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Abstract— The wide usage of hardware intellectual prop-
erty (IP) cores and software programs from untrusted third-
party vendors has raised security concerns for computer system
designers. The existing approaches, designed to ensure the
trustworthiness of either the hardware IP cores or to verify
software programs, rarely secure the entire computer system.
The semantic gap between the hardware and the software lends
to the challenge of securing computer systems. In this paper, we
propose a new unified framework to represent both the hardware
infrastructure and the software program in the same formal
language. As a result, the semantic gap between the hardware and
the software is bridged, enabling the development of system-level
security properties for the entire computer system. Our unified
framework uses a cross-domain formal verification method to pro-
tect the entire computer system within the scope of proof-carrying
hardware. The working procedure of the unified framework is
demonstrated with a sample embedded system which includes
an 8051 microprocessor and an RC5 encryption program.
In our demonstration, we show that the embedded system is
trusted if the system level security properties are provable. Sup-
ported by the unified framework, the system designers/integrators
will be able to formally verify the trustworthiness of the com-
puter system integrated with hardware and software both from
untrusted third-party vendors.

Index Terms— Hardware trust, proof-carrying hardware,
proof-carrying code, cross-layer protection, formal verification,
Coq proof assistant.

I. INTRODUCTION

THE globalization of the semiconductor supply chain
has significantly lowered the design cost and shortened

the time-to-market (TTM) of integrated circuits (ICs) in the
electronic industry. Over the years, the semiconductor industry
has been restructured and has made significant adjustments to
adapt to the trend of globalization. The fabless semiconductor
companies have focused on high-profit phases such as design,
marketing, and sales and have outsourced chip manufactur-
ing, wafer fabrication, assembly, and packaging to third-party
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companies. The growth of fabless companies have also helped
in the proliferation of the intellectual property (IP) market.
The use and reuse of existing commercial IPs has enabled
improvements in TTM in addition to cost reduction. However,
as a result of the globalization of the semiconductor supply
chain, companies and the government have decentralized con-
trol over this industry. As a consequence, tracking the source
of third-party IP cores and monitoring fabrication processes
within the foundries has become increasingly difficult. This
has created unique security concerns for the semiconductor
industry. Vulnerabilities in the pre– and post-silicon stages of
an IC supply chain may cause IP piracy and the inclusion of
a Trojan circuit can derail the entire hardware industry.

Many hardware Trojan detection and protection methods
have been developed for pre- and post-silicon stages [1]–[13].
However, methods for detecting Trojans at the RTL level
(of the pre-silicon stage) has been lacking. Furthermore,
existing Trojan detection methods for RTL designs rely on
a golden circuit model. Generally, such a model is not readily
available for third-party soft-IP cores. As such, it further limits
the applicability of existing methods for detecting Trojans
implanted in the RTL design of the hardware. Our method
could detect Trojans in third-party soft-IP cores in absence of
a golden model.

In fact, the security concerns raised by third-party resources
are not unique to the semiconductor industry and have existed
for a long time. Software developers have been combating
similar issues while trying to ensure the security and integrity
of software systems, often constructed on top of third-party
resources. The software industry is comprised of a variety
of software companies and programmers, ranging from IT
giants developing operating systems (OS) and databases to
freelancers developing mobile apps. This has resulted in a
software market that is poorly regulated and facilitates the
development and spread of large amounts of computer worms,
viruses and Trojans. Cybersecurity developers are facing the
additional challenge of protecting the computer system from
such malware attacks.

In order to secure computer systems built from third-
party resources, security researchers both in the hardware and
software domains have developed countermeasures to detect
malicious modifications and have proposed various solutions
to validate the trustworthiness of third-party resources. In the
hardware domain, hardware Trojan detection, prevention, and
trust evaluation methods have been proposed at the pre– and
post-silicon stages to avoid the insertion of malicious logic in
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ICs [4], [5], [7], [13]–[18]. In the software domain, methods
have been developed for the detection of malicious kernel
extensions and kernel integrity defence [19], [20].

While the existing methods have proved effective in secur-
ing either the software or the hardware, system-level solutions
targeting the entire computer system (particularly composed of
third-party software programs and hardware IPs) are lacking.
The software security methods assume the trustworthiness of
the underlying hardware infrastructure. Similarly, the hardware
security solutions do not consider the threat from the firmware
or OS running on top of it. As a result, these methods
fail to protect computer systems where both the hardware
and the software are vulnerable to attack. The semantic gap
(characterizes the difference between the operations performed
by hardware and software) between the hardware and software
domains has been the major obstacle for developing secu-
rity methods across the software-hardware boundary. Due to
the lack of system-level protection, malicious software may
exploit hardware backdoors and cause malfunctions, or leak
internal information resulting in cross-layer attacks.

Our main contributions in this paper are summarized as
follows:

• We propose to use deductive formal methods for trust
evaluation of the computer system constructed from
untrusted third-party software and hardware resources.

• Our method helps eliminate the semantic gap between
the software and the hardware by representing them in
a unified framework – where the software program and
the underlying hardware infrastructure are presented in
the same formal language. This enables system design-
ers to develop system-level security properties, without
worrying about cross-boundary inconsistencies.

The rest of the paper is organized as follows: Section II
presents previous work on IP core trust evaluation and
Trojan detection. In Section III, we provide background on
proof-carrying code and its hardware counterpart, proof-
carrying hardware. In Section IV, we explain the working
procedure of our unified framework, the threat model, security
theorem development process, the formal language to describe
the computer system, and the proof construction process.
Section V presents demonstrations of the proposed framework
in preventing information flow attacks within an embedded
system (in the paper we use the terms – computer system
and embedded systems, interchangeably). In Section VI,
we discuss the advantages of our proposed methodology
for computer system protection and its limitations. Final
conclusions are drawn in Section VII.

