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Abstract—Authenticated execution (AE) is a security mech-
anism which cryptographically validates an application’s code
as it executes, as well as verifies its control-flow. AE provides
fully local guarantees which can deliver protection for control-
flow, instruction flow, and software intellectual property which
makes it ideal for devices with little to no connectivity. However,
we find that previous AE approaches make concessions in their
implementation that severely hinder their security guarantees.

In this paper we examine the weaknesses in previous AE
approaches and why these occur. We also introduce SAECAS as
a mechanism to reliably perform AE in an embedded device. We
formally prove the security aspects of SAECAS, demonstrating
its security capabilities. Moreover, we implement SAECAS on a
RISC-V core and test it on a Terasic DE2-115 FPGA board to
demonstrate its capabilities, showing that a reliable system can
be made with a hardware overhead of ≈ 2× when including
extra SoC components and no performance impact.

Index Terms—Authenticated execution, secure computer archi-
tectures, embedded security, cryptosystems

I. INTRODUCTION

As more low-power easy-to-use microcontrollers are intro-
duced to the market, so has the number of embedded devices
using them increased. Although some of these devices tend
to be resource constrained they can perform important tasks.
For example, smart pacemakers are life saving devices that
can be configured and monitored by professionals in the field
of medicine, aiding people over the world. However, as these
devices become prevalent, so has the number of attacks against
them. In recent years, we have seen a surge of attacks against
embedded devices, disrupting their application. This was the
case in 2018, when researchers demonstrated the same life
saving smart pacemakers can be tampered with malicious
intent to deliver potentially fatal shocks to patients [1]. As
a result, there has been an ongoing effort from both industry
and academia to prevent and mitigate the effects of attacks in
embedded devices.

Among the presented solutions, authenticated execution
(AE) promises an avenue of defending against software-based
attacks. Under the authenticated execution model, both the
instruction stream and the order in which it is executed are
checked for integrity as they enter the CPU. This provides
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an anti-tampering mechanism for software, changes to the
program or its control-flow would be detectable by the authen-
ticated execution policy in place. While sharing similarities to
software attestation approaches [2], [3], [4], [5], [6], [7], [8],
authenticated execution does not rely on a two party system
for security, with all the necessary constructs for security being
present in the CPU core itself.

Central to AE is that code authenticity is achieved by means
of decrypting an instruction stream as it enters the CPU.
However, to ensure security, instructions must be decrypted in
accordance to their predecessor. Decrypting this way ensures
that changes to a single instruction in the instruction stream
results in subsequent instructions seen by the processor to be
incorrect. This serves as the base for a control-flow integrity
policy. Authenticated execution approaches often divide soft-
ware into its basic blocks, encrypting them independently of
each other. Execution is only allowed to occur from the start
of a basic block to its proper end, at which point the next
basic block in the control-flow graph is chained.

Integral to the approach is how the encryption secrets are
kept in the device, and how they are used. For example, Scylla
[9] employs the same encryption secret on each encrypted
basic block. Because this exposes the scheme to dictionary at-
tacks, Scylla randomizes basic blocks by adding extra instruc-
tions that do not affect the overall function of the program.
Control-Flow Carrying Code [10] deals with the uniqueness
problem and key storage by using Shamir’s Secret Sharing
to generate the decryption key for a particular basic block
at the cost of partially rewriting the binary. Lastly, Sponge-
Based Control-Flow Protection [11] presents a fully linear
authenticated execution framework using a series of deltas
that are applied to the state of the cryptographic primitive as
branches are taken.

However, as we will discuss in this paper, the concessions
made by previous approaches when dealing with key man-
agement and cipher state introduce unintended weaknesses
in the authenticated execution policy even when the defense
has full information of how the software should operate. We
will demonstrate how these approaches can be bypassed by an
attacker, rendering the protections of authenticated execution
void. We further introduce SAECAS as a hardware module
which guarantees the resiliency of authenticated execution,
with no requirements to modify the software running on the
device. We implement and evaluate SAECAS as part of a
RISC-V core, and demonstrate its functionality and security
provisions in an FPGA board.

In short, our contributions are:
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• A proof that previous approaches are provably unable
to fulfill the guarantees of authenticated execution, even
under ideal knowledge conditions.

• A new method, SAECAS, to perform authenticated exe-
cution, which is both resilient to attack and is able to over-
come the limitations of previous approaches. SAECAS
does not require source code for the monitored program
and operates in unmodified binaries.

• Demonstration and evaluation of SAECAS in a RISC-
V core. Our implementation can be synthesized and the
bitstream can be used in a Terasic DE2-115 board. Our
design incurs ≈ 2× hardware overhead when including
all necessary SoC components, no software overhead, and
is successful at providing authenticated execution.

II. AUTHENTICATED EXECUTION

A. Principles of Authenticated Execution

To fully understand the concept of authenticated execution
we must first look at its predecessor in Instruction Set Random-
ization (ISR). ISR was initially proposed in [12] as means of
counteracting code-injection attacks which were prevalent in
those days. ISR attempts to counter these attacks by changing
the underlying machine code representation of instructions in
an ISA. This task was accomplished by placing encrypted
instructions in memory, and decrypting them as they were
being executed. Randomization was achieved by changing the
encryption key utilized on every program load. An attacker
wishing to perform a code injection attack would need to
inject instructions encrypted with the proper key, otherwise
the processor would execute random or invalid instructions,
causing the program to crash. Eventually, ISR was abandoned
as means of countering code injection attacks in favor of the
memory protection attribute write-no-execute (W⊕X). That is,
if a portion of memory is writable, its contents can not be used
as machine code.

As a response to this new memory primitive, attackers
turned to existing benign code in a program. By corrupting
code pointers in the program’s memory, such as return ad-
dresses stored in the stack, attackers are able to change the
functionality of a program by redirecting control-flow to a
string of otherwise unconnected code snippets, or gadgets,
present in the application. With this, the otherwise benign
application is mutated into a malicious payload.

Authenticated execution extends on the ideas behind ISR
to also include the means of defending against code-reuse
attacks (CRAs). During execution, both the instruction stream
and control-flow are checked for authenticity. However, unlike
traditional ISR approaches, authenticated execution ensures
the validity of the instruction stream by decrypting instructions
with respect to their predecessor. This requires a stronger ci-
pher to be employed at the time of decryption. As a side effect,
this also results in improved software IP protection, as attacks
against the electronic code book style of encryption employed
by traditional ISR are no longer possible. Furthermore, un-
like traditional control-flow integrity approaches, authenticated
execution further uses the improved ISR execution model to
provide control-flow integrity.

