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Abstract— Proof-carrying hardware intellectual property
(PCHIP) is a previously proposed framework for ensuring trust-
worthiness of third-party hardware IP through the development
of formal proofs for security properties designed to prevent
introduction of malicious behavior. Based on this framework, we
introduce new approaches for assuring that the secrecy of internal
information in a hardware design is not compromised by design
flaws or malicious hardware Trojans. Specifically, we devise
two PCHIP-based information flow tracking approaches, which
enhance the formal PCHIP framework with secrecy tags and/or
sensitivity levels in order to provide mechanisms for proving that
sensitive information does not reach undesired sites. To assist in
the development of data secrecy properties, we also introduce the
concept of theorem generation functions, which enable generation
of security theorems independent of the target circuit, thereby
paving the way for proof automation. In addition, we enhance
the PCHIP framework with a hierarchy-preserving methodology
and we show its utility in preventing malicious data modification,
which may indirectly result in sensitive information leakage, such
as by modifying the secret key in a cryptographic core. This
enhanced PCHIP framework also enables development of hybrid
module libraries, which contain hardware description language
code along with proofs of lemmas for these modules. These
module libraries can then be used for hierarchically proving
security properties in higher level designs, thereby reducing the
proof development burden in the general PCHIP framework.
Efforts toward automation of the proposed methodologies, as well
as evaluation of their effectiveness in identifying design flaws or
hardware Trojans in various cryptographic hardware designs are
presented in part II of this paper series.

Index Terms— Hardware trust, proof-carrying code, data
secrecy protection, dynamic information assurance, information
flow tracking.
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I. INTRODUCTION

W ITH sensitive data, such as user names, passwords,
or banking information routinely being stored and

communicated in our everyday use of electronic devices,
data secrecy protection has become a key objective of com-
puter security research. Encryption plays an important role
in preventing the direct exposition of data to adversaries.
However, culprits invest their utmost effort in getting access
to such valuable data through various well-known or newly-
discovered vulnerabilities of computer systems or through
introduction of malicious software. Accordingly, numerous
approaches have been devised toward reducing the likelihood
of sensitive information leakage in such systems. Among them,
information flow tracking (IFT) [1] is a powerful approach for
preventing sensitive information from reaching untrusted sites.
In this approach, labels representing secrecy/trust levels are
assigned to data and operations on data are extended to include
operations on their labels, based on predefined information
flow policies. Access or propagation of data with sensitive
labels is, thereby, restricted to trusted segments of the code or
system and is forced to abide by the desired information flow
policies.

IFT can be implemented at various levels and can approach
the problem from different perspectives. Static IFT enforces
information flow polices at compile time and does not intro-
duce any overhead at runtime [2]. However, its scope of
enforcement is limited. Dynamic IFT seeks to remove this
limitation and implements IFT at runtime [3], at the cost of
introducing performance and memory overhead in the system.
To reduce this overhead and to make IFT more accurate,
hardware-assisted IFT methodologies have also been intro-
duced. For example, the authors in [4] proposed a dynamic
IFT framework with all internal storage elements equipped
with a security tag. Similarly, the authors in [5] focused on
pointer-tainting in order to prevent both control data and non-
control data attacks. Besides IFT, the hardware may also be
enhanced to help with preventing information leakage, such
as in the InfoShield architecture, which applies restrictions to
operations on sensitive data [6]. Similarly, the RIFLE architec-
ture is developed on top of an information flow security (IFS)
instruction set architecture (ISA), where all states defined by
the base ISA are augmented by labels [7]. More recently, a
new software-hardware architecture was developed to support
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more flexible security policies, either for protecting sensitive
data [8] or for preventing malicious operations by untrusted
third-party OS kernel extensions [9]. Authors in [10] extended
IFT to gate-level implementations by modifying the restrictive
IFT operation definitions used in higher levels.

The aforementioned hardware-supported information track-
ing and protection schemes are based on the assumptions that
the underlying hardware infrastructure is trusted and that any
modifications to the hardware architecture have passed func-
tionality and security verification. Yet the recent emergence of
hardware Trojans and hardware-level back-doors as a plausible
threat [11], [12] has casted doubt on the validity of these
assumptions and has provided attackers with alternative leak-
age paths, which current IFT schemes do not cover [13], [14].
Indeed, globalization of the integrated circuit (IC) supply chain
has intensified the concern that unknown and potentially mali-
cious capabilities may be inserted in a circuit or system. While
inclusion of such capabilities is possible at any stage [12],
modifying the hardware at the design stage is far easier than
tampering with its layout mask at fabrication. Additionally,
hardware designers regularly use third-party hardware IPs to
expedite the design process. Consequently, flaws or malicious
capabilities in hardware IPs can easily expose the end system
to attacks. As a result, besides IFT in software, hardware-
level information assurance is also required to ensure that the
hardware itself obeys the desired information flow policies and
does not leak sensitive data, and to establish system-level trust
by detecting design flaws and/or hardware Trojans.

To this end, in Part I of this paper series we introduce
several variants of a formal methodology for assessing trust-
worthiness of a design described in a hardware description lan-
guage (HDL). These variants build upon a previously proposed
proof-carrying hardware IP (PCHIP) framework [15], which
we enhance in order to support IFT and hierarchy-preserving
proof development. Then, in Part II, we describe our efforts
towards automating the enhanced PCHIP framework and we
evaluate the applicability and effectiveness of its capabilities
in detecting design flaws and/or hardware Trojans in various
cryptographic cores. The remainder of this paper is organized
as follows. Section II introduces the threat model considered
in this work, Section III reviews related efforts, and Section IV
provides an overview of the proposed PCHIP-based method-
ologies for data secrecy protection. In Section V, we review
the principles of the original PCHIP framework. In Section VI,
we provide details of the two formal models devised for
supporting IFT within the PCHIP framework. In Section VII,
we review the existing flattened formal model in the original
PCHIP, we present the new hierarchy-preserving alternative,
and we describe how the enhanced PCHIP framework can be
used to prevent malicious data modification. Conclusions are
drawn in Section VIII.

II. THREAT MODEL

The methods proposed in this work seek to detect sensitive
information leakage, caused either by intentional malicious
modifications or by inadvertent flaws in the design of a circuit.
Accordingly, our work mainly targets circuits handling sensi-
tive information, such as cryptographic hardware. We focus

on designs described as HDL code (e.g. soft hardware IP) and
we assume that any leakage will occur in digital form, through
primary physical outputs of the design, to which an adversary
is expected to have access. Since the proposed methods are
only able to reason in the digital domain, information leakage
through side channels (timing, power, etc.) is not directly
considered in our work. However, as we discuss in Part II
of this paper series, a knowledgeable user may be able to
leverage the proposed methods in order to reveal suspicious
internal locations in the design, where the digital information
leaked through side-channels may be originating from.

Our threat model assumes that the attack surface is the HDL
description of the design. Accordingly, the attacker resides
either at the site of a 3rd party IP provider, if the design
is sourced externally, or in-house, if the design is performed
internally. Evidently, a design sourced as 3rd party IP, which
is later modified in-house, also falls within the scope of our
methods. We emphasize that, while a large portion of the
hardware security literature focuses on the inclusion of hard-
ware Trojans at the fabrication stage, other stages of hardware
design and fabrication are not immune to such threats [12].
In fact, the threat model wherein malicious capabilities are
introduced through 3rd party IP has attracted similar levels
of attention and numerous methodologies targeting hardware
Trojans introduced at the design stage have been developed,
as we briefly review in Section III. Indeed, as the use of third-
party hardware IPs has become ubiquitous in contemporary
hardware design, this threat is intensified as not all IP vendors
can be trusted. Even in the case of a trusted hardware IP
vendor, a single rogue adversary involved in the design,
acquisition or utilization of the hardware IP can introduce
malicious capabilities in the design. Moreover, undiscovered
design flaws and in-house attacks can also compromise the
hardware at the design stage. Therefore, developing methods
for detecting sensitive information leakage due to intentional
or inadvertent vulnerabilities in the design of an electronic
circuit has become paramount.

