conf. (DAC), 2015, p. 112:1-112:6.

[7]1 E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Trans. Inf.
Forensics Security, vol. 7, no. 1, pp. 25-40, Feb. 2012.

[8]1 Y. Jin and Y. Makris, “A proof-carrying based framework for trusted
microprocessor IP” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2013, pp. 824-829.

[9] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking

for data secrecy protection and hardware trust,” in Proc. IEEE VLSI Test

Symp. (VTS), Mar. 2012, pp. 252-257.

Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assur-

ance by proof-carrying based signal sensitivity tracing,” in Proc.

IEEE Int. Symp. Hardware-Oriented Security Trust (HOST), Jun. 2013,

pp- 99-106.

OpenCores, accessed on May 21,

http://opencores.org/

[12] L. Lin, M. Kasper, T. Guneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel engi-
neering,” in Proc. Cryptograph. Hardw. Embedded Syst. (CHES), 2009,
pp. 382-395.

[13] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Scalable SoC trust

verification using integrated theorem proving and model checking,” in

Proc. IEEE Int. Symp. Hardw.-Oriented Secur. Trust (HOST), May 2016,

pp. 124-129.

Trust-Hub, accessed on

https://www.trust-hub.org/

D. Rudolf. Development and analysis of block ciphers and the

DES system, accessed on Oct. 10, 2015. [Online]. Available:

http://homepage.usask.ca/~dtr467/400/

[16] L. Lin, W. Burleson, and C. Paar, “MOLES: Malicious off-chip leakage
enabled by side-channels,” in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), 2009, pp. 117-122.

[17] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, “A case

study in hardware trojan design and implementation,” Int. J. Inf. Secur.,

vol. 10, no. 1, pp. 1-14, 2011.

A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification

of stealthy malicious logic using Boolean functional analysis,” in Proc.

ACM Conf. Comput. Commun. Secur. (CCS), 2013, pp. 697-708.

(10]

[11] 2016. [Online]. Available:

[14] Jan. 10, 2016. [Online]. Available:

[15]

(18]

BIDMESHKI et al.: DATA SECRECY PROTECTION THROUGH IFT IN PCHIP—PART II

[19] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “Veritrust: Verification
for hardware trust,” in Proc. ACM Design Autom. Conf. (DAC), 2013,
p. 61:1-61:8.

[20] S. Saha et al., “Improved test pattern generation for hardware trojan
detection using genetic algorithm and Boolean satisfiability,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES), 2015,
pp- 577-596.

[21] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware trojan detection,” in Proc.
Cryptograph. Hardw. Embedded Syst. (CHES), 2009, pp. 396-410.

[22] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in Proc. Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), 2015,
pp- 503-516.

[23] W. Hu, B. Mao, J. Oberg, and R. Kastner, “Detecting hardware trojans
with gate-level information-flow tracking,” Computer, vol. 49, no. 8,
pp. 44-52, 2016.

Mohammad-Mahdi Bidmeshki (S’11) received the
B.Sc. and M.Sc. degrees in computer engineering
from Sharif University of Technology, Tehran, Iran,
in 2004 and 2006, respectively. He is currently
pursuing the Ph.D. degree in computer engineering
with The University of Texas at Dallas. His current
research includes hardware-based security, trusted
hardware design, formal methods in security and
verification, and the applications of machine learning
in computer security.

Xiaolong Guo received double bachelor’s degrees
from the Beijing University of Posts and Telecoms
(BUPT) and the University of London in 2010 and
the M.S. degree from BUPT in 2013. He is currently
pursuing the Ph.D. degree in electrical engineering
with the University of Central Florida, Orlando, FL,
USA. His current research interests include design of
scalable verification methods for hardware IP protec-
tion, trusted SoC verification, cyber security, formal
methods, program synthesis, and secure language
design.

Raj Gautam Dutta received the B.Tech. degree
« in electronics and communication from Visves-
varaya Technological University, India, in 2007, and
the M.S. degree in electrical engineering, with an
emphasis on control systems, from the University
of Central Florida, USA, in 2011, where he is
currently pursuing the Ph.D. degree with the EECS
Department. His current research interests include
development of security solutions for semiconductor
soft IP cores by using formal verification techniques,
design of attack detection and mitigation software
for autonomous systems, and synthesis of robust controllers for cyber-physical
systems.

,.‘
e LY

2443

Yier Jin received the B.S. and M.S. degrees in elec-
trical engineering from Zhejiang University, China,
in 2005 and 2007, respectively, and the Ph.D. degree
in electrical engineering from Yale University in
2012. He is currently an Assistant Professor with the
ECE Department, University of Central Florida.
His research focuses on the areas of trusted
embedded systems, trusted hardware intellec-
tual property (IP) cores and hardware—software
co-protection on computer systems. He proposed
£ various approaches in the area of hardware secu-
rity, including the hardware Trojan detection methodology relying on local
side-channel information, the postdeployment hardware trust assessment
framework, and the proof-carrying hardware IP protection scheme. He is
also interested in the security analysis on Internet of Things (IoT) and
wearable devices with particular emphasis on information integrity and privacy
protection in the IoT era. He received the DoE Early CAREER Award in 2016
and is a Best Paper Award Recipient of DAC’15, ASP-DAC’16, and HOST’17.

Yiorgos Makris (SM’08) received the Diploma
degree in computer engineering from the University
of Patras, Greece, in 1995, and the M.S. and Ph.D.
degrees in computer engineering from the University
of California at San Diego, in 1998 and 2001,
respectively. After spending a decade on the Faculty
of Yale University, he joined The University of Texas
at Dallas, where he is currently a Professor of Elec-
trical Engineering, leading the Trusted and RELiable
’_ Architectures (TRELA) Research Laboratory. His

research focuses on applications of machine learning
and statistical analysis in the development of trusted and reliable integrated
circuits and systems, with particular emphasis in the analog/RF domain.
He was a recipient of the 2006 Sheffield Distinguished Teaching Award and
Best Paper Awards from the 2013 Design Automation and Test in Europe
(DATE’13) Conference and the 2015 VLSI Test Symposium (VTS’15).
He serves as an Associate Editor of IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY and IEEE DESIGN & TEST periodical, and he
has also served as a Guest Editor of IEEE TRANSACTIONS ON COMPUTERS
and IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