B. Previous Approaches

1) Classic Instruction Set Randomization: Instruction Set
Randomization (ISR) was originally proposed in [12] by Kc
et al. with the objective of countering code-injection attacks.
By using a single static key which was kept secret, authors
would encrypt a binary with the idea that if code were to be
injected into the address space of the running program must
be encrypted with the same key lest execution of the injected
code become unpredictable. Encryption and decryption was
performed using a simple xor operation between a key stored
in the binary’s header and the program’s instruction stream.

Approaches following the initial ISR proposal concentrated
in the generation, usage, and storage of the encryption key.
For example, Berrantes et al. used a one time pad (OTP) to
encrypt memory [13], a method which was then extended by
Portokalidis et al. to add support for dynamic libraries and
key management [14]. Finally, Papadogiannakis et al. pre-
sented ASIST, a hardware-based solution which considerably
reduced the performance overhead of previous software based
approaches [15].

We should note that these ISR approaches were geared
towards countering code-injection attacks. Eventually, this
class of attack was mitigated with the use of the W⊕X
primitive which gave way to the development of code-reuse
attacks. Since classic ISR approaches provide protections that
are practically equivalent to the no-execute primitive they also
fail to provide the means to defend against code-reuse attacks
thus losing visibility in the research community.

It should be mentioned, however, that classic ISR ap-
proaches have made a recent upswing in usage for a different
reason: software intellectual property (IP) protection. This
is most prevalent in devices where the confidentiality of
the software running on it must be preserved. ISR here is
employed as means of concealing the actual software from
someone who would wish to reverse engineer it by looking
at its code. For example, the NXP LPC55S69 contains a
PRINCE cryptographic module which is capable of on-the-
fly decryption of instructions and data from the on-chip flash
[16], [17]. The PRINCE module used in these microcontrollers
can encrypt and decrypt without adding any extra latency to
instruction/data fetches/stores or needing to store the unen-
crypted data in a temporary RAM.

2) Scylla and SOFIA: Instruction set randomization (ISR)
was updated to include safeguards against code-reuse attacks
independently by Sullivan et al. with Scylla [9] and Clercq et
al. with SOFIA [18]. Both approaches utilize a type of ISR in
which instructions are decrypted relative to their predecessor,
unlike classic ISR approaches in where the decryption process
is more similar to an electronic code book (ECB) or one time
pad (OTP). Encryption is performed at a basic block level.
This new ISR property gives rise to instruction ordering in the
context of their sequential ordering, giving the foundations to
control-flow integrity.

Much like classic ISR approaches, an attacker must know
the encryption secret in order to perform any type of code-
injection. However, unlike classic ISR approaches, a basic
block must be executed from its entry point, lest instructions
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be improperly decrypted. In both Scylla and SOFIA, if control-
flow redirects execution to a place other than the entry to a
basic block, the instructions are incorrectly decrypted.

Both approaches differ in how they tackle the issue of the
authenticity of instructions being executed. Scylla relies on the
unpredictability of invalidly decrypting instructions causing
extraneous behavior in the program making it crash, whereas
SOFIA adds a signature computation on basic blocks as they
are executed. The former approach requires less changes to
the hardware, whereas the latter requires not only a signature
computation, but also storage for the valid basic block signa-
tures to compare. Scylla forgoes any storage needs by using
the same key to encrypt all basic blocks. However, because key
reuse can result in weakening the encryption, Scylla permutes
the locations of functions and the basic blocks within them,
as well as adds dummy instructions inside basic blocks as a
way to add randomization to the plain-text instruction stream.
This way, dictionary and repetition attacks against plaintexts
are avoided.

3) Control-Flow Carrying Code: Control-Flow Carrying
Code, or C3, was proposed by Lin et al. in [10]. C3 extends
the ideas behind Scylla and SOFIA by adding a new key
management scheme to avoid key reuse and key storage. The
approach uses Shamir’s Secret Sharing [19] as the basis of
key generation. Shamir’s Secret Sharing is based on the fact
that a set of n unique points can be fit by exactly one n− 1
degree polynomial. The scheme is used to divide a secret S
into k different parts in a way that knowing only n < k parts
the full secret can be reconstructed. We will now cover the
basics of the scheme.

Let n, k ∈ GF (p), where p is a prime number, and
0 < n < k. We wish to divide the secret S ∈ GF (p)
into k parts so that only n parts of the secret are needed
to reconstruct it. We build a polynomial f(x) =

∑n−1
i=0 aix

i

with a0 = S and ai ∈ GF (p), an−1 6= 0. We then
compute k non-zero input points in the polynomial (m, f(m))
building the set M = {(mj , f(mj)|1 ≤ j ≤ k}. Any
subset of points Ms ⊂ M, ||Ms|| = n is sufficient to obtain
the original polynomial, and therefore the secret S = a0.
Reconstruction of the secret is done by computing a0 =∑n

i=1 f(xi)
∏n

j=1,j 6=i−xj(xi − xj)−1.

C3 uses an n = 3 of k parts to compute the secret, where
the parts are the source address, the destination address, and
a master key. The latter is used to avoid a disclosure of a
code pointer in the source-destination pair from revealing the
secret a0 used to decrypt the target basic block. C3 uses these
three elements to build the y = a0 + a1x + a2x

2 (mod p)
which constructs the secret a0. The secret is used to encrypt
a particular basic block. Points (x, y) in the polynomial
are obtained by decomposing addresses. On a control-flow
transfer, the source and destination address are used to build
two points, and thus obtain the secret a0 which encrypts the
basic block. The C3 scheme requires multiple basic blocks
that are the target of the same control-flow instruction to be
aligned in such way that their addresses can become points in
the same polynomial. For this purpose, the binary is rewritten
and basic blocks are reallocated during the encryption pass.

4) Sponge-Based Control-Flow Protection for IoT Devices:
Sponge-Based Control-Flow Protection (SCFP) was proposed
by Werner et al. in [11]. Much like C3, SCFP concentrates
on key generation and management. However, unlike previous
approaches, SCFP aims to keep a single running state on the
cipher decrypting the program through its execution. The state
is updated through deltas or patches which are added to the
program around control-flow instructions. The initial state is
generated from a secret key which is unknown to the attacker.
Even if the attacker knows the deltas used to update the state
of the cipher, without knowledge of the initial state the keys
used to decrypt instructions remain unknown.

SCFP makes use of the PRINCE cryptosystem, as an
unrolled implementation has low latency. Internally, PRINCE
uses a sponge-based construct hence the name of the approach.
Binary rewriting is required to insert the necessary patches.