III. RELATED WORK

Several methodologies have been introduced for identifying
hardware Trojans introduced at the HDL code of hardware
designs and soft hardware IPs. For example, FANCI [16] uses
statistical analysis to detect nearly unused logic in a design,
which may be suspicious. Similarly, VeriTrust [17] searches
for dedicated Trojan triggers in the design. While such
methods are systematic, smart Trojans may still evade their
checking mechanisms [18]. Alternatively, COTD [19] employs
controllability and observability analysis of a gate-level netlist
to mark potential Trojan gates. Through controllability- and
observability-based clustering, it asserts that Trojan gates
have significant inter-cluster distance from genuine gates, and
therefore, may be distinguished. Other approaches employ test
patterns, specifically generated and directed towards detecting
hardware Trojans [20], [21]. Such methods have been gradu-
ally improving, yet are still faced with a very large space of
options, which they need to intelligently prune. Furthermore,
none of the above methods focuses on information leakage.
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TABLE I

SUMMARY OF PROPOSED PCHIP-BASED METHODOLOGIES

Several language-level approaches have also been intro-
duced, seeking to enforce information flow policies on hard-
ware designs. Caisson [22] is a hardware description language
with static information flow verification capabilities at design
time. Sapper [23] provides a language which employs static
analysis at compile-time but inserts dynamic checks in the
resulting hardware in order to enforce information flow poli-
cies. SecVerilog [24] enforces information flow policies by
introducing a type system. It is essentially Verilog, which has
been extended with type annotations. SecVerilog is powerful
and provides a very accurate information flow model by
supporting dependent security types (i.e., labels defined as a
function of signal values). Also, while such methodologies are
very useful in designing secure hardware, such as microproces-
sors, their main focus is on storage and timing channels, not
on possible hardware Trojans. Moreover, as explicitly stated
in the threat model considered in [24], these methods assume
a software-level adversary, as opposed to the hardware-level
adversary considered in our work.

Finally, a method which detects hardware Trojans leaking
sensitive information based on gate-level IFT is introduced
in [25]. While this method takes advantage of precise IFT at
the gate-level, it requires exploration of the entire signal/value
space using a SAT solver and/or a model checker, which
results in state explosion and limits its scope. Moreover,
to evade detection in this approach, it is sufficient for an
adversary to have only one operation which propagates the
key to the output (e.g. eXclusive-OR), while hijacking all the
encryption rounds in a cryptographic core.

IV. PROPOSED DATA SECRECY PROTECTION METHODS

The proof-carrying hardware IP (PCHIP) framework [15]
introduced a formal methodology for ensuring trustworthiness
of soft hardware IPs and designs delivered as code in HDL.
PCHIP augments the hardware IP with machine-checkable
formal proofs of security properties which are agreed upon by
the IP developer and the IP consumer and which are crafted in
a way that prevent inclusion of malicious capabilities violating
these properties in the design. The IP consumer may, then, use
an automatic proof checker to verify the proofs and ensure that
the security properties are obeyed by the design.

The original PCHIP framework does not provide any means
for enforcing information flow policies, which are particularly
important for ensuring trustworthiness of cryptographic cores
and hardware IPs that process sensitive data. Nevertheless,
PCHIP is quite flexible and can serve as a foundation for
developing an array of IFT methodologies, each of different
complexity, expressiveness and ease of use. Accordingly, in
this paper we describe four such PCHIP-based methodologies
seeking to protect data secrecy in hardware designs. Table I

contrasts these four methods, enabling a user to select the
most appropriate one, based on the design requirements and
the security properties that need to be proven.

The first two of these methods, which we introduce in
Section VI, are specifically crafted to incorporate IFT in the
PCHIP framework and aim at preventing sensitive information
leakage. The static information flow tracking [26] method
provides a starting point which demonstrates how the HDL
code of a design can be converted to a formal theorem proving
language representation wherein IFT is supported. This initial
option is straightforward and easy to apply, but its scope
is limited and it can only handle simple hardware designs.
In contrast, the dynamic information assurance methodol-
ogy [27] which we introduce next, adds support for more com-
plex and pipeline designs, at the cost of somewhat increasing
complexity and requiring further effort to apply. While early
versions of these two approaches were presented as part of our
initial efforts [26], [27], herein we extend them and present
them in more detail, emphasizing their integration within
the generalized PCHIP framework. Additionally, we introduce
the notion of security property theorem generation functions.
These functions can be used to generate security theorems for
information flow policies, independent of the target circuit, and
are an essential step towards automating the IFT framework.
It is worth noting that these two models are geared towards
manual conversion of the design to a formal theorem proving
language representation and enforcement of information flow
policies, and they intentionally rely on specific procedures for
making such conversion simpler while retaining the essential
requirements for performing IFT in the formal representation.
Moreover, as compared to the original PCHIP framework
which retains the entire functionality, these methods preserve
the structure but only partially retain the functionality of
the hardware design. For example, all binary operations are
represented in the same way in the formal representation.
While efforts towards automating these methods are presented
in Part II of this paper series, we consider it essential to first
describe the manual conversion-based models in order to help
in grasping the basics of PCHIP-based IFT.

The last two of these methods, which we introduce in
Section VII, are motivated by the observation that information
leakage may occur not only through manipulation of infor-
mation flow but also through manipulation of sensitive data,
such as the secret key in a cryptographic core, which may not
be directly detectable through our IFT methods. Therefore,
in order to prevent such malicious modification of sensitive
data and ensure integrity, we resort to a solution employing
the general PCHIP framework which, as opposed to the two
IFT methodologies described above, converts the entire func-
tionality of the design to the formal representation. The first
of these two methods utilizes the flattened functional model
first introduced by the general PCHIP framework. The second
method introduces a hierarchical functional model, which is
based on the flattened model but preserves the hierarchy of
the hardware design in the formal representation. For each
of these two options, we describe how this framework can
be utilized to develop security properties which can prevent
malicious modification of sensitive data in hardware designs.
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Fig. 1. PCHIP framework.

While either the flattened or the hierarchical functional model
can be utilized for this purpose, the hierarchical approach
makes proof development and reuse of previously proved
lemmas significantly easier and is more appropriate for large
designs. However, the flattened model may also provide some
advantages. As we will demonstrate in Part II of this paper
series, the flattened model allows us to build a fully automated
PCHIP-based IFT framework. Also, flattened and hierarchical
functional models can be mixed together, creating a combined
model. In this model, larger modules are converted hierar-
chically while the modules instantiated inside them use the
flattened approach. This provides a degree of flexibility to
developers who may prefer to develop lemmas only for larger
modules and do not want to overuse modules in the formal
representation.

V. PROOF-CARRYING HARDWARE IP (PCHIP) OVERVIEW

In this section, we briefly review the PCHIP framework,
which is depicted in Fig. 1. In this framework, along with
the HDL code for a design, IP developers are required to
develop and deliver another essential piece: formal proofs
that the code abides by a set of security properties that are
agreed upon by both the IP developer and the IP consumer.
These properties do not necessarily impose restrictions on the
details of implementation. Rather, they institute a high-level
boundary of trusted functionality, which prevents misbehavior
or unsolicited actions. For example, a security property for a
microprocessor IP could be defined as follows: Each instruc-
tion is only allowed to access memory locations which are
specified in the corresponding fields of its op-code [28]. This
property prevents stealthy information leakage. However, it
does not restrict the details of instruction implementation.

