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Abstract—The performance of resilient state estimators devel-
oped for cyber-physical systems (CPS) decreases as the number
of compromised sensors of the system increases. Furthermore,
some of these algorithms leverage computationally expensive
optimization techniques to incorporate resiliency. As such, we
propose Fast Resilient Distributed State Estimator (FRDSE),
which is a novel resilient distributed algorithm that produces
bounded state estimation errors regardless of the magnitude
of the attack and the number of compromised sensors. Our
algorithm converges to the true state in an attack-free and noise-
free scenario and it produces bounded estimation errors during
an attack. Compared to existing algorithms, FRDSE is more
computationally efficient. We provide theoretical guarantees on
the convergence of FRDSE in attack free scenario and prove its
resiliency during an attack. We demonstrate the performance
of our algorithm against False Data Injection (FDI) attack in
a platoon of vehicles and compare its run time against existing
algorithms. We observe that on a platoon of eight vehicles, run
time of our algorithm is 0.102 seconds, much lower than the
state-of-the-art solutions.

Index Terms—Cyber-Physical System, Vehicle Platoon, LTI
system, Security, Distributed Estimation, Kalman Filter

I. INTRODUCTION

Decentralized Kalman filter uses the information of all
components of the distributed system for state estimation [1],
[2], resulting in a computational complexity of O(n2). Due to
the computational inefficiency of decentralized Kalman filter,
efforts were made to design the Distributed Kalman Filter
(DKF), where each node of the network communicates with
only its neighbors [3]–[8]. DKF has an estimation step and an
average-consensus step that fuses sensor data and covariance
data [3]. Under certain conditions, these filters are optimal
for linear stochastic distributed systems. However, they are
not resilient to adversarial attacks. Consequently, attempts
have been made to develop attack-resilient distributed state
estimators [9]–[13].

Dadras et al. [9] proposed a detection scheme against
gain modification attack and destabilizing attack on vehicle
platoons. Their method combined the system identification ap-
proach with a thresholding/clustering method. In their scheme,
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the system matrix of each vehicle was identified by consider-
ing the input-output data; but it did not require any knowledge
of normal and adversarial parameters and the number and the
locations of attackers. Sajjad et al. [10] designed a sliding
mode controller (SMC) with an attack detection scheme to
reduce the damage caused by a collision in a platoon. Their
attack detector was decentralized and relied on local sensor
information. Khan and Stanković [11] proposed attack detec-
tion and single message exchange state estimation methods
for compromised communication and sensing scenarios. Their
method relied on local consistency and nodal consistency of
data sets. Matei et al. [12] designed a multi-agent filtering
scheme in conjunction with a trust-based mechanism to secure
the state estimates of power grids under a false data injection
attack. In their approach, an agent of the grid computed local
state estimates based on their own measurement and of their
trusted neighbors. However, both [6], [12] did not provide any
theoretical guarantees of their methods.

Mitra and Sundaram [14] developed a secure distributed
observer for the Byzantine adversary model, where some
nodes of the network were compromised by adversaries. Prior
to the state estimation, they decomposed the linear system
model using Kalman’s observability decomposition method.
Then, Luenberger observers at each node estimated the states
corresponding to detectable eigenvalues [15]. The undetectable
portions of the states at each node were estimated using
a secure consensus algorithm using measurements of well-
behaving neighboring nodes. However, their method required
the network to be highly connected and they assumed that
only a small number of nodes are corrupted, which was known
by their algorithm. In addition, they assumed that the system
matrix only had simple and real eigenvalues, which might not
hold in practice.