II. RELATED WORK

To overcome the threat of untrusted third-party resources,
many pre-silicon trust evaluation methods have recently been
developed [3], [15], [17], [21]–[26]. Among these methods,
[3], [17], [21] detect malicious logic by using enhanced
functional testing methods. In [3], additional “Trojan Vec-
tors” were generated to activate hardware Trojans during
functional testing. To identify suspicious circuitry, the unused
circuit identification (UCI) method of [17] analyzed the RTL
code to find unused lines of code. However, the methods

of [3] and [17] assume that the attacker uses rare events as
Trojan triggers. This assumption was invalidated in [21], where
“less-rare” events were used as hardware Trojan triggers.

Due to the limitations of enhanced functional testing meth-
ods, researchers started looking into alternative solutions.
Among the possible solutions are formal methods which can
exhaustively verify security properties of untrusted hardware
resources [15], [22]–[27]. A multi-stage approach, which
included assertion based verification, code coverage analysis,
redundant circuit removal, equivalence analysis, and sequential
Automatic Test Pattern Generation (ATPG), was used in [26]
to identify suspicious signals.

Proof-Carrying Hardware (PCH) is another approach
for ensuring trustworthiness of hardware [15], [22]–[25],
[28], [29]. This approach is inspired from the Proof-Carrying
Code (PCC) method and it has emerged as one of the
most prevalent method for certifying the absence of mali-
cious logic in soft IP cores. The method was first proposed
in [22] and [23], where runtime combinational equivalence
checking (CEC) was used to verify the equivalence between
the design specification and the design implementation. How-
ever, the approach did not consider security property verifi-
cation. To overcome this limitation, the PCH framework was
expanded in [15], [24], and [25] to verify security properties
on IP cores in the format of synthesizable register-transfer
level (RTL) code. Hierarchical proof construction process
was also proposed in [28] and [29] to reduce the workload
of building proofs. In the new PCH framework, the RTL
design and informal security properties are first represented in
Gallina, the internal functional programming language of the
Coq proof assistant. Then, Hoare-logic style reasoning is used
to prove the correctness of the RTL code. The implementations
are carried out using the Coq platform [30].

The unified framework of this paper is derived from the PCC
and the new PCH methods and it can be used for verification
of the computer system.

III. PROOF-CARRYING CODE AND

PROOF-CARRYING HARDWARE

Various methods have been proposed in the software domain
to validate the trustworthiness and genuineness of software
programs. These methods protect computer systems from
untrusted software programs. Most of these methods lay
burden on software consumers to verify the code. However,
proof-carrying code (PCC) switches the verification burden
to software providers (software vendors/developers). During
the source code certification stage of the PCC process, the
software provider verifies the code with respect to the security
property designed by the software consumer and encodes the
formal proof of the security property with the executable code
in a PCC binary file. In the proof validation stage, the software
consumer determines whether the code from the potentially
untrusted software provider is safe for execution by validating
the PCC binary file using a proof checker [31].

A similar mechanism, referred to as Proof-Carrying
Hardware (PCH), was used in the hardware domain to protect
third-party soft IP cores [15], [24], [25]. The PCH framework
ensures trust-worthiness of soft IP cores by verifying a set of
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Fig. 1. Working procedure of the proposed unified framework.

carefully specified security properties [32]. In this approach,
the IP consumer provides design specifications and informal
(written in natural language) security properties to the IP
vendor. Upon receiving the request, the IP vendor develops
the RTL design using a hardware description language (HDL).
Then, semantic translation of the HDL code and informal
security properties to Gallina is carried out. Subsequently,
Hoare-logic style reasoning is used for proving the correctness
of the RTL code with respect to formally specified security
properties in Coq. As Coq supports automatic proof checking,
it can help IP customers validate proof of security properties
with minimum efforts. Moreover, usage of the Coq platform
by both IP vendors and IP consumers ensures that the same
deductive rules will be used for validating the proof. After
verification, the IP vendor provides the IP consumer with the
HDL code (both original and translated versions), formalized
security theorems of security properties, and proofs of these
security theorems. Then, the proof checker in Coq is used
by the IP consumer to quickly validate the proof of security
theorems on the translated code. The proof checking process is
fast, automated, and does not require extensive computational
resources.

IV. UNIFIED FRAMEWORK - BRIDGING THE GAP

The PCH and the PCC frameworks share a similar working
procedure including the code generation, the security property
development, the proof construction, and the proof checking
stage. Due to this similarity, both frameworks can be merged
to build the unified framework as shown in Figure 1. However,
the difference in representation of the hardware code and
the software code causes a semantic gap, which hinder the
development of the unified framework. The hardware code
relates to the circuit logic of the hardware structure while
the software code controls the data flow on the hardware
structure. For representing the entire computer system in the
Coq platform, the semantic gap between the hardware code
and the software code needs to be eliminated.

The work in [25] provides a preliminary solution to bridge
the semantic gap between the hardware code and the software
code. In [25], a formal HDL is developed within the Coq
platform for the instruction-set architecture (ISA) and supports
large-scale circuit design. Compared to the PCH framework
of [24] and [33], where security properties are developed

for data processing units and/or functional blocks, the formal
HDL of [25] supports the development of security properties
for both the control logic and the datapath. The security
properties of the formal HDL outlines the trusted behaviors
of each instruction when executed by the processor. The
formal HDL also detects hardware level malicious modifica-
tion for individual instructions. In this paper, the ISA-level
PCH framework is expanded to support system-level security
properties of assembly code running on top of third-party
hardware processors. Note that the firmware and software will
be compiled into assembly code before executing them.1

Our proposed unified framework is the first formal frame-
work which eliminates the software-hardware boundary and
enables the construction of system-level security properties for
the entire computer system. The framework supports formal
reasoning to facilitate the construction of proofs of formal
security theorems.