Mechanized proof development and checking requires a
theorem-proving language and a proof-checking environment,
such as Coq and CoqIDE [29], respectively. Therefore, in
order to be applicable and leverage the rich collection of
hardware IPs developed in HDLs such as Verilog and VHDL,
PCHIP defines conversion rules from HDLs to a Coq rep-
resentation. Consequently, PCHIP does not intervene in the
current hardware IP design and test methodology, as is the
case when introducing a new formal HDL [30]. Rather, it

adds extra steps in parallel to the current design method-
ology, namely converting to Coq, stating security properties
as theorems in Coq, constructing proofs for such theorems
based on the hardware design, and delivering those proofs
along with the HDL code to the IP consumer. PCHIP does
not inflict IP consumers with much extra burden. Along with
the IP developers, they need to agree on the desired security
properties. The onerous task of proof development is, then, the
responsibility of the IP developers. PCHIP can be employed
in various types of hardware and can be adaptively modified
to fit the requirements of the design and the IP consumer.

While PCHIP establishes a very powerful formal framework
for proving security properties of an IP, it does not provide any
means for enforcing information flow policies. Nevertheless,
the underlying representation of a hardware design in the
Coq formal language can be flexibly varied to develop such
a provision. In the following section, we describe how IFT
capabilities can be added to the original PCHIP framework.

VI. INFORMATION FLOW TRACKING IN PCHIP

In this section, we enhance the PCHIP framework to support
IFT in the HDL description of an IP, with the intention of using
this capability for analyzing the security of cryptographic
hardware cores. We start with a static IFT methodology,
targeting small and simple designs, and we then evolve it into a
dynamic IFT methodology which can enforce information flow
policies for larger, more complicated and pipelined hardware
designs. For each methodology, we describe how to express
the hardware design in the formal representation required for
the verification of information flow policies.

A. Static Information Flow Tracking

The first formal model we introduce, named Coq formal
semantic model, is used in the static IFT scheme and is devel-
oped in such a way that it can precisely describe the structure
of the circuit but has loose restrictions on the functionality of
any operators. In other words, the architecture of the circuit is
accurately described in the formal semantic model but proof
writers have flexibility in defining the functionality of the Coq
circuit. This formal semantic model, as we will demonstrate
later, is quite effective in statically tracking information flow
inside the circuit in the PCHIP framework, supporting the
target objective of data secrecy property verification. The
formal semantic model includes preliminary definitions of
signals, syntax of complex expressions, and semantics of
operators.

1) Signal Definition: Values of signals are defined in an
inductive set with two constructors, hi and lo, indicating
high voltage level and low voltage level, respectively. Instead
of defining one-bit signals and multi-bit buses separately, we
unified both definitions under the bus scope, i.e., a one-bit
signal is treated as a one-bit wide bus. The bus is then defined
as a mapping of time, specified in clock cycles and given as a
natural number, onto a bus_value, which is composed of a
list of signal values. The natural number t defines an impor-
tant property in temporal logic, namely that values of buses
vary according to the system clock cycles. We also define a
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function to obtain the width of the bus, bus_length. These
definitions are written in Coq as follows:
Inductive value := lo | hi.
Definition bus_value := list value.
Definition bus := nat -> bus_value.
Definition bus_length (b : bus) :=
fun t : nat => length (b t).

2) Signal Operations: We construct bus handling methods
in the formal semantic model which include logic operations
such as and, or, xor, etc., as well as bus comparisons such
as checking for bus equality, bus_eq, less-than comparison,
bus_lt, etc. Conditional statements of Register Transfer
Level (RTL) code, such as if..else, check whether signals
are on or off. To incorporate this functionality in our formal
semantic model, we add a special function, bus_eq_0, which
compares the bus value to hi or lo. Note that Fixpoint
defines a recursive function in Coq.
Fixpoint bv_bit_and (a b : bus_value)
struct a : bus_value :=
match a with
| nil => nil
| la :: a’ =>

match b with
| nil => nil
| lb :: b’ => (v_and la lb)::(bv_bit_and a’
b’)
end

end.

Definition bus_bit_and (a b : bus) : bus :=
fun t:nat => bv_bit_and (a t) (b t).

Fixpoint bv_eq_0 (a : bus_value)
struct a : value :=
match a with
| hi :: lt => lo
| lo :: lt => bv_eq_0 lt
| nil => hi
end.

Definition bus_eq_0 (a : bus) (t : nat) :
value := bv_eq_0 (a t).

3) Bus Slicing: In a circuit, it is often the case that opera-
tions are performed on certain bits of the bus, but not the entire
bus. Most hardware description languages, therefore, provide
quite flexible syntax to define bus length and bus bit-sequence.
In order to support similar flexibility in our Coq semantic
model, we developed two bus-slicing operations to shuffle data
bits from lower bit positions to higher bit positions and vice-
versa. Bit selection notations are also proposed to simplify
code writing, such as [ , ] for the sliceD function defined
below. The firstn and skipn functions used in these
definitions get a number n and a list l, and return a list
containing the first n elements of l, or a list skipping the
first n elements of l, respectively.
Definition sliceA (b : bus) (p1 p2 : nat) : bus
:= fun t : nat => firstn (p2-p1+1) (skipn
(p1-1) b).

Definition sliceD (b : bus) (p1 p2 : nat) : bus
:= fun t : nat =>
rev (firstn (p1-p2+1)) (skipn p2 (rev b)).

Notation " b [ m , n ] " := (sliceD b m n )

(at level 50, left associativity).

Notation " b @ [ m , n ] " := (sliceA b m n )
(at level 50, left associativity).

4) Expressions: On top of signal definitions and operation
rules, we build expressions to represent more complicated
circuit logic. An expression is defined as an inductive set
with operators to construct new expressions or combine
expressions. Plenty of operators are supported, varying from
basic logic operations (AND, OR, etc.) to sophisticated data
manipulation (S-box mapping, permutation, etc.). The expres-
sion definition shown below is an excerpt from the complete
expression definition, wherein operators have been chosen with
particular attention to common tasks performed in crypto-
graphic IP cores, since it is highly likely that data secrecy
properties will have to be proven for such designs. A constant
value list and a bus can be directly converted to expressions
using the econv and econb constructors, respectively. The
eand, eor and exor constructors connect two expressions
to form a new expression, by performing logical AND, OR
and eXclusive-OR operations, respectively. The exor_key
also performs the eXclusive-OR operation with keys (or sub-
keys) as one input (details of this operation will be elabo-
rated on in Section VI-A.8 and Section VI-B.2). The perm
and sbox constructors are used to indicate permutation and
S-box mapping operations. In this Coq semantic model, it
is unnecessary to specify how the permutation and/or S-box
mapping is actually performed. These structural constructors
liberate the proof writers from tedious functional conversion,
which may be unnecessary for data secrecy property checking
and enforcement of information flow policies.
Inductive expr :=

| econv : bus_value -> expr
| econb : bus -> expr
| eand : expr -> expr -> expr
| eor : expr -> expr -> expr
| exor : expr -> expr -> expr
| exor_key : expr -> expr -> expr
| enot : expr -> expr
| cond : expr -> expr -> expr -> expr
| perm : expr -> expr
| sbox : bus -> expr
(* ... *)