Dutta et al. [16] developed Resilient Distributed Kalman
Filter (RDKF) based on distributed Kalman filter, which was
resilient to sensor attacks on a distributed system. Compared
to previous methods, their method showed an asymptotic
convergence of estimation error to zero when there was no
attack and that during an attack, the disturbance on the state
estimates of RDKF was bounded. In their method, they used a
convex optimization library to solve the minimization problem
during each iteration, which was computationally inefficient.
The RDKF was based on the idea of minimizing the total
innovation of the Kalman filter at each time-step and was
motivated by the distributed multi-agent optimization of [17].
However, it was more computationally expensive as each step
of the algorithm required solving an optimization problem
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using an external optimization library.
To improve the computational efficiency of the method

in [16], we look into the literature on distributed multi-
agent optimization. The objective of the distributed multi-agent
optimization is to cooperatively minimize the cost function∑n
i=1 fi(x), where fi is the cost of i-th vehicle and x is

the state of the system. Rabbat and Nowak [18] solved the
optimization problem by using an incremental subgradient
approach for a ring-type network. For other types of networks,
Nedić and Ozdaglar [19] proposed an algorithm called de-
centralized gradient descent (DGD) that assumed each cost
function to be convex and had a bounded (sub)gradient. Other
existing decentralized algorithms for solving the distributed
multi-agent optimization problem were [20]–[22]. With a fixed
step size, these algorithms converged to a point which lied on
a neighborhood of the true solution, irrespective of the dif-
ferentiability or non-differentiability of the cost function [23].
To guarantee convergence to the true solution, an approach
was to use a diminishing step size that generally leaded to a
lower convergence rate [20]–[22]. Shi et al. [24] proposed an
algorithm called EXTRA which converged to the true solution,
but the authors considered a fixed step size to obtain a higher
convergence rate. The EXTRA algorithm required the cost
function to be differentiable, and PG-EXTRA [25] was the
non-differentiable version of the algorithm.

We make the following contributions:
• We design Fast Resilient Distributed State Estimator

(FRDSE) that can detect data integrity attacks on sensor
measurements of a distributed system such as vehicle
platoon.

• FRDSE has two unique characteristics: i) the number of
neighbors of an agent that can be compromised is not
restricted and ii) the estimator’s performance does not
degrade (beyond an upper bound) with the magnitude of
the attack.

• Improving from the Resilient Distributed Kalman Filter
(RDKF) [16], FRDSE significantly enhances the compu-
tational efficiency because of its closed-form solution.

• We provide theoretical guarantees on FRDSE’s conver-
gence when there is no attack and resilience when attack
presents.

The rest of the paper is organized as follows: In Section
II, we present the notations and the communication graph
of the system, describe the dynamic system (of the pla-
toon) and attack models, formulate the resilient distributed
estimation problem, and show some convergence results of
DKF. In Section III, we present our fast resilient distributed
state estimator (FRDSE) and give its performance analysis.
The effectiveness of FRDSE is demonstrated on numerical
examples in Section IV. Final conclusions are drawn in Section
V. Proofs of theorems and lemmas are given in Appendix.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Notations

We consider a platoon of n vehicles and the communication
between these vehicles is described as an undirected graph
G = (V, E). In the graph, the vertex set V = {1, 2, · · · , n}

stands for the vehicles/nodes/agents and the edges E =
V × V represent the communication links between them. A
bi-directional edge, (i, j) ∈ E , between the i-th and the
j-th vehicles, enables them to send and receive messages
between each other, but not simultaneously. We also assume
that each vehicle has its own information, i.e., (i, i) ∈ E for
all i = 1, 2, · · · , n. The set N (i) = {i} ∪ {j ∈ V : (i, j) ∈ E}
denotes the set of neighbors of the i-th vehicle, wherein the
node i itself is accounted to avoid the special case that the i-
th vehicle does not have neighbors (e.g. the leading vehicle).
Furthermore, we assume that each agent has an observer
composed of q distinct sensors. The sensor measurements are
leveraged for estimating the states of the system.

Throughout the paper, we use P(i)−1 and P(i)T to denote the
inverse matrix and the transpose matrix of P(i), respectively.