A. Threat Model and Trusted Verification House

The unified framework is developed to prove the pres-
ence/absence of malicious logic inserted by an adversary at
the design stage of the software/hardware. We assume that
there is a rogue agent in the design house who has access to
both the HDL code and the software code. Such an adversary
can either insert a hardware Trojan or malware in the hardware
or software design. These malicious payload can be triggered
either by the software or under certain physical conditions.
Upon activation the Trojan/malware can cause sensitive infor-
mation leakage, functionality alteration, control flow hijacking,
or denial-of-service of the entire computer system.

Another assumption is that a trusted verification house
exists which can use the proposed framework to guarantee
the security of the whole computer system with respect to the
predefined security properties provided by the system integra-
tor. Note that the system integrator and the trusted verification
house will use the same formal verification platform (in our
case, Coq) to prove and validate the security properties of
the computer system. According to our verification frame-
work, proofs will be constructed for formal security theorems
derived from informal security properties. The availability of
theorem proofs indicates that there are no malware/Trojans
in the designed computer system. On the other hand, if the
verification house cannot build such proofs, it is likely that
malicious modifications may be inserted in the design.

B. Working Procedure of the Unified Framework

In the unified framework, three entities are involved in the
verification process (see Figure 2).

• Hardware and Software Vendors: Hardware vendors
design and sell soft IP cores based on the design specifi-
cations of IP users. Similarly, software vendors develop
software programs which can be compiled and run on

1The proof-carrying based unified framework proposed in this paper primar-
ily works on assembly-level code of the software program. For any programs
written in high-level languages, we will rely on a trusted compiler to compile
the programs into assembly code. The design and validation of a trusted
compiler is outside the scope of this paper
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Fig. 2. Main parties in the unified framework.

hardware platforms. In our framework, we treat both
hardware and software vendors as untrusted resource
providers. We further assume that a rogue agent can
manipulate both software code and hardware IP design.

• System Integrators: System integrators in the proposed
unified framework can be seen as the consumer. To
design the computer system, they integrate IPs and the
corresponding software from the vendors. In order to
ensure the trustworthiness of the developed computer
system, a set of informal security properties, the HDL
code of the hardware design and assembly code of the
software are provided to a trusted verification house
for formal verification. Upon receiving the verified sys-
tem, validation is carried out by the system integra-
tor using automated tools such as the proof checker
of Coq.

• Trusted Verification House: The verification house in
the proposed unified framework is treated as a trusted
third party [34]. On receiving the HDL code, the assembly
code, and the set of security properties from the sys-
tem integrators, the verification house uses the proposed
framework for semantic translation and proving the set
of security properties in the Coq platform. Subsequently,
they provide the system integrator with the translated Coq
equivalent code, the formal security theorems, and their
proofs.

In the proposed unified framework, we eliminate the vul-
nerability at the software-hardware boundary by converting
the software program into a set of hardware states. Dur-
ing verification of security properties in the framework, all
software operations, previously treated independently, become
part of the hardware implementation. In other words, prior
to detecting threats in the verification process, any attacks
targeting the software-hardware interface will be transformed
into threats targeting the hardware platform. Note that the
proposed framework does not alter working process of the
original embedded system, nor the format or functionality
of the hardware/software. After the verification of security
properties, the computer system will operate in its original
way along with the assurance that the system is trustworthy.
The working procedure of our proposed framework, shown in
Figure 1 and figure 2, is divided into six phases.

Fig. 3. Various tasks of the system integrator in the unified framework.

• Phase 1: Functional Specifications: In the first phase,
the system integrator develops and sends the functional
specifications of the target computer system to vendors
(both hardware vendors and software vendors).

• Phase 2: Computer System design and Functional
Testing: Based on the request of the system integrators,
vendors design and deliver the soft IP core and the
source code of the software (see Figure 4). The system
integrators then build the computer system and perform
functional testing to validate its functionality and perfor-
mance. Only if passing the functional testing, the design
becomes eligible for security check.

• Phase 3: Security Properties: In this phase, the system
integrator develop a set of informal security properties for
the verification house. These security properties delineate
the security boundary of the computer system. Various
responsibilities of the system integrators are shown in
Figure 3. The entire source code of the computer system
and the set of security properties are then sent to the
trusted verification house.

• Phase 4: Translation of Security Property and Source
code of Computer System to Gallina: In the trusted
verification house side, the assembly code and the HDL
code are translated to Gallina, which is the specification
language of Coq, with the assistance of the formal HDL,
defined in the unified framework. This translated code
is referred to as Coq Equivalent Code. Translating the
set of informal security properties to Gallina gives the
desired formal security theorems. These translations make
the security verification of the computer system possible
on the Coq.

• Phase 5: Proof Construction: In this phase, the veri-
fication house constructs proofs for the formal security
theorems of the computer system. The developed proof,
the security theorems, and the Coq equivalent codes
are integrated into a trusted bundle and provided to
the system integrator. In order to facilitate the proof
construction process and to help alleviate the scalability
issue, a hierarchical proof writing method is developed
and applied. Details of this hierarchical approach will be
introduced shortly. Operations of the verification house is
shown in Figure 5.
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Fig. 4. Working procedure of the unified framework at the vendor side.

Fig. 5. Operations of the trusted verification house in the unified framework.