Evaluation of expressions is recursively defined to calculate
the value of an expression at a specified time (denoted by the
t parameter) and return data of type bus_value, a list of
values whose length depends on the width of the underlying
bus. A close look at the eval function supports our claim
that some expressions, such as perm, only denote that a
permutation operation will be performed on the underlying
bus, but do not specify the exact nature of the permutation.
Of course, other expressions, such as eand which performs a
logical AND on two sub-expressions, result in a case where
both functionality and structure are fully specified.
Fixpoint eval (e : expr) (t : nat)
struct e : bus_value :=
match e with

| econv v => v
| econb b => b t
| eand ex1 ex2 =>

bv_bit_and (eval ex1 t) (eval ex2 t)
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| eor ex1 ex2 =>
bv_bit_or (eval ex1 t) (eval ex2 t)

| enot ex =>
bv_bit_not (eval ex t)

| cond cex ex1 ex2 =>
match (bv_eq_0 (eval cex t)) with

| hi => eval ex1 t
| lo => eval ex2 t

| perm ex => eval ex
| sbox b => b t
(* ... *)
end

5) Coq Representation: The definition of signals, expres-
sions and their semantic models paves the way for converting
RTL circuits into Coq representation. When choosing code
constructors, we sought to make the new semantic model
user-friendly. The constructor outb is used to denote output
signals of the module. Similarly, inb means input signals;
wireb represents internal wire signals; and regb denotes
the internal registers (note that, similar to HDLs, the reg
type does not necessarily result in actual registers in the
synthesized model). Two assignment constructors are also
defined, namely assign_*, which works for combinational
logic, and nonblock_assign_*, which is appropriate for
non-blocking assignment in sequential logic. An extra notation
is added to pile the code through the ‘;’ symbol. The selection
of the ‘;’ mark is consistent with the syntax of HDLs.
Inductive code :=

| outb : bus -> code
| inb : bus -> code
| wireb : bus -> code
| regb : bus -> code
| assign_ex : bus -> expr -> code
| assign_b : bus -> bus -> code
| assign_case3 : bus -> expr -> code
| nonblock_assign_ex : bus -> expr -> code
| nonblock_assign_b : bus -> bus -> code
| codepile : code -> code -> code.

Notation " c1 ; c2 " := (codepile c1 c2)
(at level 50, left associativity).

6) Verilog-Coq Conversion Rules: Although multiple HDLs
are available, we chose Verilog as the sample HDL to compose
IP cores. The fundamental Verilog-to-Coq conversion rule
which we need to obey is to keep the original code and desti-
nation code structurally the same. This forms the basis for the
Verilog-to-Coq conversion methodology that we developed.
For example, a combinational assign logic is mapped to an
assign_ex statement and module instantiation is mapped
to a module_inst statement as shown below.

Verilog code:
assign Lout = (roundSel == 0) ? IP[33:64] :
R;

Converted Coq representation:
assign_ex Lout (cond (eq (econb roundSel)
(econv (lo::lo::lo::lo::nil)))
(econb ( IP @ [33, 64])) (econb R));

Verilog code:
crp u0 (. P(out), . R(Lout), .K_sub(K_sub));

Converted Coq representation:
module_inst2in out Lout K_sub;

7) Tracking the Information Flow: In itself, the new formal
semantic model still cannot achieve the goal of facilitating
theorem proving for information flow policies, since it is
simply an alternative HDL to represent the circuit structure.
Information-leaking hardware Trojans can still use signal
bypassing strategies, which propagate sensitive internal data
to primary outputs [13] or disseminate it through Trojan
side channels [14], with little modification of the original
circuit. However, the circuit description is now in a lan-
guage that lends itself to formal reasoning. Therefore, by
adding appropriate elements (i.e., secrecy tags) and logic
for formally reasoning on these elements, we can now
support IFT.

To facilitate tracking of internal sensitive data and proving
of secrecy properties on this data in the new semantic model,
we enhance circuit signals with an additional property, namely
sensitivity. This property is akin to the existing bus_value
property and it allows us to formally examine and prove signal
integrity (from a security point of view) within the entire
design. The chosen Coq platform for our formal semantic
model comes in handy, since it is easy to enhance the Coq
formal logic to support information flow tracking. The only
significant change is that we need to extend the bus definition
so that it will return a bus_value*sensitivity pair at a
specified time t instead of just a bus_value. Sensitivity is
defined as an inductive set with two constructors, sensitive
and non_sensitive, indicating whether the signals are
sensitive and need protection or not. Any output signals of
the target circuit should be of non_sensitive secrecy
tags at any time t. Otherwise we claim that data leakage
channels exist in the circuit and the data secrecy properties are
violated.

Inductive sensitivity := sensitive |
non-sensitive.
Definition bus := nat -> (bus_value *
sensitivity).

8) Security Policies: A security policy defines the legitimate
propagation rules for data secrecy tags as the corresponding
signals travel from inputs through bus operations to outputs.
Three such rules are defined in the static IFT scheme:
(i) Signal assignment: When a bus is the operand of a
unary operator, the unary operator keeps the secrecy tag of
the bus; (ii) Logic/Functional operations: For most of the
logic/functional operations, if any of the input signals are of
sensitive secrecy tag, then the operational outputs need
protection and are assigned as sensitive; (iii) Secrecy
declassification: In order to prevent leakage of sensitive
internal data by illegitimate “declassification”, it is important
to restrict the ability of removing the sensitive tag to a few
well-controlled operators. As a general rule, in cryptographic
cores, eXclusive-OR operations between round keys and
intermediate results are considered as sensitivity reducers.
Similarly, since internal modules are verified independently,
module instantiations are also considered as sensitivity reduc-
ers. Examples are provided in the context of the cryptographic
cores on which IFT is demonstrated in part II of this paper
series.
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B. Dynamic Information Assurance

The methodology of Section VI-A provides a static method
for reasoning about information flow policies in a hardware
design. However, it has some restrictions. Specifically, rea-
soning about multiple rounds of cryptographic or declassifying
operations in a design, such as in a pipelined implementation,
is cumbersome and may not be accurate. In this section, we
enhance this static methodology to be able to dynamically
track the flow of information in a hardware design and
eliminate such restrictions. Moreover, as we will describe
in Part II of this paper series, PCHIP with dynamic IFT
is a more suitable framework for automation. For this pur-
pose, a second formal model, called structural Coq formal
logic, is developed to represent circuit logic in the Coq
platform and to dynamically track information flow within
the circuit.

1) Basic Definitions: The structural Coq formal logic
is defined in such a way that it can accurately map the
data secrecy-related structure of the original circuit to its
Coq representation, while leaving the circuit functionality
unspecified. In contrast to the Coq formal logic of the static
scheme, the Coq representations are significantly simplified in
the new structural Coq formal logic, since circuit functionality
does not need to be explicitly specified. As defined in the
structural Coq formal model, signal values in Coq circuits
represent their sensitivity levels, not electronic values.
Furthermore, circuit signals are not just treated qualitatively as
non_sensitive or sensitive, as in the static scheme,
but are also quantitatively allocated integers: A number
0 means non_sensitive while a positive number indicates
sensitive. A larger number relates to a higher level of
sensitivity, implying that the underlying signal requires higher
level of protection. For example, non-critical control/data
signals, such as input clock signal, loading control, etc.,
are set to value 0, whereas encryption/decryption key and
plaintext are assigned positive integers. As cryptographic
algorithms usually consist of multiple rounds, this enables
easier handling of pipeline designs. However, in simpler
designs, two-state labels may also be employed for the same
purpose. As we will introduce shortly, all signal sensitivities
are managed in a central way (i.e., through a signal sensitivity
list) and the definition of bus is only a number indicating
its position in the list. Other definitions, such as bus slicing,
expressions, etc., are similar to the formal model introduced
in Section VI-A for the static scheme, with the exception that
the calculation will only reflect updating of the bus sensitivity
levels rather than the electronic values.
(* The definition of bus is only a number
indicating the position of the bus in
sensitivity tag list *)
Definition bus := nat.