B. System and Measurement Models

We model the dynamics of the distributed system (platoon)
of n agents/vehicles as a discrete linear time-invariant (LTI)
model,

xk+1 = Axk, (1)

y(i),a
k = C(i)xk + a(i)

k , 1 ≤ i ≤ n (2)

where xk = [xk,1; xk,2; · · · ; xk,n] ∈ Rns is the state vector of
the system at time k ∈ N with xk,i ∈ Rs being the state of
the i-th agent, A ∈ R(ns)×(ns) is the system matrix, y(i)

k ∈ Rq
is the measurement vector of the q sensors at time k of the
i-th agent, C(i) ∈ Rq×(ns) is the observation matrix of the
i-th agent, and a(i)

k is the attack vector. Here, y(i),a
k ∈ Rq is

corrupted when a(i)
k 6= 0 for any k. The vector a(i)

k denotes the
attack vector at time k and its value depends on the attacker.
In this paper, we assume that each vehicle estimates the state
vector based on the measurements from its neighbors and
its own measurements. Also, an agent (good or malicious) is
assumed to transmit the same information to all its neighbors,
which appears in many practical scenarios such as in vehicular
ad-hoc networks.

We assume adversaries can manipulate any number of
sensors of compromised nodes, Va ⊂ V , of the network and
has the knowledge of observation matrices of the corrupted
nodes, the system matrix A, and the communication topology
G. The malicious measurements affect the state estimation of
the corrupted vehicles and also their neighbors. In this way, the
attack influences the state estimation of the distributed system.
Formally, we define a compromised agent (vehicle) as:

Definition 1: Compromised Agent: An agent i is compro-
mised at time k ∈ N if its attack vector a(i)

k 6= 0.

C. Resilient Distributed Estimation Problem

Given an LTI distributed system of n agents with a linear
measurement model and a communication graph G, we would
like to use a distributed algorithm in the form of

x̂(i)
k = f({x̂(j)

k−1}j∈N(i), y
(i),a
k ,A, {C(i)}1≤i≤n)

to estimate x(i)
k . The goal is to control the overall estimation

errors, ‖e(i)
k ‖ = ‖x̂(i)

k − xk‖, i.e., to make the overall errors
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converge to zero in the attack-free case and the errors are
bounded when the attack is launched. Throughout this paper,
we make the following assumptions:
• The pair (A, C) := (A, [C(i); · · · ; C(n)]) is detectable of

the system.
• Agents/Vehicles transfer estimated state information to

its neighbors through a secure communication channel.
Thus, we assume that there is no attack on the network.

• We assume that the agents/vehicles are not capable of
detecting sensor attacks on its neighbors and thus, accept
both malicious and non-malicious state estimates from its
neighbors.

D. Distributed Kalman Filter

First of all, let us briefly revisit Kalman filter from
a Bayesian interpretation. Assume the vectors w

(i)
k

i.i.d∼
N (0,Σ

(i)
w ) and v

(i)
k

i.i.d∼ N (0,Σ
(i)
v ) are additive white Gaus-

sian noise. We follow the convention that N (µ,Σ) represents
the Gaussian distribution with mean µ and covariance Σ.
A Kalman filter consists of two stages–the prediction stage
and the correction stage. For succinctness, we abuse the
notation xk to denote x(i)

k of agent i. In the prediction stage,
we assume that the distribution of xk follows the Gaussian
distribution N (x̂k,Pk) to obtain a prior distribution, zk ∼
N (x̂k|k−1,Pk|k−1), where

x̂k|k−1 = Ax̂k−1,

Pk|k−1 = Cov(x̂k|k−1 − xk)

= A Cov(x̂k−1 − xk−1)AT + Cov(wk−1)

= APk−1AT + Σw

In the correction step, the predicted estimate x̂k and the error
covariance Pk are updated using MLE (maximum likelihood
estimation) based on the current measurements containing the
measurement noise. Combining the prior distribution zk with
yk ∼ N (Cxk,Σv), we apply Bayes’ rule to have the posterior
distribution of xk proportional to the product of probability
density functions of zk and yk, i.e.

xk ∝ exp
(
− 1

2

[
(yk − Cxk)TΣ−1

v (yk − Cxk)

+ (xk − x̂k|k−1)TPk|k−1(xk − x̂k|k−1)
])