C. Observation on Previous Approaches

As we will examine in detail in Section VII, previous im-
plementations of authenticated execution are provably unable
to enforce the security guarantees of this type of defense,
even under the condition that a full control-flow graph for
the program being protected is known. Traditional Instruction
Set Randomization approaches are unable to enforce any kind
of control-flow integrity, much like the newly introduced NXP
LPC55S69 PRINCE module. Scylla and SOFIA both are only
capable of enforcing a very relaxed control-flow integrity
policy. Control-Flow Carrying Code allows an attacker to
compute valid keys and predict the outcome of decryption.
Lastly, Sponge-Based Control-Flow Protection is unable to
enforce a full control-flow graph due to the way the cipher
states are synchronized.

For this reason, we propose SAECAS as a secure im-
plementation of authenticated execution under the conditions
where previous approaches fail. SAECAS is unique in that it
decouples control-flow checks from the instruction decryption
process while still preserving a relation between the two.

III. THREAT MODEL AND ASSUMPTIONS

We assume an attacker which may have access to the device.
The attacker wishes to alter the device’s functionality by
tampering with the software running on it through either direct
changes to the code, or code-reuse attacks. For example, an at-
tacker may use memory vulnerabilities to inject program code,
leak code from the running software, or attempt to compute
the cryptographic secrets used to encrypt the software.

We do not require full verification of the software running
on the device when the device boots, however, we do require
proper verification of the stored software’s metadata. For this
purpose, we use an immutable root of trust, however this
portion of the implementation is not strictly unique or required.
Our goal with the defense is to thwart attempts to change the
software on the device dynamically at runtime.

We aim to protect statically linked applications, where
library routines become part of the application binary, with
no underlying operating system or dynamic linker. This is
the most common type of application present in embedded
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devices. We do not protect against inherently malicious soft-
ware. Much like cryptographic algorithms, we require secure
storage of the key used to decrypt the software. Furthermore,
our implementation does not protect against side-channel or
invasive attacks to extract cryptographic secrets. Methods to
deal with this type of attack have been proposed before [20],
[21], [22] and are an orthogonal avenue of research.

IV. SAECAS DESIGN

As previously discussed, authenticated execution provides
the means to verify both control-flow and instruction-flow
of a program as it is executed. This is achieved in part by
encrypting instructions in the software in a way so that decryp-
tion of an instruction depends on its predecessor. However, as
with other cryptosystems, key storage and usage becomes a
challenge. This is exacerbated by a powerful attacker who has
access to the device and can dump the non-secure areas of
the firmware for analysis. Consequently, when designing the
system we need to be aware of the following issues:
• CFI must be stateful: function returns must return to their

caller.
• CFI policy must enforce CFG: CFI mechanism must not

introduce extraneous edge to the control-flow graph.
• Keys must remain secure: encryption keys must not be

in the non-secure (encrypted) instruction stream where an
attacker can view them.

• Keys and decryption must be unpredictable: an attacker
with partial knowledge of the system (e.g. location of
some basic blocks, code pointers) must not be able to
infer further information from the system.

In particular, we note that with previous schemes attempt-
ing to dynamically generate keys as a function of source-
destination addresses will result in predictable decryption of
instructions and a relaxed CFI policy. We also note that stateful
encryption of the instruction stream on its own will not be
able to provide a strong CFI policy. As such, we conclude
that encryption keys or any information used to generate
encryption keys must be kept hidden from the attacker, and
that control-flow information must be kept decoupled from
the instruction stream.

A. Design Overview

The aforementioned insights lead us to our main design
considerations. We must keep control-flow information, as
well as data which is used to generate the encryption keys
employed to decrypt the instruction stream. We wish to
perform the decryption process in a way that minimizes any
latency in the CPU’s pipeline, as to avoid affecting the CPU’s
throughput. In this same vein, updates to the cipher must be
done in a single clock cycle. Furthermore, our changes to the
CPU must not interfere with microarchitectural design choices
used to decrease CPI while still providing all guarantees of
authenticated execution.

We address the issue of storage of both control-flow in-
formation as well as seeds for encryption of basic blocks
with a content-addressable memory (CAM). A CAM is a type
of memory that, unlike conventional random-access memory

(RAM) from which information accessed using a linear index,
uses a data word as a search item returning any associated
contents if the data word is found. When detecting a control-
flow transfer, we send the CAM the source-destination address
pair. The CAM searches for an entry which contains this
source-destination pair and if found returns the secret used for
the purpose of decryption. If the control-flow address pair is
not found in the CAM, the system raises an exception signaling
a control-flow violation. The purpose of the CAM is then
twofold: it stores the metadata necessary to start the decryption
of a basic block, and it decouples control-flow information
from the decrypted instruction stream serving as its own CFG
metadata repository.

The state of a cryptographically secure pseudorandom num-
ber generator (CSPRNG) is updated in parallel to instruction
fetches. This allows for decreasing the effects on timing in the
CPU’s datapath. On control-flow instructions, the next state of
the CSPRNG is updated with information obtained from the
CAM. Data stored in the CAM is kept from being accessed
by other parts of the SoC, regardless of any security state.
Verification of control-flow information occurs at a later stage
of the pipeline (see Section IV-D). Decrypted instructions are
fed back into the cipher to update state information.

F D X

CAM CS
PRNG

CF
chk

· · ·

fetch decode execute

Fig. 1: SAECAS design overview. Our additions to the CPU
pipeline are highlighted. We extend the instruction fetch stage
of the CPU to decrypt fetched instructions so that the cur-
rent instruction is decrypted with respect to its predecessor.
Initialization vectors are obtained from a content addressable
memory (CAM) which is indexed using source-destination
address pairs from the branch predictor. These serve as the
starting point for the decryption of a basic block. If an
address pair is found in the CAM, it is forwarded to the
execution stage, where control-flow is verified after the branch
predictor’s operation is checked.

We show the overall design of our system in Figure 1 with
additions to the CPU being highlighted. Our decryption stage
works mostly in parallel with the instruction fetch. We only
place a small amount of combinational logic between the fetch
and decode stages of the CPU as to diminish the effects of
decryption in the pipeline’s throughput. The ensuing sections
explain the portions of our scheme.

B. Instruction Key Generation and Decryption

To generate keys that decrypt the instruction stream we use
a cryptographically secure pseudorandom number generator
(CSPRNG) based around a block cipher. The CSPRNG yields
a number which is used to decrypt a single instruction. The
output of the CSPRNG and the decrypted instruction are used
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as feedback for the CSPRNG algorithm. We show the structure
of the decryption engine in Figure 2.

PRINCE

insn out

insn in

IV

enablekeyiv select

Fig. 2: Decryption key generation and process. The decrypted
instruction becomes part of the next state used by the PRINCE
engine. Our PRINCE implementation is unrolled, allowing for
single cycle operation.