2) Signal Sensitivity Transition Model: We, then, need a
mechanism to depict the way in which signal sensitivity levels
dynamically evolve when signals pass through circuit logic.
This task is performed by a newly developed signal sensitivity
transition model that involves a set of rules which put restric-
tions on how to upgrade/downgrade (or increase/decrease)
signal sensitivity levels.

To ensure the integrity of the transition model and to prevent
sensitive information leakage from illegal signal sensitivity
downgrading operations, the signal sensitivity transition model
is made conservative, i.e., only a small set of Coq circuit
operations are allowed to downgrade signal sensitivity levels.
The set of sensitivity downgrading operations can be further
divided into two groups discussed below, sensitivity downgrad-
ing expressions and module instantiation.

a) Sensitivity downgrading expressions: These expres-
sions are defined with similar syntax to other expressions but
often perform special operations with sensitive data involved.
In case of cryptographic circuits, the general rule for down-
grading sensitivity of signals is to perform the eXclusive-
OR operation between sensitive data and the key (or sub-
key). For example, eXclusive-OR of round keys with sensitive
data is the only sensitivity downgrading expression for an
advanced encryption standard (AES) core. We note that not
all eXclusive-OR operations are sensitivity reducers. Also,
sensitivity downgrading operations are design-specific and
are determined based on a clean high-level architecture (or
block diagram), independent of the IP vendor implementation.
The IP consumer and the IP vendor should agree on these
definitions beforehand, while the IP consumer should verify
them in the final design. Extension and generalization of
sensitivity downgrading operations through evaluation of a
broader set of designs remains as an interesting topic of further
investigation.

The recursive function expr_sen_eval provides detailed
information on how to evaluate the sensitivity level of an
expression. Specifically, for most operations the sensitivity
level of an entire expression is equal to the highest sensitivity
level among all operands and is obtained by calling the
maximum number selection function boptag, with a few
exceptions of sensitivity downgrading expressions.

Definition boptag (a b : nat) : nat := max a b.

Fixpoint expr_sen_eval (e : expr) (sl :
code_sen)
struct e : bus_expr_sen :=
match e with

| econv v => O
| econb b => nth b sl 0
| eand ex1 ex2 => boptag (expr_sen_eval ex1
sl) (expr_sen_eval ex2 sl)

| eor ex1 ex2 => boptag (expr_sen_eval ex1
sl) (expr_sen_eval ex2 sl)

| exor ex1 ex2 => boptag (expr_sen_eval ex1
sl) (expr_sen_eval ex2 sl)

| eand_bit b => nth b sl 0
| eor_bit b => nth b sl 0
| exor_bit b => nth b sl 0
| eplus ex1 ex2 => boptag (expr_sen_eval ex1
sl) (expr_sen_eval ex2 sl)

| eminus ex1 ex2 => boptag (expr_sen_eval ex1
sl) (expr_sen_eval ex2 sl)

| enot ex => expr_sen_eval ex sl
| eapp b1 b2 => boptag

(nth b1 sl 0) (nth b2 sl 0)
| perm ex => expr_sen_eval ex sl
| exor_key b key => lowertag

(boptag (nth b sl 0) (nth key sl 0))
(* ... *)
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As may be observed in the definition of the boptag func-
tion, it selects the maximum of two sensitivity levels. As an
example, consider the evaluation of the logical AND operation,
as defined in line 6 of the expr_sen_eval function, where
each operand is recursively evaluated and the maximum of
the two sensitivities is selected as the result of the evaluation.
The lowertag function reduces the sensitivity level by 1
and is used for the evaluation of sensitivity downgrading
operations, e.g. exor_key in the above definition, as opposed
to the regular xor which is evaluated similar to other binary
operations. For the evaluation of a constant and a bus, 0 and
the current sensitivity level of the bus in the sensitivity list is
returned, respectively, as seen in lines 4-5 of this function.

b) Module instantiation: Almost all modern designs are
of hierarchical structure with submodules instantiated to per-
form various functionalities, from round key generation to
memory control. Unless the entire design is flattened, this
hierarchy makes it quite difficult to track information flow in
and out of submodules in our formal environment. To prevent
attacks targeting the interface between higher level modules
and their submodules, we propose a sensitivity reshuffling
strategy under which output signals from submodules are
denoted as input signals of the top module. These signals
(outputs from submodules) are called endogenous inputs,
as opposed to primary inputs which, hereafter, are called
exogenous inputs. All sensitivity assigning and transition rules
that apply to exogenous inputs are also valid for endoge-
nous inputs. This reshuffling strategy eliminates the relation
between inputs and outputs of submodules, so that submodules
can adjust signal sensitivity levels independently, including
sensitivity level downgrading operations. This method of
handling submodules and their outputs makes the manual
conversion of the design to its Coq representation simpler.
A flattened, automated method for handling module instan-
tiations, which does not require defining endogenous and
exogenous inputs, will also be presented in part II of this paper
series where we discuss framework automation efforts.

3) Implicit Information Flow: Implicit information flow is
also considered in our sensitivity transition model as attackers
may leverage conditional statements to indirectly leak internal
information. To solve this problem, a conservative signal
sensitivity transition rule is applied, such that the output of the
conditional statement maintains the sensitivity of any of the
inputs, including the condition clause. In our dynamic scheme,
this rule is further specified by the expr_sen_eval function
in Coq as follows:
Fixpoint max_list (l : list nat) : nat :=
match l with
| nil => O
| a :: rl => max a (max_list rl)
end.

Fixpoint expr_sen_eval (e : expr) (sl :
code_sen)
struct e : bus_expr_sen :=
(* ... *)
| cond cex ex1 ex2 => max_list

((expr_sen_eval cex sl) ::
(expr_sen_eval ex1 sl) ::
(expr_sen_eval ex2 sl) :: nil)

(* ... *)

The max_list function selects the maximum in a list of
numbers. Using this function, the expr_sen_eval function
selects the maximum sensitivity among the conditional clause
and the branches when evaluating conditional statements.

This conservative information flow approach may result in
false positives, i.e., the design is secure, but the proof for
security theorems cannot be constructed and our framework
marks it as insecure. To resolve this limitation, further research
and development of advanced and more accurate PCHIP-based
information flow models is required.

4) Signal Sensitivity List: To facilitate the operation of the
signal sensitivity transition model, all signal sensitivity levels
in the target circuit are managed in a centralized way. The
entire sensitivity status of a circuit at a specified time t is
stored in one signal sensitivity list, wherein each element
represents the sensitivity level of one input, output, or internal
signal. IP consumers can easily check the validity of the
data secrecy property by defining the initial status of the
sensitivity list, i.e., the starting point from which the sensi-
tivity information spreads across the whole circuit, and then
monitoring sensitivity levels of all output signals. Although
the data secrecy properties, which serve as the basis for the
proposed scheme, are independent of the circuit functionality
and architecture, generation of the initial signal sensitivity list
is closely related to the circuit structure and its functional
specification. Guidelines are developed below for both IP
vendors and IP consumers to initialize sensitivities for all
signals, including inputs, outputs, and internal signals.

a) Input signals: The assignment of input signal sensi-
tivity levels, including both exogenous inputs (primary inputs)
and endogenous inputs (submodule outputs), can be divided
into two steps: (i) deciding whether input signals contain secret
information, and (ii) computing the sensitivity level of input
signals if they contain secret data.

The first task is mostly completed upon analysis of circuit
functionality and is relatively easy according to the circuit
specification. For example, a DES encryption core would have
plaintext, key, clock signal, round count, and reset signal
as exogenous inputs and round keys as endogenous inputs.
From the DES specification, IP vendors/consumers can recog-
nize that exogenous inputs (plaintext, key, round count) and
endogenous inputs (round keys) contain sensitive information
so that their sensitivity levels should be positive integers
requiring protection against information leakage attacks. Other
inputs, such as the clock signal, do not contain sensitive
information, so their sensitivity levels are set to 0.