As a result, we have xk+1 ∼ N (x̂k+1,Pk+1) with

Pk =
(

CTΣ−1
v C + P−1

k|k−1

)−1

x̂k = Pk
(

CTΣ−1
v yk + P−1

k|k−1x̂k|k−1

)
The distributed Kalman filter consists of local prediction and
distributed correction. In local prediction stage, each agent i
has the predictions

x̂(i)
k|k−1 = Ax̂(i)

k−1,

P(i)
k|k−1 = AP(i)

k−1AT + Σ(i)
w ,

The difference between the centralized Kalman filter and the
distributed Kalman filter is that the impacts of i’s neighbors on

i’s predictions are considered in a distributed manner. Related
works include [3], [5], [6], [26]. The Distributed Kalman filter
(DKF) has the following prediction rules,

P(i)
k|k−1 = AP(i)

k−1AT + Σ(i)
w (3)

x̂(i)
k = P(i)

k

(
1

di

∑
j∈N(i)

P(j)−1
| Ax̂(j)

k−1+ C(i)TΣ(i)−1
v y(i),a

k

)
(4)

where x̂(i)
k is the state estimate at time k, P(i)

| is a priori
estimation error covariance of agent i, and the estimation error
covariance matrix, P(i), is chosen according to the following
equation,

P(i)=

(
1

di

∑
j∈N(i)

(AP(j)AT +Σ(j)
w )−1+ C(i)TΣ(i)−1

v C(i)

)
−1 (5)

where N (i) = {i} ∪ {j ∈ V : (i, j) ∈ E} is the set of i’s
neighbors and di = |N (i)| is the degree of node i.

Usually Σ
(i)
v and Σ

(i)
w are used to denote the covariance

matrices of the noise in Kalman filter. In this paper, we treat
them as parameters for developing our algorithm in the noise-
free setting (Kalman filter application in the noise-free setting
is discussed in [27]). In practice, Σ

(i)
v and Σ

(i)
w can be chosen

to be any positive definite matrices.
By assuming (A, C) is observable in our model, we obtain

a steady-state DKF with error covariance matrix P(i) =

limk→∞ P(i)
k . There are several ways to prove the convergence

result of P(i)
k . In [16], Theorem III.1 proves convergence of

the covariance matrices of the estimator by showing that when
{P(i)

k }k≥0 is increasing and is bounded above, then the limit
exists. [28] proves the convergence using probability theory
and [6] performs convergence analysis on a modified DKF
which has one prediction/update step at each time point.

The following theorem states the main result of distributed
estimation without attacks and noises:

Theorem 1 (Convergence of DKF, Theorem III.2 [16]): If
the graph G is connected, (A,C) is observable, and Σ

(i)
v is

full rank for all 1 ≤ i ≤ n, the estimation of equation (4)
converges to the real states, i.e. limk→∞ ‖x̂(i)

k − xk‖ → 0 for
all 1 ≤ i ≤ n and the convergence rate is linear.

The result described here is called “omniscience property”
in [5], [13], which is proved under the same system setting as
Theorem 1, but for different estimation algorithms. We remark
that while the condition “(A,C) is observable” is slightly
more restrictive than the condition “(A,C) is detectable” in
[5]. A system is detectable if all the unobservable states are
stable [29].

The Distributed Kalman filter (4) is obtained by the follow-
ing optimization problem,

x̂(i)
k = arg min

x
(y(i),a
k − C(i)x)TΣ(i)−1

v (y(i),a
k − C(i)x)

+
1

di

∑
j∈N(i)

(x− Ax̂(j)
k−1)TP(j)−1

| (x− Ax̂(j)
k−1). (6)



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, MM 2020 4

Motivated by this optimization-based estimator, the Resilient
Distributed Kalman Filter (RDKF) proposed in [16]

x̂(i)
k = arg min

x
λ
∥∥∥Σ

(i)− 1
2

v (y(i),a
k − C(i)x)

∥∥∥
+

1

di

∑
j∈N(i)