• Phase 6: Proof Validation and Computer System
Security: Upon receiving the trusted bundle from the
verification house, the system integrators validate the
proofs using the proof checker built in Coq platform.
This step is also shown in Figure 3. The proof fails if
the security properties are not satisfied. However, if the
proof passes the proof checker, the system integrators are
assured that the computer system from untrusted vendors
is indeed trustworthy.

C. Security Theorem

As described in Figures 3 and 5, the whole unified frame-
work follows a theorem-proving methodology. The key aspects
of this methodology are elaborated below.

1) Security Theorems for Computer Systems: Based on
the set of well-defined system-level security properties of
the computer system, the security theorems within the Coq
platform are constructed to formally represent the security
requirements.2 These theorems, if proved, will provide high-
level assurance that the computer system integrated with third-
party resources is trusted.

2) Lemmas for Instructions: Due to the manual proof
construction process, directly proving system-level security
theorems is infeasible. The lemma development method,
which will be introduced in the following contents, reduces
the burden of the proof construction process by using a

2Designing a set of well-defined security constraints/properties is an impor-
tant step for successfully securing the computer systems. Poorly written
security properties will allow attackers to include malicious code and addi-
tional functionality in the IP cores/firmware, without being detected in the
verification stage. Although a sample security property is introduced, a
methodology for systematically developing security property for different
computer systems will be discussed in our future work.

distributed approach in which individual instructions of a
software program is proved. In order to prove each individual
instruction, the system-level theorems are first split into
lemmas, which define the trusted behavior of each instruction
used in the software program. Depending on the size of the
software program, a large number of lemmas are constructed.
The task of assuring the security of the whole system relies
on the ability to prove the security properties of a sequence
of instructions implemented on the hardware infrastructure.

3) Proof of Lemmas: The most time-consuming part of the
proposed framework is to prove lemmas of individual instruc-
tions. However, the time required for proving all lemmas in
the lemma development method is linear to the size of the
software program. Consequently, verifying complicated and
large computer systems becomes feasible due to the proof
construction methods and the proposed proving process.

4) Trusted Bundle Preparation: System-level theorems
of security properties are proved when lemmas of each
instruction of the software program are verified with respect
to their trusted behavior. The trusted bundle is prepared
for the consumer, which includes the source code of the
hardware, source code of the software, security theorems, and
proof. Before executing the software program on the computer
system, the consumer will regenerate the Coq equivalent code
for the computer system and validate the proof of security
properties using an automated proof checker. Regeneration of
the Coq equivalent code by the consumer will guarantee that
the source code of both the software and the hardware are
not manipulated during the conversion process.

D. Formal Language for Computer System Description

The proposed proof-carrying based unified framework
enables us to represent both the hardware code and the
software code in the same formal language. The new formal
language for the unified framework is derived from the formal
HDL developed in [25] to support assembly-level programs
with multiple instructions. Due to similarities between our
proposed formal language and the formal HDL of [25], our
language is still referred to as the formal HDL in rest of the
paper.

Defined in [25], the previous formal HDL can only represent
basic circuit units, combinational logic, sequential logic, and
module instantiations. As shown below, a bus type is defined
as a function which takes one parameter, a timing variable t,
and returns a list of signal values. The keyword assign of the
formal HDL is used for blocking assignment, while update is
mainly used for nonblocking assignment. During the blocking
assignment the bus value will be updated in the current clock
cycle and in the nonblocking assignment the bus value will be
updated in the next clock cycle. Since the formal HDL can be
applied to only synchronous hardware, the variable t indicates
the global clock cycle.

The newly proposed formal HDL has several unique char-
acteristics, which make it suitable for representing the entire
computer system. For hardware infrastructure, the formal HDL
supports hierarchical designs where basic functional blocks
and low-level modules are instantiated in a high-level structure
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(note that processors often follow the hierarchical structure
because of their high complexity). Keywords are defined for
module definitions. For example, module_vhdl is also used as
the data type of declared modules. The module_inst describes
the implementation detail of each module. As most digital
designs are synchronous, the formal HDL is primarily used for
synchronous designs. In software programs, the formal HDL
represents circuit-level operations of each instruction without
imposing any restrictions on the sequence of the instructions.
Therefore, the formal HDL can deal with sophisticated infor-
mation flow and support flexible function calls. The same
formal HDL can also be applied to different ISAs with minor
modifications. This is possible because most of the software
programs are compiled to assembly code, which can then be
described in the formal HDL. In Listing 1, assembly language
instructions are represented by the axiom DATA_INPUT.

The code in Listing 1 is the representation of the ALU
module. The ALU module (module_mc8051_alu) consist of
the 8-bit adder-subtractor (module_addsub_core) sub-module,
which itself consist of two other sub-modules (i) 4-bit
adder for higher order bits (module_addsub_cy) and (ii)
4-bit adder for lower order bits (module_addsub_ovcy).
Such a hierarchical design of the ALU is first flattened
during implementation in Coq. In the flattening process,
all the ALU modules are first declared using the the key
word Inductive under the module_vhdl data-type. Two of
input arguments of the module_addsub_core module are
declared as mymodule1 and mymodule2. Accordingly, to
describe the module_addsub_core module, the sub-modules
module_addsub_cy and module_addsub_ovcy will be given
as these two input parameters. The same process is followed
to describe the sub-module module_addsub_core of the top
module module_mc8051_alu. Based on this procedure, the
entire hierarchical design of the hardware can be flattened.
In the demonstration section, a computer system comprising
of an encryption algorithm and an 8051 microprocessor is
represented using the developed procedure.