After categorizing input signals into sensitive or non-
sensitive, we proceed to the second task, which is to decide
the actual sensitivity levels for sensitive signals, with larger
numbers indicating higher sensitivity. The calculation process
is closely related to the circuit architecture designed by IP
vendors, particularly dominated by (pipeline) stages of the
circuit implementation. While we considered more complex
sensitivity level determination algorithms, we opted for a
simple sensitivity-level downgrading counting method which
is proven very effective in our later demonstrations. According
to this method, after producing the HDL code and constructing
the circuit architecture, the IP vendor will check all paths from
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sensitive inputs to primary outputs and will count the number
of sensitivity downgrading operations along each route. The
sensitivity levels of input signals are then set to the smallest
count of sensitivity downgrading operations among all paths.
Choosing the smallest count ensures that the output sensitivity
becomes zero upon evaluation of a legitimate design in Coq
representation.

Upon receiving the HDL code and the description of the
circuit architecture, the IP consumer will check the validity
of input signal sensitivity levels using the same method.
Because the IP vendor may sabotage the circuit by adding
extra sensitivity downgrading logic to “bleach” sensitive sig-
nals, and make the outputs non-sensitive, all downgrading
operations must be clearly annotated with notes explaining
why and how these operations are performed. We would like to
emphasize that the IP consumer should perform this validation
on a high-level architecture or block diagram of the intended
implementation. In other words, IP consumers compute the
initial sensitivity values using a clean block diagram of the
design, and utilize these values in the HDL code delivered
by the IP vendor to verify the proofs. Checking the validity
of sensitivity reducing operations is also performed similarly,
based on a clean block diagram of the design. This enables an
independent review of initial sensitivity values and sensitivity
reducing operations.

b) Internal signals and output signals: All signals other
than input signals are treated as non-sensitive with level 0.
This is because all internal and output signals have preset (or
random) values when the circuit is reset or powered off, since
in this case they do not contain any sensitive information.
Exceptions may occur for storage elements. For example, non-
volatile memory can keep stored values at power-off mode and
may already contain sensitive information at the moment the
circuit is powered on. This problem is solved because memory
is always treated as a submodule with all outputs categorized
as endogenous inputs under the reshuffling strategy.

As an example application of the above guidelines, an initial
signal sensitivity list for a DES core is shown below, where
the plaintext input, the key, the round count, and the internally
generated sub-key are located at the zeroth, the first, the third,
and the fifth position, respectively.
Definition des_sen_initial : code_sen :=

1::1::0::1::0::1::0::0::0::0::0::0::0::
0::0::nil.

The initial signal sensitivity list, combined with the signal
sensitivity transition model, helps both IP vendors and IP
consumers track the progress of how sensitive information is
propagated and finally absorbed inside the chip.

5) Theorem Generation Functions: To facilitate conversion
of data secrecy properties from natural language to Coq
theorems and to assist with automation of the framework, the
dynamic information flow tracking scheme introduces a new
concept, namely theorem generation functions.

A theorem generation function takes Coq circuits and sensi-
tivity lists as parameters and generates data secrecy theorems
in the Coq platform. The use of theorem generation functions
is a breakthrough in the field of proof-carrying based hardware
IP protection. It simplifies the theorem generation process for

the IP vendor and it provides a safety control capability to the
IP consumer, who may later check the validity of the initial
sensitivity list. Theorem generation functions also separate
the tasks of circuit design and theorem generation, a major
step toward EDA tool development for theorem and proof
auto-generation, and makes it possible to integrate the proof
construction task into the standard IC supply chain.

Before delving into the details of theorem generation func-
tions, we need to introduce a special sensitivity list that
represents circuit security status in a stable mode, if one
exists.

Definition 1 (Stable sensitivity list): A stable sensitivity
list is a special sensitivity list containing circuit secrecy
status at a specified time t, with the key characteristic of
stability, meaning that further evaluations of the code (at
larger timestamps t) do not change the sensitivity levels of
the signals. Denoting coq_circuit as the converted Coq
circuit and stable_list as the stable sensitivity list, if
stable_list represents the current circuit secrecy status,
then the circuit status will not change until the circuit is
reset (or is powered off). In the Coq platform, if the signal
sensitivity evolvement function is update_sensitivity,
the stability characteristic is presented in the form:
update_sensivitity coq_circuit stable_list

= stable_list.

Described in natural language, in the scope of the dynamic
scheme, the data secrecy property means that “no sensi-
tive data has leaked through primary outputs”. Supported
by the signal sensitivity transition model, the “no leakage”
property can be further elaborated into three subproperties:
(i) there exists a stable sensitivity list for the target circuit
implementation, (ii) the stable sensitivity list is achievable
from a legitimate initial sensitivity list, and (iii) the circuit
secrecy status defined by a stable sensitivity list is trusted.
As long as the target circuit and the initial sensitivity lists
are both specified, these three subproperties will, then, be
translated into Coq theorems using three theorem generation
functions.

a) Theorem generation function I (existence): The exis-
tence of a stable sensitivity list is a prerequisite before
proving any data secrecy property for the target circuit.
If we cannot find one or more stable sensitivity lists, we
believe that the target circuit is untrusted because sensi-
tive data can be leaked freely. In the Coq platform, given
the Coq circuit coq_circuit, the signal sensitivity list
sen_list and the signal sensitivity evolvement function
update_sensitivity, we define the theorem generation
function for the stable sensitivity list existence property as:
Theorem stable_list_existence:
update_sensitivity coq_circuit sen_list =
sen_list.

After plugging in the actual Coq circuit and the corresponding
sensitivity list, we can generate and prove the existence
theorem.

b) Theorem generation function II (accessibility): The
existence property demonstrates the availability of a stable
sensitivity list for the target circuit, but it does not provide
evidence that the stable sensitivity list is accessible from the
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circuit’s initial secrecy status. The second theorem seeks to
solve this problem by proving that, given an initial sensi-
tivity list, the circuit will finally achieve stable status after
a finite number of clock cycles. Having the Coq circuit
coq_circuit, the initial signal sensitivity list ini_list,
a finite natural number n, the multiple-step evolvement func-
tion check_sensitivity, and a known stable sensitivity
list stable_list, we define the theorem generation func-
tion for the accessibility property as follows:

Theorem stable_list_accessibility:
forall t : nat, t > n ->
(check_sensitivity t coq_circuit ini_list)

= stable_list.

The selection of the number n is arbitrary, as long as it
is a finite number; typically this number is bounded by the
count of circuit stages. It is also possible that n=0, such that
the initial signal sensitivity list is itself a stable sensitivity
list, a case which sometimes exists in small-scale circuits with
simple architecture.

c) Theorem generation function III (trustworthiness):
Evaluating the trustworthiness of the derived stable sensi-
tivity list is the most critical step when validating a data
secrecy property. Because the stable sensitivity list contains
the complete secrecy status of the target circuit, the goal
of the trustworthiness theorem is to ensure that no sensitive
information is leaked through primary outputs when the target
circuit has reached the stable status. The evaluation of the
trustworthiness process is shown below:

Theorem no_leaking_output:
nth output stable_list = 0. (* For all
outputs *)

6) Data Protection of Intermediate Status: The above devel-
oped three theorems do not fully cover the entire working
status of target circuits because the intermediate secrecy sta-
tus between the initial status and the stable status are left
unprotected. Although the intermediate status may only last
a few clock cycles, the attackers may still be able to leak
internal information during this short transition period. To
overcome this limitation, a fourth theorem generation function
is developed to formally prove that no sensitive information
is leaked before the circuit reaches its stable status.

a) Theorem generation function IV (trustworthiness of
intermediate status): The intermediate status during the tran-
sition procedure which evolves from the initial status to
the stable status also needs protection to prevent infor-
mation leakage. In the Coq platform, given the Coq cir-
cuit coq_circuit and the intermediate signal sensitivity
list intermediate_list, we define the theorem gener-
ation function for the intermediate sensitivity list security
property as:

Theorem no_leakage_intermediate:
nth output intermediate_list=0. (*For all
outputs*)

In the next section, we demonstrate how the general PCHIP
framework can be utilized to prevent malicious modification
of sensitive data which may leak secrets indirectly.