For the purposes of explaining the datapath in the CSPRNG,
we will use Pk as the encryption function. To generate a
decryption key Dk we utilize the lower 31 bit of the output
of the CSPRNG. That is, Dk = Pk(Sn) mod 232, then the
decrypted instruction becomes insnout = insnin⊕Dk. To com-
pute the feedback path into the CSPRNG, Sn1

, we combine the
current upper 32 bit of the CSPRNG output with the decrypted
instruction. That is, Sn+1 = Pk(Sn⊕(insnd×232)). We reseed
the CSPRNG with a known IV whenever we start executing
a basic block, that is S0 = Pk(IV ).

C. Control-Flow and IV Storage

The initialization vectors (IVs) for generating decryption
keys is stored using a content-addressable memory (CAM).
The CAM is indexed using control-flow source-destination
address pairs returning the IV as well as whether the returned
data is valid or not. We show the structure of a CAM line in
Figure 3.

valid entry

source addr. destination addr. initialization vector

Fig. 3: SAECAS CAM line structure. Upon control-flow
transfers, the CAM is indexed using source-destination address
pairs to extract the seeds to the encryption secret used for the
purpose of decryption. If the source-destination address pairs
are not found in the CAM, the information is propagated to a
later stage of the pipeline to possibly raise an exception.

The contents of the CAM are initialized using software in a
boot ROM (see Section IV-E) through a set of memory mapped
registers. These registers provide a write-only interface to
the CAM. Boot code then locks the CAM from further
writes before yielding control to the application software. This
prevents memory errors in the application from being used by
an attacker to inject extra data into the CAM.

On a control-flow instruction, the data obtained from the
CAM is used to decrypt the next incoming basic block. The

result of the valid entry is also forwarded through the pipeline
to the execution stage where control-flow is verified.

D. Control-Flow Checking

The valid bit obtained from reading the CAM during a
control-flow is forwarded through the CPU’s pipeline until it
reaches the stage where control-flow instructions are executed.
The reason for this design choice is the way CPUs treat branch
instructions. A shadow stack is used to preserve control-flow
state on function calls and returns. The shadow stack is not
memory mapped, making it inaccessible to software running
on the CPU. We will cover control-flow transfers in detail in
Section V-D.

E. System Startup

A non-modifiable boot ROM is used to initialize the system.
The ROM contains initialization code which cryptographically
verifies control-flow information, decrypts it, and stores it in
the CAM. The boot ROM code locks the CAM from any future
writes, as to avoid software from modifying its contents. Then,
it enables the decryption subsystem and jumps into the entry
point of the encrypted application.

ROM boot code is small and can be formally verified if
needed. Care must be taken so that the boot code performs safe
cleanup of used memory areas and CPU registers as to avoid
leakage of information from the boot process. Although these
details improve security of the system, the specifics of the
implementation and verification of the boot code are outside
the scope of this paper.

V. SAECAS IMPLEMENTATION

As part of SAECAS we extended the RISC-V ORCA core
[23] to provide our authenticated execution framework. We
also created helper tools to aid the collection of control-flow
metadata and automate the encryption of instructions.

A. The VectorBlox ORCA Core

The VectorBlox ORCA Core is a 32 bit RISC-V core
optimized for FPGA implementations [23]. The core is written
in VHDL and is distributed under the BSD license. In its stock
configuration, ORCA implements a 5 stage pipeline, with a
branch predictor in the instruction fetch.

The branch predictor by default is implemented as a 16 entry
branch target buffer (BTB). The BTB behaves like a direct
mapped cache, indexed and tagged by the source address.
If the core is configured to forgo the use of the BTB, the
branch predictor behaves as a simple pc+4. That is, without
a BTB the instruction fetch stage will always read the next
instruction and forward it to the decode stage. Branches in
ORCA are resolved in the execution stage. If a branch is
taken and it was mispredicted, the execute stage sends the
corrected program counter as well as the source address of the
branch instruction to the instruction fetch stage. The contents
of the fetch and decode stages are invalidated, and instruction
fetches resume from the new address. If the BTB is present,
the source/destination pair is stored in the BTB.
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The ORCA core’s reset vector is located at address
0x00000000, however this can be configured to a different
location at synthesis time. When the core starts, code begins
executing from this address. The ORCA core has an option to
enable vectored interrupts, although in the default configura-
tion this is disabled.

ORCA implements three different bus masters: Avalon [24],
AMBA AXI [25], and Wishbone [26] which allows for ease
of integration of the core into any SoC. Our implementation
uses the Avalon topology as the SoC bus, but this is not a
strict requirement. We only perform bus accesses from the boot
ROM to configure the authenticated execution subsystem.

B. Initialization and Boot ROM

When the core initializes, the metadata in the content
addressable memory (CAM) is undefined. Bus matrix reset
signal is propagated into the CAM, invalidating all its entries.
This signal also unlocks write accesses to the CAM so that
it can be initialized by the Boot ROM. The CAM is exposed
to the SoC using a write only Avalon bus interface. That is,
with the exception of the CAM status register, CAM control
registers can only be written to but not read. This ensures that
software can not leak any control-flow metadata.

The memory map of the ORCA core was further divided,
reserving the lower 4 kB of memory for the boot ROM code.
Since at this point in execution the decryption subsystem has
not been populated, this code resides in plain text. The boot
ROM can then verify encrypted control-flow and initialization
vector (IV) metadata, which can be accomplished using stan-
dard digital signatures. Control-flow and IV metadata can then
be decrypted and loaded into the CAM. Boot ROM code then
locks CAM writes, preventing changes to its contents from
memory errors in application software. The boot ROM code is
trusted. The master key for the cipher, as well as the certificates
are stored elsewhere in the SoC in a region only available to
the boot ROM code, and are used only once to initialize the
contents of the CAM and the cipher. Protection of this area
is achievable by a simple check of the program counter on
a memory access to this region. If the program counter lies
within the boot ROM, then access is allowed and the key and
certificates can be read, otherwise, zeros are returned.

C. Integrating Authenticated Execution into ORCA

Our decryption unit serves as an extension to the fetch
stage of the ORCA core. No extra clock cycle is required
for data propagation. An unrolled PRINCE implementation
allows us to generate cryptographically secure random num-
bers (CSRNG) in a single clock cycle. A small instruction
decoder identifies control-flow instructions. If a control-flow
instruction is detected, the current program counter and the
predicted program counter signals that are propagated to the
rest of the pipeline are used to index into the CAM to obtain
IV and valid control-flow transfer information. The IV is used
to reseed the CSRNG, and the valid bit from the CAM is
propagated into the pipeline.