E. Proving Security Properties in Unified Framework

In the unified framework, security theorems are first con-
structed from security properties defined by the system inte-
grators (often described in a natural language) and then
proved with respect to the source code. The system inte-
grators validate the proof of the theorem to ensure that
no malicious behavior occurs during the operation of the
computer system. In the event that the theorems cannot be
proved, the system integrators are alerted of security property
violations.

Although the PCH and PCC frameworks provide high-level
security assurance to third-party resources, they both suffer
from the problem of scalability. Verification of a complex
IP core (or software program) increases the computational
burden on vendors, resulting in a prolonged design cycle and
increased development cost. For the same reason, most of
the current demonstration examples of PCC and PCH are for
small- to medium-scale designs where security proofs can be
constructed in a reasonable time [15], [24], [33], [35], [36].

Listing 1. Implementation of ALU module in Coq.

To overcome the scalability issue, a hierarchical approach
for proof construction is adopted in the unified framework.
In the hierarchical approach, instructions are proved using
the lemma development method and the security theorem of
the computer system is proved by integrating the proof of
all lemmas in the theorem development method. Specifically,
lemma development is used for security assurance of indi-
vidual instructions, while theorem development is used for
a program using these instructions. Hoare-logic is used for
verification in our framework.
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Fig. 6. Lemma development for security evaluation of individual instructions.

Fig. 7. Theorem development procedure for system-level security property
of computer system.

The working procedure of the lemma development process
is shown in Figure 6. This approach is applicable for security
property verification of circuit-level operations of individual
instructions. All security theorems of the entire computer
system will be divided into separate lemmas based on different
instruction types. The lemma development method focuses on
building proof construction for this specific lemma, which is
called the top lemma in Figure 6 and Figure 7. Specifically,
in Figure 6, the top lemma can be further divided into a series
of lemmas which can be categorized as (i) lemmas for data
transmission and (ii) lemmas for data operations. Similar to
large-scale circuits, the processor cores have a hierarchical
structure with top modules representing data transmission and
sub-modules representing functional units for data operations.
During data transmission, the sub-modules communicate
among themselves (e.g. signal transmission between the
ALU block and the control module) whereas data operations
represents operations within the sub-modules (e.g. updating
the program counter). In Figure 6, the lemma development
process takes advantage of the processor architecture and
constructs the lemmas in the mentioned two categories.

During circuit-level verification of processor cores, the
pre-conditions of security theorems are matched against
the pre-condition of one of the developed lemmas. After
finding a match between pre-conditions, a post-condition is
obtained. The post-condition then acts as a pre-condition for
another lemma and the matching of pre-conditions continues.

Following the process of connecting lemmas using pre- and
post-condition matching, the security theorem is proved by
using the post-condition of the last lemma. The circuit level
operation of individual instructions are certified as trusted
when all lemmas are proved. Due to the distributed approach
of proving lemmas of data transmission and data operations,
the workload of proving the security theorems for the overall
behavior of each instruction is significantly reduced. Moreover,
the proved lemmas especially those for data transmission,
can be reused for other instructions mainly because many
instructions share the same data transmission operations. For
example, in Figure 6, most of the lemmas belong to either data
transmission or data operations. When successfully proven,
these lemmas along with their proof code can be reused in
verifying other instructions on the same hardware platform.

The soundness of the lemma development process is demon-
strated in two steps.

1) The developed data transmission lemmas prevent mali-
cious manipulation during communication between dif-
ferent sub-modules.

2) The existence of formal proofs for lemmas of data
operations of each instruction guarantees the generation
of trusted subset of signals. That is, a sub-module will
generate correct results for legitimate inputs, without
performing any additional (often malicious) operations.

Moreover, modern processors often provide instructions
with similar functionality. As a result, the proof construction
process for security properties is similar for these instructions.
Also, the lemmas developed for one instruction can be used by
other instruction proof processes. Due to the constant reuse of
lemmas between instructions, the development cost and time
is lowered for proving instructions of a given processor.

The theorem development method of proof construction
deals with security property verification of software programs
which contain multiple instructions. This method supports
the design of system-level security theorems for security
properties of the computer system. The working procedure
of our theorem development method is shown in Figure 7.
To secure the computer system, the theorem development
method integrates the proof of lemmas of individual instruc-
tions. When all the lemmas are proved, the security theorem
of the computer system is stated to be proved. Also, as
shown in the Figure 7, the theorem development process
also takes advantage of hierarchical structure for complex
system verification while the lemma development serves as
the cornerstones in the whole procedure.

The theorem development process along with the lemma
development method, converts the task of proving theorems
on large programs to individual instruction proving. This helps
in speeding up the design cycle and developing libraries of
security properties for verifying different software programs.

V. DEMONSTRATION

In this section, the working procedure of the proposed
system-level unified framework will be demonstrated in the
Coq proof assistant platform [30]. For illustration, a computer
system is built where the 8051 microprocessor serves as
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Fig. 8. Block diagram of an 8051 microprocessor.

the hardware infrastructure and the RC5 encryption algorithm
performs the required functionality. Such a computer system
is likely to be used in critical infrastructure where sensitive
data is encrypted before transmission. The VHDL source code
of the 8051 and the assembly code of the RC5 algorithm
were obtained from [37] and [38], respectively. Therefore,
the sample computer system is assumed to be constructed
from third-party resources. We develop security properties and
prove them on the sample computer system.

The block diagram of the 8051 microprocessor is shown
in Figure 8, which includes 64KB on-chip program memory,
128B on-chip data RAM, and can support 64KB exter-
nal memory space. The complete instruction set of the
8051 microprocessor is given in [39]. Although 8051 is
relatively small compared to modern processors, the sample
implementation contains instruction decoding, execution, and
memory access stages, making it a good candidate for the
initial investigation.