VII. PREVENTING MALICIOUS MODIFICATION OF

SENSITIVE DATA

Even if the data secrecy properties generated through the
aforementioned formal theorems are proven to hold, attackers
may still be able to indirectly compromise security. Specif-
ically, this can be achieved by inserting hardware Trojans
which replace sensitive data, such as the encryption/decryption
keys (or sub-keys), with a value known only to the attacker,
or which create a new key with much less entropy than
the original key, thereby reducing the effort required for
cryptanalysis of the ciphertext. Such Trojans may rely on a
rare trigger [13] for activation; hence, functional and structural
testing may not detect their existence.

The PCHIP-based IFT capabilities introduced in Section VI
cannot fully detect such attacks. The underlying reason for
this shortcoming is the conservative information flow model
employed in our approach for addressing implicit data flows.
Another reason is that only the structure of the circuit is
precisely considered in the conversion of the HDL code to
its corresponding Coq representation, while the functionality
of the operations and signal values are abstracted away. This is
done to make proof development for information flow policy
theorems simpler, as the exact functionality is not crucial in
ensuring that sensitive data does not reach primary outputs.

While one possible approach would be to label critical data
as non-sensitive and all other signals as sensitive, and then
verify that the critical data remains non-sensitive [25], our
conservative information flow model prevents us from using
it. For example, consider loading the key register based on a
load signal in the following code:
always @( posedge clk) begin
if (load == 1’b1)
key_reg <= key_in;

end

In this case, load should be sensitive and key_reg non-
sensitive. During code evaluation, the implicit flow from load
to key_reg results in the the key register to also become
sensitive. While this is a legitimate operation, it violates the
above rule. This is not a problem in [25], since flip-flops in
the gate level model only propagate tags from the input to the
output [31] and do not consider the implicit data flow from
the load signal.

In order to address this limitation and develop theorems
to prevent malicious modification of sensitive data using
the PCHIP framework, we resort to a general PCHIP-based
solution wherein the entire functionality and structure of the
HDL code needs to be converted to the Coq representation.
For this purpose, the newly-introduced IFT capabilities need
to be combined with the scope of the original PCHIP frame-
work [15], [28]. Therein, however, the conversion process,
which we review for the sake of completeness below, flattens
the entire design hierarchy, thereby making proof development
very cumbersome. Therefore, we also introduce a new conver-
sion methodology which preserves the design hierarchy and
reduces the burden of proof construction. While we chose
to convert the entire functionality of the design to the Coq
representation, the possible trade-off between the amount of
functionality preserved in the conversion process and the level
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of protection which can be provided is an interesting topic for
further investigation.

A. Flattened Functional Model

This model flattens the design hierarchy in a way that the
precise functionality of the hardware design is converted to its
corresponding Coq representation.

1) Basic Circuit Elements: In the flattened functional
model, circuit elements are defined in the same way as what
we presented in Section VI-A.1. In other words, all signals in
the design are considered as bus in Coq representation.

2) Module Definitions: In this model, we flatten the design
hierarchy and convert the module definitions in the Verilog
source code to an inductive type in the Coq representation. We
create a constructor for the module and we consider module
inputs and outputs as parameters of this constructor. The body
of the module is created in a function named module_inst,
which is described in the following.

3) Local Signals: Local signals are widely defined and
used inside modules in HDLs such as Verilog. However, Coq
does not provide a flexible way of defining local variables
inside functions. Therefore, in this conversion method, local
signals are passed as additional arguments to the module
type and instance definitions. Consequently, when instantiating
a module, we need to define global variables in the Coq
representation and pass them to the module_inst function.

4) Module Instantiations: Due to the flattened hierarchy in
the Coq representation, we consider sub-modules as parame-
ters of the module type definition, similar to the local signals.
Therefore, when instantiating a module in the Coq representa-
tion, we need to appropriately instantiate its sub-modules too,
and pass them as parameters to the module_inst function.

5) Expressions and Verilog Operations: We build expres-
sions using the same method as presented in Section VI-A.4.
However, a difference here is that an expression covers only
the basic operations built into the Verilog language, and does
not include higher level operations such as permutation or
sbox, as was the case for the formal model of Section VI-A.
Such higher level operations, which are mainly implemented
as sub-modules, are handled by module definition and instan-
tiation. We also define the eval function to precisely imple-
ment the operations in the Coq representation for evaluating
the expressions.

6) Conditional, Combinational and Sequential Statements:
The models in Sections VI-A and VI-B, which are devised
for information flow tracking, consider combinational and
sequential statements in the same way. In contrast, when
converting the entire functionality into a flattened model,
we need to distinguish between them in the Coq represen-
tation. Therefore, we define two distinct inductive types for
conditions in a combinational and a sequential block. To
simplify working with the converted code, unconditional state-
ments are considered a special case of conditionals without
any condition. For sequential blocks, noif, ifsimple and
ifelse constructors are used for no condition, if, and if-else
statements, respectively. Constructors anoif, aifsimple
and aifelse are used similarly to represent combinational

blocks. Constructors ifcons (with \ notation) and aifcons
(with ; notation) are used to link such statements together
and create Coq code blocks in sequential and combinational
cases. Since these constructors expect corresponding if blocks
as their action, nested conditional statements can be seamlessly
converted to Coq. These conditional constructors constitute
the base structure of the code in its Coq representation. We
also unroll case statements and treat them as consecutive
if..else statements.
Inductive ifblock :=

| noif : updateblock->ifblock
| ifsimple : expr->ifblock->ifblock
| ifelse : expr->ifblock->ifblock->ifblock
| ifcons : ifblock->ifblock->ifblock.

Inductive aifblock :=
| anoif : assignblock->aifblock
| aifsimple : expr->aifblock->aifblock
| aifelse : expr->aifblock->aifblock->aifblock
| aifcons : aifblock->aifblock->aifblock.

To distinguish between combinational and sequential
assignments, we define two inductive types through the
expr_assign and upd_expr constructors, respectively.
The difference between these two is that, in a combinational
assignment, the computed result affects the left side in the
current clock cycle, while in a sequential one, the result is
computed for the next clock cycle.
Inductive assignblock :=

| expr_assign : bus->expr->assignblock.

Inductive updateblock :=
| upd_expr : bus->expr->updateblock.

To evaluate combinational and sequential conditional blocks
we define adoif and doif functions which are used in the
Coq representation. The assign and update functions eval-
uate the expression and assign the result to the corresponding
bus in the current or the next clock cycle, accordingly.
Fixpoint doif (i : ifblock)(t : nat) struct
i := match i with
| (noif up) => (update up t)
| (ifsimple exp ifb) =>

match (eval exp t) with
| hi::nil => (doif ifb t)
| lo::nil => True
| x::nil => True
| _ => True end

| (ifelse exp ifb1 ifb2) =>
match (eval exp t) with

| hi::nil => (doif ifb1 t)
| lo::nil => (doif ifb2 t)
| x::nil => (doif ifb2 t)
| _ => True end

| ifcons if1 if2 => doif if1 t /\ doif if2 t
end.