The execute stage is modified to utilize the propagated
control-flow valid information from the modified fetch stage

to determine whether a control-flow transfer is valid or not.
Moreover, a shadow stack is also added to account for
state changes in the control-flow graph as described in [27].
Whenever a call instruction which targets a valid callee is
executed, the return address is pushed into the shadow stack.
Whenever a return instruction targeting a valid callee return
site is executed, the last stored value in the shadow stack
is popped and compared to the target program counter. If a
mismatch is detected, a control-flow violation is reported.

D. Control-Flow Checking in ORCA
During execution, the instruction fetch stage of the ORCA

core is constantly generating a predicted program counter
which is used to fetch the next instruction. By default, the
predicted program counter is the current fetch address plus
one instruction word, that is pc + 4. However, if the BTB
is present, and there is an entry in the BTB that matches
the current fetch address, then the BTB is used to generate
the predicted program counter and the next instruction is
fetched from the address obtained from the BTB. Ultimately,
control-flow instructions are handled in the execute stage.
This is far too late to perform decryption, as the instruction
must be decoded and its operands must be obtained before
it reaches the execute stage in the pipeline. If the predicted
program counter generated by the instruction fetch stage was
incorrect, the execute stage sends a corrected program counter
to the instruction fetch stage, coupled with the source program
counter. Fetched instructions due to the misprediction are
invalidated in the pipeline.

For the instruction decode stage to obtain the proper
operands, the decryption engine must exist between the fetch
and decode stages. However, during that stage of the pipeline
the computed target for a branch instruction may not be prop-
erly resolved. As such, when encountering a branch instruction
our implementation relies on the predicted program counter
sent by the fetch stage. The decryption logic detects whether
the decrypted instruction is a control-flow instruction. If so,
it performs a lookup in the CAM for the next IV using the
current program counter and the predicted program counter.
If the control-flow pair is not found, the CAM returns an
IV of 0, and an invalid entry value. Otherwise, the CAM
returns the corresponding IV, and reports a valid transfer which
is propagated to the execution stage. The execution stage
uses this information in conjunction with the operation of the
control-flow instruction to decide if a control-flow violation
has taken place using the following rules in addition to checks
against the shadow stack:

1) If the transfer detected in the CAM is invalid, and the
execute stage detected a branch misprediction, then no
exception is raised. Furthermore, a corrected program
counter is sent to the instruction fetch stage coupled with
the source address. The decryption subsystem uses this
information perform a new lookup in the CAM starting
the process anew.

2) If the transfer detected in the CAM is valid, and the
execute stage detected a branch misprediction, then no
exception is raised. Handling of the branch correction
follows the same process as above.



7

3) If the transfer detected in the CAM is invalid, and the
execute stage detected no branch misprediction, then we
do not commit the instruction and an exception is raised.
This is because the software has taken a branch to a
location which was not intended as no record of such
control-flow is present in the CAM.

4) If the transfer detected in the CAM is valid, and the
execute stage detected a proper branch prediction, no
exception is raised. Moreover, instructions that entered
the pipeline as a result of the proper branch prediction
have been properly decrypted since the proper IV was
loaded into the CSRNG and no extra action is taken.

These rules allow for authenticated execution to take place
with the same pipeline throughput as an unmodified pipeline.
There is no need to stall the pipeline waiting for a control-flow
instruction to resolve in the execution stage. The decryption
process to continue until control-flow can be verified at the
time of instruction execution, which allows software to run
without loss of performance.

E. Metadata Generation and Encryption

We added a back-end pass to the LLVM compiler in-
frastructure [28] to streamline the collection of control-flow
metadata. The back-end pass records control-flow instructions
and their targets when possible and instruments the source and
destination pairs using symbolic labels. Our pass also stores
these symbolic labels in a new non-loadable sections of the
binary. At link time, the labels in the section are populated
with the addresses of the labels in program code.

We encrypt our binary with a Python script which we
run after linking has completed. Basic block information is
extracted from the newly created section and generating the
contents of the CAM at this point. The Python script creates
a new binary which contains the CAM data. This area is used
by the boot ROM’s code to initialize the CAM before control
is passed to the encrypted binary.

VI. EXPERIMENTAL RESULTS

We tested SAECAS on the Terasic DE2-115 board, which
uses an Intel Cyclone IV EP4CE115 FPGA. We now discuss
hardware and software overhead of our implementation, as
well as power considerations.

A. Hardware Evaluation

Our hardware implementation is written in 1319 lines of
VHDL, not including any SoC glue logic. Table I show details
on hardware overhead when synthesized targeting the Cyclone
IV EP4CE115. These values include an additional SoC infras-
tructure needed to support our mechanism, including bus logic
and additional address decoders.

Most of the overhead is due to the CAM and the unrolled
PRINCE implementation. The ORCA core in the DE2-115
board uses a 100MHz clock. Our additions to the ORCA core
and associated SoC do not affect the timing requirements.

TABLE I: Resource usage of SAECAS in a Cyclone IV
EPC4CE115 FPGA. Our implementation has total hardware
overhead of ≈ 2× in our test platform.

ORCA SoC ORCA SoC+SAECAS

Flip-Flops 8839 18550
Logic Elements 14799 32442
Block RAM Bits 146960 147760

B. Hardware Overhead of Different Subsystems

We show a breakdown of the overhead of different compo-
nents of our design in Table II. As expected, most of the datap-
ath overhead lies in the implementation of the PRINCE cipher,
whereas the CAM circuitry contributes the most to the area
overhead. Results were obtained using Intel Quartus Prime
19.1.0 Build 670 targeting a Cyclone IV EP4CE115F29C7
FPGA at the most aggressive levels of optimization.

TABLE II: Per-subsystem overhead for our implementation
in terms of flip-flops (FF), logic elements (LE), block RAM
bits (BRAM), and maximum frequency (Fmax). The highest
contributors to area overhead and datapath delays are the CAM
and the unrolled PRINCE implementation, respectively.

Component FF LE BRAM Fmax

PRINCE CSRNG 64 1852 0 100MHz
CAM 9307 15630 0 > 100MHz
Shadow Stack 52 69 1400 >100MHz

We tested our unrolled PRINCE implementation targeting
a 100MHz clock with a fixed key. Faster clock speeds result
in the design suffering from negative slack. We configured the
CAM to utilize 14 bit for source and destination addresses,
a 64 bit IV field, and 100 lines. This allows us to address
64 kB of code, and to store 100 unique control-flow address
pairs. Our shadow stack implementation contains a total of
100 14 bit entries. The chosen values are sufficient to hold all
control-flow data for BEEBS [29].