(x− Ax̂(j)
k−1)TP(j)−1

| (x− Ax̂(j)
k−1), (7)

where y(i),a
k is the corrupted measurement at time k of the

i-th data, the matrix P(j)−1
| is defined by (3), and λ >

0 is a parameter balancing the local information and the
data collected from its neighbors. Instead of using the term
(y(i),a
k − C(i)x)TΣ

(i)−1
v (y(i),a

k − C(i)x) in (6) directly, the
first term in (7) considers the use of square root. The term∥∥∥Σ

(i)− 1
2

v (y(i),a
k − C(i)x)

∥∥∥ with l1 norm and the introduction
of the penalty parameter, λ, make the algorithm more re-
silient to attacks. The second term considers the effects of
its neighbors as it also presents in DKF (6), which makes
RDKF a distributed scheme. The centralized estimator requires
the simultaneous knowledge of parameters and measurements
from all agents to carry out the estimation, while a distributed
estimator only needs information from its neighbors. The
optimization (7) is convex, which is broadly studied by many
researchers [30]. Though the solution of (7) can be obtained
by some general packages (e.g. “cvx” [31] in Matlab), each
update x̂(i)

k takes several iterates to be solved. Moreover,
because of the limitation of the machine and the solver, the
accuracy only reaches up to 10−4 (see Figure 2). To make
the estimator implement faster and have a better accuracy,
we propose a new optimization-based estimator, Fast Resilient
Distributed Estimator.

III. FAST SECURED DISTRIBUTED ESTIMATION METHODS

In this section, we introduce a novel estimator which is
motivated by the Resilient Distributed State Estimator (RDKF)
presented in (7).

In order to make an optimization-based estimator more
robust to attacks, a commonly used strategy is to use optimiza-
tion with l1 norm on the terms affected by the attack [32]. As
the Distributed Kalman filter (DKF) (6) contains the square
term (y(i),a

k − C(i)x)TΣ
(i)−1
v (y(i),a

k − C(i)x), RDKF uses the
term ‖Σ(i)− 1

2
v (y(i),a

k −C(i)x)‖ to lower the impact of attacks,
which makes the estimator more robust. However, RDKF
does not have a good structure as the DKF does, though it
provides the resilience against the attacks. To tackle this issue,
we propose the Fast Resilient Distributed State Estimator
(FRDSE) based on the following optimization:

x̂(i)
k = arg min

x
λ

∥∥∥Σ
(i)− 1

2
v (y(i),a

k − C(i)x)
∥∥∥2

2
∥∥∥Σ

(i)− 1
2

v (y(i),a
k − C(i)Ax̂(i)

k−1)
∥∥∥

+
1

di

∑
j∈N(i)

(x− Ax̂(j)
k−1)TP(j)−1

| (x− Ax̂(j)
k−1) (8)

Unlike RDKF in (7), we consider the square term
‖Σ(i)− 1

2
v (y(i),a

k − C(i)x)‖2 divided by ‖Σ(i)− 1
2

v (y(i),a
k −

C(i)Ax̂(i)
k−1)‖ in (8). Notice that the term affected by the

attack, ‖Σ(i)− 1
2

v (y(i),a
k −C(i)x)‖, can be approximated by the

denominator from (1). The fraction term in (8) has a similar
effect as the term ‖Σ(i)− 1

2
v (y(i),a

k −C(i)x)‖ in (7). Such a form
of the first term in (8) dramatically reduces the influence of
the attack like RDKF, which also provides the robustness to
the estimator. Furthermore, the convex and quadratic structure
of FRDSE in (8) gives computational advantages over RDKF.

The parameter λ gives a balance between the terms,

‖Σ(i)− 1
2

v (y(i),a
k − C(i)xk)‖2/‖Σ(i)− 1

2
v (y(i),a

k − C(i)Ax̂(i)
k−1)‖

and ∑
j∈N(i)

(xk − Ax̂(j)
k−1)TP(j)−1

| (xk − Ax̂(j)
k−1).