RC5 is a fast symmetric block cipher suitable for hardware
or software implementations [40]. Besides variable word size
(32, 64 or 128 bits), RC5 has variable number of rounds
(0 to 255) and secret keys (0 to 2040 bits). The wide usage
of RC5 in stream cypher and its simple implementation in
software makes it suitable for our demonstration.

In our unified framework, no modifications are required on
the original code throughout the verification procedure. As a
result, there is no performance overhead on the computer sys-
tem under security verification. After the security verification,
the hardware code is synthesized to build ASIC logic (or
FPGA bitstream) while the software code is loaded into the
microprocessor memory for execution. In our case, the entire
computer system is assumed to be implemented in FPGA with
additional UART modules inserted to load/read memory [41].

A. Security Property

The development of security properties are required to
prevent certain malicious attacks from happening. In our

Listing 2. The example for buffer overflow.

Fig. 9. The stack structure with return address.

demonstration, we try to avoid the control-flow hijacking
attacks under the circumstance that both hardware
infrastructure and software programs are from untrusted
third-party vendors.

1) Control-Flow Hijacking: The control-flow hijacking
attack poses a serious threat to system security and relia-
bility [42]. This attack enables the attackers to exploit the
control flow and write arbitrary data to a control structure
in the presence of a vulnerability in the program [43]. During
control-flow hijacking, attackers change contents of the control
structure and redirect the program counter (PC) to maliciously-
injected code by overwriting the return addresses.

To better illustrate the attacking procedure of control-flow
hijacking, a sample program of stack-based buffer overflow
is listed in Listing 2. The following program, if executed,
will cause buffer overflow as the return address is overwritten
maliciously.

The structure of the stack is shown in the Figure 9.
The sample program pushes the argument long_string to
the stack and then calls the function demo. Following the
argument, the return address is saved in the stack at ret.
After saving the return address of the function, the value
of the stack pointer is pushed to the stack at sfp. In the
function demo, the function strcpy copies the contents
of character array long_string[] of length 150 into
the smaller array short_string[] of length 20. Stuffing
short_string[] with 150 bytes will overwrite the con-
tents of the stack including the addresses stored at sfp, ret
and *str, and results in loss of the return address. The new
content in ret will redirect the PC to an attacker-defined
address AAA...., causing unexpected outcomes at function
return.
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2) Computer System Security Property: Computer system
security properties are used to represent trusted behaviors of
the overall computer system under the assumption that both the
hardware and the software provided by the third-party vendors
are untrusted. The security properties impose restrictions on
behaviors of the hardware, the software, and the boundary in
between. Although the definition of computer system security
properties may share some similarities with software level
security properties, the key difference between them is the
assumption on trustworthiness of the underlying hardware
infrastructure. Software level security constraints are always
built on the assumption that the underlying hardware is trusted
and working properly. In contrast, computer system security
properties do not make this assumption and treat both the
hardware and the software as untrusted. For example, consider
a software program which has been proven safe. In this case,
control-flow hijacking attacks can still occur when executing
the program on untrusted hardware. This is primarily because
hardware Trojans triggered by “harmless” software code can
take control over software behavior and can alter the contents
of the return address resulting in a buffer overflow [41], [44].

In this paper, prevention of the entire computer system from
the control-flow hijacking attack is selected as the sample
computer system security property. More specifically, this
security property can be described as “when the third-party
software program is executed on the third-party processor,
no control-flow hijacking attacks will occur." In case the
consumers are aware of the specific hardware and software, a
more clear definition of the security property is derived and
sent to third-party vendors along with functional specifications
and performance requirements of the 8051 microprocessor and
the RC5 software program. The refined security specification
based on the knowledge of the hardware and the software
will be “when the RC5 program is executed on the 8051
microprocessor, no control-flow hijacking attacks will occur.”

The formal security theorems are then derived from the
informal security specification and are verified with respect
to the instructions of RC5 program and the underlying 8051
microprocessor. The sample computer system is deemed to
be secure when the security theorems are provable. Failure
to prove the theorems will often indicate the presence of
hardware or software Trojans in the computer system and
immediately notify the customer of its presence.

B. Security Theorems and Lemmas

Using the security specifications, the third-party vendors
develop security theorems for computer system protection. The
vendors will initially refine security specifications according
to the specific design of the processor (in the form of the
HDL code) and the software program (in the form of the
assembly code). Formal theorems are then developed based
on the refined security properties.

In our demonstration, security theorems are developed to
protect the computer system (constituting the RC5 program
and 8051 microprocessor) from the control-flow hijacking
attack. Note that a successful control-flow hijacking attack
involves malicious modification of the program counter either

Listing 3. Sub function XOR_EQ.

Listing 4. Fragment code in main function of RC5.

with hardware malicious logic or through malicious software
programs. For the case of 8051 microprocessor, ret is one of
the instructions which can update the program counter with
an arbitrary value. When ret is encountered, the contents
stored at 08H and 09H will be written to the program counter.3

Therefore, the security property will eventually be converted
to the formal theorem with two levels of consideration: first,
for any instructions in the RC5 program, except the ret, the
PC will not be overwritten by arbitrary values (including the
operation to copy the contents from 08H and 09H registers to
program counter); second, during any functional call, no mali-
cious values will be written into the 08H and 09H registers.

In the rest of this section, we will demonstrate the process
of developing security theorems for the computer system in
the proposed unified framework. We specifically focus on the
function XOR_EQ used in the RC5 program. The XOR_EQ
function implements the exclusive-or (XOR) operation in the
8051 microprocessor. The assembly code of XOR_EQ is
described in Listing 3.