We should stress that the reported numbers target an FPGA
implementation of the system. There are further optimizations
that can be made to our design when targeting an ASIC
platform. For example, the xor gates in the PRINCE cryp-
tosystem used alongside the round constants can be replaced
with inverters, which further reduces propagation delays in the
cipher’s datapath. In an FPGA-based platform, the synthesis
of xor gates have the same delay cost as the synthesis of
inverters, as logic functions are implemented using SRAM-
based lookup tables inside logic blocks. We defer testing on
an ASIC-based platform as future work.

C. Software Overhead

We utilized our tools to compile BEEBS [29], a series of
embedded benchmarks, and the RISC-V testsuite and run them
on the modified ORCA core. Unsurprisingly, we do not exhibit
any overhead issues when running software. Our binaries are
not instrumented with extra instructions or data which is used
by software in runtime, and our hardware implementation
does not interfere with the behavior of the different stages



8

of the pipeline. Moreover, we do not alter the placement of
instructions or data sections in memory. As such, we do not
encounter any software overhead.

D. Overhead of Other Approaches

We compare SAECAS to previous authenticated execution
implementations in Table III in terms of hardware and software
overhead, and effects on the datapath.

TABLE III: Overhead comparison between SAECAS and
previous authenticated execution approaches. We show compa-
rable or better overhead in terms of hardware (HW), software
(SW), and clock frequency reduction due to introduced data-
path delays (CLK). Hardware overhead is with respect to the
baseline platform.

Approach Overhead
HW SW CLK

Scylla [9] -† 20% -†
SOFIA [18] 1.12× 149% −23.2%
Control-Flow Carrying Code [10] -† 70% -†

S.B. Control-Flow Protection [11] 1.32× 9.1% 100MHz‡

SAECAS (this work) ≈ 2× 0% 100MHz

† No hardware implementation available
‡ Reported as target frequency

The authors of SOFIA used the RECTANGLE-80 block
cipher [30] unrolled in the critical path of a LEON3 SPARCv8
processor [31]. An implementation using PRINCE is also
presented. Most of the reduction in clock speed stems from
using the cipher this way [18]. This is much unlike our design,
where the bulk of the cryptosystem operates in parallel to
the fetch stage of the CPU. The authors report a hardware
overhead of ≈ 1.23×, but it is unclear if this is relative to
the LEON3 core or a baseline SoC, if extra storage consider-
ations were accounted for in this overhead, and whether the
RECTANGLE-80 or PRINCE version were evaluated.

Neither Scylla [9] or Control-Flow Carrying Code [10]
provide a hardware implementation. The former opts to use
its own execution framework and the latter uses the Intel
PIN dynamic instrumentation tool [32] to provide emulation
platforms for their respective execution environments. The
reported software overhead for both approaches are relative
to executing binaries in their respective execution wrappers.

Lastly, SCFP requires binary rewriting in terms of adding
the necessary deltas to the application code. This leads to a
reported software performance overhead of 9.1%. Much like
our design, the cipher operates in parallel to the processor’s
datapath, which introduced no changes in the operating speed
of the design. As such, the authors report that the target
frequency of their core remained unchanged at 100MHz [11],
with no further data given. Unfortunately, the authors do not
make it clear whether the presented hardware overhead of
1.32× is with respect to the core they used as part of their
implementation, or an SoC.

In comparison, our design shows similar albeit higher hard-
ware overhead while providing stronger security guarantees.
Moreover, we incur no software overhead, as we are capable
of running unmodified binaries in an SoC whose datapath

remains virtually unchanged. Cipher operations in our design
occur in parallel to the fetch stage of the processor, and
other introductions to the processor’s datapath barely have any
effects on delays.

E. Usage of Different Cryptosystems

The cryptosystem used as part of the decryption scheme
will have an overall effect in the throughput of the system.
For our purposes, we utilized the PRINCE cipher, which
was created specifically for unrolled applications in embedded
devices [33]. The cipher also commercially used by NXP
Semiconductor in their LPC55S69 series of microcontrollers
as a way to provide low latency runtime decryption of a
program stored in the internal flash memory [16], [17]. Our
usage of PRINCE stems from its creation goals, and that to the
best of our knowledge only attacks on reduced round versions
of the cipher have been published [34], [35].

An implementation of SOFIA [18] used the RECTANGLE-
80 cipher [30] to detrimental effects in the CPU’s datapath.
However, the unrolled cipher was used as part of the datapath
itself. The authors show that using PRINCE in this particular
way still affects the overall clock speed of the resulting
processor, but to a much lesser extent.

We believe that the use of other ciphers with multiple
rounds, such as AES-128, in an unrolled fashion would reduce
the frequency at which the overall system operates to avoid
stalling the CPU’s pipeline. Alternatively, a sequential version
of the cipher could be used, but at a higher clock speed.

F. Discussion of Power Considerations

Since we target IoT devices, it is only fair we include
a discussion on power considerations. IoT devices by their
nature are constrained, and some have low power consumption
requirements. CAMs by their nature tend to be relatively
power hungry. However, there are methods to reduce power
consumption in CAM circuitry [36], [37], [38].

Power Domain A Power Domain B

×16

Fig. 4: Dividing the CAM into power domain groups allows
for the shutdown of unused CAM regions lowering power
demands on smaller programs.

Analysis of BEEBS gives an almost linear relation between
program size and control-flow pairs, suggesting that smaller
applications would not make use of much of the CAM’s
capacity. Even with the application of the aforementioned
methods, we are left in situations where power is wasted
in unused CAM resources. To optimize CAM and power
usage we propose dividing the CAM into different software-
controlled power domains.



9

In Figure 4 we show an example of the CAM divided into
discrete domains, each containing 16 lines. During initializa-
tion, the boot ROM can enable the necessary CAM regions
to load all control-flow and IV metadata. Unused areas would
remain off for the duration of the device’s operation. Since
implementing and testing such mechanism can only happen
in ASIC design, we leave this as future work.

VII. SECURITY CONSIDERATIONS

A. Security Analysis of SAECAS

We tested the security of our mechanism by inserting a
vulnerability in an otherwise benign binary that allowed us
to alter control-flow and modify the instruction stream. This
is in line with the attacker model described in Section III.
We ran our binary in the DE2-115 board using our modified
ORCA core and attempted to deploy a code-reuse attack, a
code injection attack, and leakage of code.

As expected, our system was able to detect deviations from
the control-flow graph. Since the boot ROM locks the CAM
before jumping into encrypted code, we were unable to use
the memory vulnerability to add new control-flow and IV
metadata. We were also unsuccessful in deploying a code
injection attack. This is because the code needs to be encrypted
with the proper IV and key. Following the attacker model, the
key is not available to us, and with the CAM being write-only
we are unable to recover the necessary IVs for encryption. We
were able to use the memory vulnerability to recover encrypted
code, but obtaining the plain-text was impossible given our
lack of knowledge from the encryption key and IVs used.