Fixpoint adoif (ai : aifblock)(t : nat) struct
ai:= match ai with
| (anoif a_s) => assign a_s t
| (aifsimple exp ifb) =>

match (eval exp t) with
| hi::nil => (adoif ifb t)
| lo::nil => True
| x::nil => True
| _ => True end
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| (aifelse exp ifb1 ifb2) =>
match (eval exp t) with

| hi::nil => (adoif ifb1 t)
| lo::nil => (adoif ifb2 t)
| x::nil => (adoif ifb2 t)
| _ => True end

| aifcons aif1 aif2=> adoif aif1 t /\ adoif
aif2 t

end.

For further clarification of the conversion process, we list
below an excerpt from the Verilog code of a DES core and its
partial conversion to the Coq representation. Verilog code:
module des(desOut, desIn, key, decrypt,
roundSel, clk);

// ...
assign Lout = (roundSel == 0) ? IP[33:64] : R;
assign Xin = (roundSel == 0) ? IP[01:32] : L;

// ...
always @( posedge clk)

L <= #1 Lout;
always @( posedge clk)

R <= #1 Rout;

crp u0(. P(out), . R(Lout), .K_sub(K_sub));

key_sel u1(.K_sub(K_sub), . K(key),
.roundSel(roundSel), .decrypt(decrypt));

endmodule

Converted Coq representation:
Inductive module :=

| module_des : bus->bus->bus->bus->bus->bus->
bus->bus->bus->bus->bus->bus->bus->bus->
module->module->module

| module_key_sel : bus->bus->bus->bus->bus->
bus->bus->bus->bus->bus->bus->bus->bus->
bus->module (* Other modules ... *)

.

Fixpoint module_inst (m:module) (t:nat) :=
match m with

| (module_des desOut desIn key decrypt
roundSel clk

Lout R IP Xin L Rout out FP
module_key_sel_u1
module_crp_u0) =>
(adoif (

(anoif (expr_assign Lout
(cond (eeq (econb roundSel)
(econv (lo::nil))) (econb ( IP [33,
64]))

(econb R))));
(anoif (expr_assign Xin
(cond (eeq (econb roundSel)
(econv (lo::nil))) (econb ( IP [1,
32]))

(econb L))));
(* ... *)

) t) /\
(doif (

(noif (upd_expr L (econb Lout))) \
(noif (upd_expr R (econb Rout)))) t) /\
(module_inst module_key_sel_u1 t) /\
(module_inst module_crp_u0 t)

| (* Other modules ... *)
end.

As we mentioned, in this conversion local signals and sub-
modules are considered as parameters of the module definition.
That is why module_des gets so many bus parameters
and two module parameters. The appropriate constructors are
used to convert combinational and sequential statements to the
Coq representation.

In principle, this flattened model, which is employed by
the original PCHIP framework, can be utilized to prove
general security properties including the ones geared towards
preventing malicious data modification in a hardware design.
However, the corresponding Coq representation can quickly
become very complicated due to the flattened hierarchy, as
seen in the DES code excerpt example. Furthermore, this
approach limits reusability of theorems proven for a module,
thereby making proof development much more difficult, as
the entire design needs to be reasoned upon monolithically.
To overcome these limitations, we developed a hierarchy-
preserving methodology which we present in the next section.

B. Hierarchical Functional Model

This new hierarchy-preserving model follows the general
principles for flattened functional model which was described
in Section VII-A. However, it takes advantage of the Module
Type constructs in Coq to preserve the hardware design
hierarchy.

For each module in the Verilog code of the hardware design
we define its corresponding module in the Coq representation
using the Module Type construct. Sub-modules instantiated
inside this module are defined using Declare Module
inside the Module Type definition of the Coq representation.
We define local signals of the module as Parameters
inside this Module Type. We also define a function named
instantiate and we create the body of the module using
similar constructs as those defined in Section VII-A. The
following shows the DES core of Section VII-A, this time
converted to the Coq representation through this hierarchy-
preserving model.
Module Type module_key_sel.
(* module definition ... *)

End module_key_sel.

(* Other module definitions ... *)

Module Type module_des.

Declare Module crp_u0 : module_crp.
Declare Module key_sel_uk : module_key_sel.

Parameters K_sub IP FP L R Xin Lout Rout out :
bus.

Definition instantiate (desOut desIn key
decrypt roundSel clk : bus) (t:nat) :=

(adoif (
(anoif (expr_assign Lout

(cond (eeq (econb roundSel)
(econv (lo::nil))) (econb ( IP [33,
64]))

(econb R))));
(anoif (expr_assign Xin

(cond (eeq (econb roundSel)
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(econv (lo::nil))) (econb ( IP [1,
32]))

(econb L))));
(* ... *)

) t)
/\
(doif (

(noif (upd_expr L (econb Lout))) \
(noif (upd_expr R (econb Rout)))

) t)
/\

(key_sel_uk.instantiate
K_sub key roundSel decrypt t) /\

(crp_u0.instantiate out Lout K_sub t).
End module_des.

C. Theorems Preventing Malicious Modification of Data

By maintaining design hierarchy, this new formal model
introduced in this work has the advantage that it eliminates
the need for keeping track of local signals and module
instantiations inside modules. By comparing the Coq code
excerpts of the flattened and hierarchical models, it is evident
that the hierarchical model is much more readable and easier
to follow. Using this model, we can develop various lemmas
inside each Module Type in the Coq representation. These
lemmas can, then, be applied hierarchically to prove theorems
in higher-level modules. This procedure paves the way for
developing hybrid module libraries containing both the HDL
code and various lemmas usable for proving security theorems
in higher-level modules. Such libraries greatly reduce the
proof development effort required in the PCHIP framework
and make PCHIP far more appealing to the hardware design
community.

Moreover, based on this model, we can now also simplify
the development of security properties which aim to protect the
design against malicious modification of sensitive data. This
is achieved by introducing theorems which track legitimate
operations on such data, according to the design specification,
as we present using a cryptographic core example in part II of
this paper series. In conjunction with the IFT methodologies
described in Section VI, this capability provides a compre-
hensive solution for evaluating and assessing data secrecy
protection in hardware IPs.

VIII. CONCLUSION

While the majority of contemporary research in hard-
ware Trojan prevention and detection focuses on post-tapeout
threats, the problem of untrusted, potentially Trojan-infected
RTL code is becoming equally important. Indeed, the increas-
ing reliance on third-party IP cores for hierarchical designs
calls for solutions to protect IP cores from inclusion of
malicious functionality. The problem is particularly critical
in the cryptography domain, where IP cores are used to run
encryption/decryption operations and serve as the basis of
system-level security. To address this problem, we augmented
the previously proposed proof-carrying hardware IP (PCHIP)
framework through the introduction of various information
flow tracking approaches aiming to protect data secrecy in
hardware IPs. To this end, new formal models have been
developed for expressing an RTL circuit description in the

Coq theorem-proving language through a set of HDL-to-Coq
conversion rules, supporting formal reasoning on data secrecy
properties and, thereby, increasing hardware trustworthiness.
Theorem generation functions and proof libraries have also
been introduced to reduce the burden of proof preparation and
to pave the way towards construction of a security property
library, a key step towards automating proof generation. In
addition, we presented a hierarchy-preserving model of the
original PCHIP framework, facilitating formal reasoning on
security properties to prevent indirect leakage of sensitive
information through malicious data modification. In Part II
of this paper series, we focus on automation of the extended
PCHIP framework and we demonstrate its application and
effectiveness in detecting hardware Trojans and/or design
flaws in the RTL description of third party IP cores.
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