The RC5 program calls the function XOR_EQ using the
ACALL instruction as illustrated in Listing 4. When executing
the ACALL instruction, the microprocessor stores the return
address to the 08H and 09H registers.

On the other hand, when the ret instruction within the
XOR_EQ function is executed, the microprocessor loads the
contents in registers 08H and 09H to the program counter to
finish the execution of the XOR_EQ function. However, the
control-flow hijacking attack will alter the normal program
flow by overwriting the return address stored in the aforemen-
tioned registers. To secure the RC5 program running on top of
the 8051 microprocessor, a security property is required which
will prevent the PC from being maliciously modified during
the execution of the RC5 program.

The proposed framework will prohibit the control-flow
hijacking attack in the sample computer system by verifying
trusted behaviors of each instruction. The system-level security
property, “when the function - XOR_EQ of the RC5 program is

3As the first step toward computer system protection, we only consider the
situations where limited amounts of nested function calls exist.
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Listing 5. Security theorem for the computer system.

executed on the 8051 microprocessor, the contents stored in
the 08H and 09H registers will not be overwritten," represents
the trusted behavior of the XOR_EQ function and, if it is
proved, the trustworthiness of the computer system is verified.

On performing a detailed analysis of the function XOR_EQ,
we gather that the XOR_EQ includes 7 different instructions
and takes 49 clock cycles to operate. Accordingly, the security
property is further refined to “when the function - XOR_EQ of
the RC5 program is executed on the 8051 microprocessor,
the contents stored in the 08H and 09H registers will not be
changed during the 49 clock cycles".

An analysis of the 8051 microprocessor structure further
shows that the permission to write on the 08H and 09H
registers depend on the enable signals s_regs_wr_en and
s_adr of the module control_mem_rtl (See Figure 8).
The 08H register is updated when the following two conditions
are satisfied in the same clock cycle: 1) the control signal
s_regs_wr_en is equal to 100 or 101 and 2) the control
signal s_adr is equal to 0000 or 1000. Similarly, the
09H register is updated when the following two conditions
are satisfied in the same clock cycle: 1) the control signal
s_regs_wr_en is equal to 100 or 101 and 2) the control
signal s_adr is equal to 0000 or 1001.

Supported by the above mentioned details of the RC5 pro-
gram and the 8051 architecture, the formal theorem for the
security property is constructed in Listing 5.

Within the formal security theorem, several pre-conditions
are explicitly specified: 1) t>0 -> t<50 means that 49
clock cycles are considered (as the function XOR_EQ takes
49 clock cycle to execute); 2) state 1 = FETCH indicates
that the function is executed from the initial state - FETCH;
and 3) reset t = lo::nil, ie t = lo::... and
s_intpre2 t = lo::nil imply that our unified frame-
work does not handle reset and interrupt during the operation
of XOR_EQ. An implicit pre-condition of the theorem is the
computer system itself because the proof of the theorem is
built upon the sample computer system. The system-level
security theorem formally specifies that no modifications on
08H and 09H registers will occur for the given pre-conditions.
The variables data_08H and data_09H, of the formal the-
orem represent the binary code 00001000 and 00001001
respectively. The function bv_eq compares two binary code
and return the result lo when there is a match between the
codes and hi otherwise.

Following the same procedure, the theorems are also
designed for nested function calls. After analyzing the

Listing 6. Security theorem in the nested function calls.

Fig. 10. Hierarchical proof construction process.

8051 microprocessor structure, the return address for the
nested sub-function is stored in the 10H and 11H (using a
stack to store the return address). Assuming that there are still
49 clock cycles in this nested function, the formal theorem for
the security property is constructed in Listing 6.

C. Proof Construction

The proof construction process is the most time-consuming
step of our framework. The computer system built from third-
party resources is trusted only if the proof of the security
theorem can be provided. In order to speed up the proof
construction process and lower the design cost, the lemma
development and theorem development methods are heavily
leveraged in the unified framework.

According to the working procedure of lemma development
and theorem development, the Theorem RegVerify_RC5 can be
seen as the Theorem for Computer System of Figure 7, while
the Lemmas RegVerify_mov_rr_data can be treated as Top
Lemma of Figure 6. As shown in Figure 10, an intermediate
level is inserted to configure parameters of lemmas of the
bottom layer. An example lemma in the intermediate level
is RegVerify_Instruction1, shown in Listing 8. In the bottom
level, lemmas are designed for the individual instruction type,
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Listing 7. Top lemma for mov instruction.

Listing 8. Lemma for the first two clock cycles.

and the lemma development is used without considering any
data or time inputs.

The hierarchical process of proof construction for the
XOR_EQ function is shown in Figure 10. In this approach,
the lemmas in the upper level access the lemmas in the lower
level during the proof construction process. At the lowest level
of the hierarchy, lemmas (e.g., RegVerify_mov_rr_data
shown below) are proved for instructions (from the ISA of
8051) with respect to the pre– and post-condition of the secu-
rity theorem, without considering the specific situations such
as time and data inputs. In the upper level, the lemmas proved
at the lowest level for instructions (e.g., Mov R2, #04H) are
reused with the details of time (2 clock cycles for executing the
Mov instruction of XOR_EQ function) and input (04H) (e.g.,
RegVerify_Instruction1 shown in Listing 7). At the
top of the hierarchy, all the proved lemmas of the preceding
stages are used to prove the security theorem of the XOR_EQ
function.