B. Proof of Security

We assume a full control-flow graph for the program run-
ning on a device which implements SAECAS. We let A be the
set of addresses in the program’s instruction space. We let A′
be the source of genuine instructions in the program. We also
let S ⊆ A′ be the set of valid source addresses, and D ⊆ A′
be the set of valid destination addresses.

We let C : S × D → {0, 1} be a function that determines
whether a control-flow address pair is invalid (0) or valid (1).
We let E be the set of entries in the CAM. An entry is valid if
its valid bit is set. We define the function V : E→ 0, 1 repre-
senting valid entries in the CAM. However, the CAM in SAE-
CAS contains all valid source-destination pairs of all control-
flow transfers. That is, for entry i, V (i) = 1↔ C(Si, Di) = 1.
Then, ∀S ∈ S,∀D ∈ D, C(S,D) = 1 → VS,D = 1, meaning
that only valid source-destination pairs are allowed in control-
flow transfers. Conversely, ∀S ∈ S,∀D ∈ D, VS,D = 0 →
C(S,D) = 0. That is, all invalid control-flow transactions are
implicitly stored in the CAM. Moreover, as proven by Jin et al.
in [27], it is insufficient to track valid edges in a control-flow
graph for full control-flow protection, introducing the concept
of state in the control-flow graph and demonstrate that a policy
must enforce software execution state. SAECAS achieves this
by implementing a shadow stack of return addresses.

Proof for proper decryption follows the state required of
the cipher. A basic block b is decrypted using key k and
initialization vector IV . The first required state for decryption

on a basic block becomes Sb,0 = Pk(IV ), and subsequent
states are computed by performing the operation Sb,n+1 =
Pk(Sn⊕ (insnb,n,d× 232)) where Pk is the PRINCE function
with key k. For decrypting the ith instruction of the basic block
we utilize Dk = Sk mod 232. Upon a valid control-flow
transfer, the CAM returns IV for the target basic block. An in-
valid control-flow transfer returns no valid data, as previously
proven. Hence, Sb′,n′ = Pk(Sl ⊕ (insnb−1,l,d × 232)), where
insnb−1,l,d is the last decrypted instruction of the parent basic
block, and Sb′,n′ is the state which will be used to decrypt
the target instruction of an illegal control-flow transfer. The
state will only be valid if it can be reached following the state
computation chain from the start of the target instruction’s
basic block and related IV . Given that SAECAS conceals IV
and k information, the decryption process is secure as long as
the PRINCE function is secure.

C. Analysis of Previous Approaches

We now discuss issues with previous approaches. For our
evaluation, we assume that the attacker has no access to the
encryption secret being used to encrypt the code. The attacker
may attempt to recover this secret by exploiting flaws on the
design of the security mechanism, but not its implementation.
We also assume that a cryptographically secure cipher is being
utilized to decrypt instructions, and that a full control-flow
graph for the application is available.

1) Classic ISR Approaches: As previously stated, classic
ISR approaches offer no protection against code-reuse attacks.
This stems from the fact that decryption is preformed in a way
that resembles electronic code book. In fact, code-reuse attacks
were developed as a result of code injection no longer being
possible after write-no-execute primitives were introduced.

In some cases, such as with the PRINCE cryptographic
module in the NXP LPC55S69, data leakage is still possible
using a read anywhere vulnerability targeting the program flash
space. Since decryption is transparent when data is read from
the microcontroller’s flash memory, a load instruction will be
able to recover the plaintext.

2) The issue with C3: Control-flow Carrying Code uses
Shamir’s Secret Sharing scheme with n = 3 of k parts needed
to recover the key which properly decrypts the basic block.
These three parts are the source address, destination address,
and a master secret which is used as an extra parameter.
However, we now consider the case where two different
control-flow instructions target the same unique basic block
as in the case with two function calls targeting the same
function, or where a single control-flow instruction targets
two different basic blocks as in the case of virtual function
pointers. We assume that for either case the attacker has used
an information disclosure vulnerability to leak the source and
destination addresses of the possible control-flow paths. At this
point, the attacker has managed to obtain three of the n = 3
pieces required to compute the secret a0 which decrypts the
target basic blocks in lieu of having the master secret.

What is more, since the attacker is capable of obtaining the
corresponding Lagrange polynomials, the original polynomial
can be recovered. Using it, the attacker can determine all
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addresses which will be decrypted a0 when reached from
one of the leaked sources. Although the instructions being
decrypted at these address may produce results which are
different from the intended (valid) ones, the decryption process
becomes predictable. The attacker can utilize these findings
to construct a useful gadget catalog and launch a code-reuse
attack which will go undetected by C3. This is to say, C3

is incapable of enforcing a control-flow graph in its full
extent under an information disclosure vulnerability even if
the attacker is unable to obtain the master secret.

The situation is exacerbated in a microcontroller, where
memory management and protection techniques are rarely
used. The polynomial gives the attacker the locations where
code can be injected encrypted with the secret key a0. Redi-
recting execution to that site from the known sources will
result in the instruction stream being decrypted properly. With
this, the attacker is able able to gain total control of the
platform and bypass the CFI policy.

3) Analysis of SCFP: For our analysis of Sponge-Based
Control-Flow Protection (SCFP), we will represent updates to
the state of the system by application of the operation Sn+1 =
f(Sn). We will also represent the “patch” to the state with the
operation Sj = P (c, Sk), where c is the delta in the program
stream, Sk is the current state, and Sj is the desired state.

For our analysis, we will use the construct in Figure 5.
Figure 5b shows the overall control-flow graph of the scenario.
Two functions can make indirect calls to one of two possible
callees, then return back to its caller. We show the SCFP-
instrumented code in 5a, broken down into the contents of
the basic blocks. Each instruction has a unique cipher state
associated with them, represented as (Si). The cipher state
is required to properly decrypt the instruction. Symbols α to
θ are the deltas or patches which need to be applied to the
state of the cipher to properly decrypt target instructions after
control-flow transfers π1 to π8 have taken place.

We begin our analysis by demonstrating how the deltas are
computed. We start with control-flow paths π1 and π3. We
note that the cipher must be at state S8 for the first instruction
of the basic block to properly decrypt regardless of caller.
We apply the operation S8 = P (γ, P (α, S4)) when following
transition π1, and the operation S8 = P (γ, P (η, S19)) when
following transition π3. Consequently, P (γ, P (α, S4)) =
P (γ, P (η, S19) thus P (α, S4) = P (η, S19). Similar analysis
following transitions π2 and π4 yields P (α, S4) = P (η, S19).