A large λ implies more weight is placed on y(i),a
k , which has

true and corrupted sensor measurements. Although choosing
a large λ will make the error convergence faster, it makes
the system more unstable in the presence of attack. On the
contrary, when λ is small, it takes more steps for the estimation
errors to converge to zero, but it makes the algorithm more
resilient to attack. The parameter Σ

(i)
v of equation (8) has an

opposite impact on the system: when Σ
(i)
v is large, it takes

longer for the estimation errors to converge to zero, but it
makes FRDSE more resilient to attacks. The parameter Σ

(i)
w

has an influence in P(i)
| and it makes an impact similar to Σ

(i)
v

on the system. The numerical results in Section IV verify the
impacts of the three parameters on the estimation errors.

To discuss convergence and resiliency of FRDSE, we con-
sider two scenarios: 1) All agents/vehicles are benign and
the system operates normally; 2) Some agents/vehicles are
compromised in the distributed system. The next theorem
(Proof of Theorem 2 is available in the Appendix) provides a
theoretical guarantee for the convergence of FRDSE in the first
scenario. The algorithm obeys the “omniscience property” and
the estimation error converges to zero if the initial estimation
errors e(i)

0 are not too large.
Theorem 2 (Convergence of FRDSE): Under the same

assumptions of Theorem 1, if the initial estimation errors
{e(i)

0 }1≤i≤n satisfy the following condition: for any x that
satisfies ‖Σ(i)− 1

2
v C(i)Ax‖ = λ

2 , it has the property that
xTP(i)−1x ≥ e(i)T

0 P(i)−1e(i)
0 . When there is no attack, i.e.,

a(i)
k = 0 for all k ≥ 1 and 1 ≤ i ≤ n, the sequence
{x̂(i)

k }1≤i≤n produced by equation (8) converges to the real
state xk i.e., the estimation errors ‖e(i)

k ‖ = ‖x̂(i)
k − xk‖

converges to zero.
As for the second scenario, Theorem 3 (Proof is available in

the Appendix) states that no matter how large the magnitude
of the attacks, the deviation of the state estimate of FRDSE is
upper bounded. This result suggests that the estimation errors
are bounded during an attack, while the traditional DKF may
have an unbounded estimation error caused by an unbounded
attack. Furthermore, compared to RDKF, our method has huge
computational advantages by its closed-form of the solution.

The following lemma shows that the optimization problem
in equation (8) has a closed-form solution, which makes
implementation time is much shorter than RDKF.
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Lemma 1: Consider the optimization problem of equation
(8). The solution x̂(i)

k is based on y(i),a
k and {x̂(j)

k−1}j∈N(i) and
has a closed-form expression,

x̂(i)
k =

 λC(i)T Σ
(i)−1
v C(i)∥∥∥∥Σ

(i)− 1
2

v (y(i),a
k − C(i)Ax̂(i)

k−1)

∥∥∥∥ +
2

di

∑
j∈N(i)

P(j)−1

|


−1

·

 λC(i)T Σ
(i)−1
v y(i),a

k∥∥∥∥Σ
(i)− 1

2
v (y(i),a

k − C(i)Ax̂(i)
k−1)

∥∥∥∥ +
2

di

∑
j∈N(i)

P(j)−1

| Ax̂(j)
k−1


(9)

Theorem 3 (Resiliency of FRDSE): The estimation x̂
(i)
k of

equation (8) given by equation (9) is resilient to attacks on
sensor measurements, y(i),a

k , in the sense that x̂(i)
k is bounded

for each k and i.
Theorem 3 implies that the disturbance on the state estimate

caused by an arbitrary attack on y(a)
k is bounded. The bound

on estimation error is independent of time. Moreover, the
bound of x̂(i)

k partially explains the observation made in the
beginning of Section III that large Σ

(i)
v corresponds to more

stable performance of the estimator during an attack, as from
equation (9) we observe that large Σ

(i)
v gives a smaller upper

bound on the estimation error.
We remark that Theorem 3 only captures the impact of

sporadic attack (an attack which does not occur continuously
for a long duration of time) on the estimation of x̂(i)

k . If
the estimation error is small enough to satisfy the condition
of Theorem 2 after an attack, then we can consider such
an estimation error as the “initial estimation error” and use
it to show that despite the attack, the estimation errors of
FRDSE still converge to zero, provided we have attack-free
measurements after the sporadic attack.