In the lemma RegVerify_mov_rr_data, the
variable data_load takes any binary code as input
and rom_data_i takes data from the ROM of the 8051
microprocessor. The pre-conditions for the lemma are:
(1) state t = FETCH indicates that the function is
executed from the initial state - FETCH at the t clock-
cycle, (2) rom_data_i t = mov_r2_d implies that
rom_data_i takes the op-code of the mov instruction at t
clock cycle, and (3) rom_data_i (S t) = data_load

Listing 9. Example for data transmission lemma.

Listing 10. Example for data operation lemma.

TABLE I

TIME CONSUMED FOR VALIDATING THE PROOFS OF THE SYSTEM

indicates that rom_data_i takes input data at the t+1
clock cycle.

The precondition rom_data_i 1 = mov_r2_d of
the lemma RegVerify_Instruction1 implies that
rom_data_i takes the op-code of the mov instruction at
the first clock cycle. The next precondition of the lemma,
rom_data_i 2=data_04H signifies that rom_data_i
takes the input data 0000 0100 at the second clock cycle.

The connect_command_io_mem_fsm, which connects two
submodules, is an example of data transmission lemma. The
command_i is an input port of one sub module, while com-
mand_o is an output port of another sub module. And the
signal will be transmitted from command_o, and received
at command_i. This lemma means that “the value is equal
between these two ports at any time.”

The la_fsm_st_MOV_RR_DATA presents an example of data
operation lemma. This lemma describes a condition state-
ment used in the sub module for the finite state machine
in the 8051 microprocessor. The variable state_fsm stands
for current state of circuit. And the input op-code is stored
in the variable s_instr_category. At any time, when the
state_fsm is in EXEC1 status and the value of s_instr_category
is IC_MOV_RR_DATA (formal expression of mov), the sig-
nals, s_nextstate_fsm, s_regs_wr_en_fsm, s_data_mux_fsm,
s_adr_mux_fsm, and s_pc_inc_en_fsm, will be assigned by the
specific data.

Meanwhile, the example has been tested on a desktop with
64-bit Intel i7-3370 CPU and 16GB RAM. The result of
the time consumption of validation process in the system
integrator side, is shown in Table I.

The proof construction process of this paper was successful
in proving the security theorem for the RC5 program
implemented on the 8051 microprocessor. Consequently,
we can conclude that the computer system is secure from
any malicious attacks within the domain of the security
properties.
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VI. DISCUSSION

For the first time, the proposed proof-carrying based
unified framework, provides a solution to apply system-level
security properties to both the hardware and the software
domains. Most of the existing security methods assume the
trustworthiness of either the hardware or the software; but
this assumption is invalidated due to untrusted third-party
software and hardware vendors. Our method enhances the
security of computer systems by not making this assumption.
Furthermore, instead of bridging the semantic gap between
the hardware and the software, the unified framework com-
pletely eliminates the hardware-software boundary. Our unified
framework provides a platform for improving existing security
methods to incorporate system-level protection.

Although the proposed unified framework opens a new area
for computer system protection, the current work presented in
this paper is still at its infancy. Before the framework can be
readily applied to computer systems – which are built from
third-party hardware and software – several issues need to be
addressed.

The proposed framework requires code conversion
i.e. conversion of the hardware/software code to its formal
counterparts, before the design of security proofs for
security theorems. Thus, in our demonstration, we have
manually converted a small subset of CISC instruction set
of 8051 microcontroller and have automated conversion of a
subset of the VHDL language to the language of Coq. This
manual code conversion process and the proof construction
step reduces scalability of our approach to large-scale
processors and/or SoCs. These limitations have propelled us
to develop automatic code conversion tool, which relies on
existing hardware and software code compilers to convert
entire VHDL languge and different ISA’s (CISC/RISC) into
formal logic. The tool required development of a parser,
which takes VHDL code of the design as input and produces
an abstract syntax tree. Subsequently, we generate the code
for the Coq theorem prover (represented in Gallina) by
using the conversion rules specified in Formal HDL [45].4

On using our tool, the estimated effort for converting design of
Intel 8051 core to Gallina was about 10 seconds. In contrast,
an estimated manual effort of 10−14 days would have been
required for converting the same VHDL code to Gallina.

Meanwhile, we have build proof rules inside the VHDL
(or Verilog) so that the formal reasoning can be applied
directly on computer systems without code conversion.5 To
reduce proof construction time, we are developing tactics and
proof library of frequently used lemmas in Coq.

Furthermore, the current unified framework performs static
verification of the computer system. That is, no interrupts
are considered in the static software code. Exceptions are
not considered either, even though some exceptions can be
statically identified through the analysis of the static software
code (e.g., the divided by zero exception can be detected if

4Details regarding development of this tool is outside the scope of this paper
and will be provided in a future paper.

5In this case, we only need to convert software programs into a series
of hardware states for unifying the whole computer system in the HDL
environment.

inputs are known). For these reasons, third-party vendors will
be able to insert malicious code during the execution of the
software program on the hardware infrastructure. To deal with
these problems, we propose extending the static framework for
dynamic assertions, similar to software level code assertions.
However, this method will require modifications of the original
computer system and can result in performance overhead.

VII. CONCLUSION

The semantic gap between hardware and software is a major
obstacle in the development of system-level security properties
for the entire computer system. Security properties defined in
either domain are often invalid for the entire system. As a
result, inconsistencies arise in the definition of security proper-
ties for the system - facilitating attackers to trigger unexpected
behaviors. The security threat is worsened by the increase
of third-party resources in the hardware infrastructure and
software programs. A proof-carrying based unified framework
is developed which, for the first time, bridges the semantic gap
by converting the whole computer system into the same formal
platform. Supported by the proposed framework, system-
level security properties can be unambiguously developed
and applied to the entire computer system – thus preventing
attackers from triggering malicious behaviors at the software-
hardware boundary.
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