From this, we conclude that the synchronization of the
cipher actually happens with the first patch that is applied
in the transition. The cipher is already synchronized before
entering the target basic block. The application of the second
patch is so that S8 6= S12, as to avoid state reuse.

As such, to instrument the code, we can pick any random
values for γ, δ, ε, and ζ so that γ 6= ε, and δ 6= ζ. To compute
η we can pick a random α, then P (α, S4) = P (η, S19), so
that η = P−1S (S19, P (α, S4)). We can compute S4 and S19 by
successive applications of f to states S1 and S16, respectively.
That is, S4 = f (3)(S1) and S19 = f (3)(S16). We repeat the
same process to compute δ and ζ.

As demonstrated, the synchronization of the cipher at return
sites is not dependent on β and θ, but on δ and ζ. The cipher

insn(S1)

insn(S2)

insn(S3)
jalr t0(S4)
α

β

insn(S5)

insn(S6)

insn(S7)

γ

insn(S8)

insn(S9)

insn(S10)
ret(S11)

δ

ε

insn (S12)

insn (S13)

insn (S14)
ret (S15)

ζ

insn (S16)

insn (S17)

insn (S18)
jalr t0 (S19)

η

θ
insn (S20)

insn (S21)

insn (S22)

π2π1

π6π5 π7 π8

π3 π4

(a) The decryption cipher must be at state Sk in order to properly
decrypt the accompanying instruction. Symbols α to θ represent the
deltas or patches applied to the cipher on control-flow changes. Solid
arrows represent valid control-flow paths, and are numbered π1 to π8.
Dashed arrows represent sequential execution within a basic block.
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γ δ ε ζ

η

θ
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π2

π5
π6

π3
π4
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π8

(b) Control-flow graph of presented code. Nodes of the same color
represent basic blocks of the same function.

Fig. 5: Example of SCFP-instrumented code (top), and its
control-flow graph (bottom).

will have the same state regardless of which path is taken from
the set {π5, π6, π7, π8}. As such, the CFI scheme is unable to
check we are returning to the proper caller. We can traverse the
path S4 → π1 → S8 → S11 → π7 → S20 and still be able to
decrypt instructions properly, even though this execution path
is illegal. The proper execution path starting at S4 must end
in S5. That is to say, the CFI policy can not conform to the
stateful requirements presented in [27].

Moreover, assume that there is a new execution path π9
which targets a valid call site S23 from S19. We also assume
that this call target can only be accessed through this path.
We must then apply patches η and ι to set the cipher at
state S23. Then, S23 = P (ι, P (η, S19)). However, recall
from our analysis that when traversing π4, we have that
S12 = P (ε, P (η, S19)). Hence, P (η, S19) = P−1p (ι, S23) =
P−1p (ε, S12). But as previously seen P (η, S19) = P (α, S4).
Consequently P−1p (ι, S23) = P (α, S4), which results in
S23 = P (ι, P (α, S4))

Therefore, S4 becomes an unintended caller of S23, intro-
ducing a non-existent path π10 into the control-flow graph.
Furthermore, when returning from this new callee, S5 also
becomes a valid return site, regardless of the path that was
taken to enter the function. In other words, even if we are
able to fully recover the control-flow graph for an application,
SCFP is provably unable to enforce a fine-grained control-
flow policy, and thus is unable to provide the properties of
authenticated execution.
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D. Comparison of SAECAS and Previous Approaches

As demonstrated, previous authenticated execution ap-
proaches fail at providing all the theoretical safeguards of
this type of defense. Based on previous sections, we compare
the capabilities of previous approaches as shown in Table IV
based on how well approaches can enforce control-flow in-
tegrity (CFI), encrypted execution (EE), and guarding software
intellectual property (IPG).

TABLE IV: Comparison of our approach to previous authenti-
cated execution mechanisms in terms of control-flow integrity
protection enforcement (CFI), encrypted execution enforce-
ment (EE), and software intellectual property protection (IPG).
Approaches flagged with , , or offer strong, weak, or no
protection in the category, respectively.

Approach CFI EE IPG

Traditional ISR [12], [13], [14], [15]
Scylla [9]
SOFIA [18]
NXP LPC55S69 PRINCE Module [16], [17]
Control-Flow Carrying Code [10]
Sponge-Based Control-Flow Protection [11]
SAECAS (this work)

As discussed in previous sections, traditional instruction set
randomization (ISR) approaches serve a functionality equiva-
lent to the write-no-execute (W⊕X) memory protection primi-
tive. Consequently, it is incapable of enforcing any kind of CFI
policy. Moreover, binaries reside in plain-text on disk and are
only encrypted when loaded to memory. Thus, traditional ISR
can not provide IP protection to software. Lastly, the ISR ap-
proaches use weak encryption, and the key is known to the OS
thus not being able to fully provide encrypted execution. Much
of this is applicable to the LPC55S69 PRINCE module, as it
does not provide control-flow integrity. Also, its IP software
safeguards are not resilient to memory leak attacks. Data reads
by software from flash memory are transparently decrypted by
the PRINCE module, thus a memory read vulnerability can be
employed to obtain the machine code of the software running.

Scylla and SOFIA provide weak control-flow integrity
policies as part of their design. We also demonstrated how
Control-Flow Carrying Code and Sponge-Based Control-Flow
Protection provide equally weak CFI policies. Carlini et al.
showed how the enforcement of a weak CFI policy leads to a
class of attack called control-flow bending in [39]. In this type
of attack an adversary is capable of launching Turing Complete
code-reuse attacks by using the presence of extraneous edges
in a control-flow graph caused by a weak CFI policy.

Although Scylla and SOFIA provide a strong encrypted
execution model, both approaches must ship the decryption
key with the software in a way that is accessible to the
operating system. As such neither approach can properly
safeguard software IP. Furthermore, the key generation scheme
used in C3 gives the attacker the possibility of predictable
decryption of software, weakening the encrypted execution
model and software IP guard guarantees.

We demonstrated how SAECAS is capable of providing re-
silient coverage over all three facets of authenticated execution

due to its handling of control-flow, and IVs for generating
cryptographic keys. The guarantees of SAECAS hold as long
as the cryptosystem used is resilient to attacks.

VIII. CONCLUSION

In this paper we evaluated previous authenticated execution
(AE) approaches. We presented a new architecture which is
capable of providing strict AE without the need for software
instrumentation, which we then evaluated in terms of hard-
ware, and software overhead. We proved the security aspects
of our approach while demonstrating that previous approaches
will fail at providing the guarantees of AE. As future work, we
plan to move our work into an ASIC platform, further optimize
our architecture for low-power demands, and add support for
multitasking platforms.
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