IV. EXPERIMENTAL RESULTS

In this section, we compare the performances of our pro-
posed algorithm against the distributed Kalman filter (DKF)
and the resilient distributed Kalman filter (RDKF). Simulation
results are presented to justify our algorithm’s high efficiency
and attack-resiliency.

A. Experiment Setup

We simulate the dynamics of a 5-vehicle platoon, com-
munication graph, and the sensor attack on vehicles with
CPU AMD 2600X and MATLAB R2018b for t = 200
simulation time units (X-axis of figures). Each vehicle is
equipped with 4 sensors such as radars and LIDARs, and the
state vector of each vehicle is x(i) = [d(i), v(i), a(i), u(i)] ∈ R4,
where d(i), v(i), a(i) are the distance, the velocity, and the
acceleration of the i-th vehicle, and u(i) is the control input
of the plant. The dimension of x is quadruple the number of
vehicles, i.e. xk ∈ R20. The choice of matrices A, {C(i)}ni=1

see [26]. We choose Predecessor-leader following topology
(PLF) as our communication graph as shown in Fig. 1.

Remark: While implementing our proposed algorithm,
equation (7) and equation (9) contain small denominators as

5 4 3 2 1

Fig. 1: Undirected graph of homogeneous predecessor-leader
following topology of a 5-vehicle platoon. (1)-(5) represents
numbering of vehicles (nodes) as (1) is the leading vehicle of
the platoon. The edges represent sensor and V2V communi-
cations among vehicles.

the estimation of states x̂(i)
k are close to the true states. Divid-

ing by a very small number will result in numerical instability.
To address this issue, we instead use max(‖Σ(i)− 1

2
v (y(i),a

k −
C(i)Ax̂(i)

k−1)‖, ε), where ε = 0.001.

B. Experiment Results and Discussions

We design the numerical simulations under both attack-
free and false data injection attack scenarios. In the attack-
free scenario, the convergence speed and the estimation error
amplitude of the three algorithms, DKF, RDKF, and FRDSE
(the proposed algorithm), are compared in Fig. 2. In the FDI
scenario, three experiments are implemented in respect of re-
silience, efficiency and parameter tuning. The first experiment
is to show the attack-resiliency of the proposed algorithm.
We simulate the 5-vehicle platoon under the circumstances
where different vehicles (single vehicle or multiple vehicles)
are corrupted or the attacks occur at different time periods
(single period or multiple periods). Though our proposed
algorithm has similar resilience as RDKF, the implementation
takes much less time than RDKF. We compare the execution
time of DKF, RDKF, and FRDSE as the number of vehicles in-
creases to illustrate computational advantages of our proposed
algorithm. Ultimately, different parameter settings (λ, Σv , Σw)
are examined on the 5-vehicle platoon to exhibit their impacts
on the performance of the proposed algorithm. The details of
the simulation results are presented in the following.

Case 1: Attack free scenario
Consider an attack-free scenario. The performances of our

proposed algorithm (FRDSE), Resilient Distributed Kalman
Filter (RDKF), and the Distributed Kalman Filter (DKF) are
shown in Fig. 2 (a)-(c), respectively. The parameters are
set as (λ,Σv,Σw) = (100, 10I, I). Instead of choosing the
estimation error of x(i)

k , we focus on the error of estimated
distance d̂(i)

k as in practice we need to control the distances
between vehicles to prevent a collision. We observe that the
estimation error of distance of each vehicle produced by our
proposed algorithm is up to 10−8, which is much smaller
than RDKF as expected. Moreover, the error of our proposed
algorithm converges to a small value (less than 1 m) faster
than DKF.

Case 2: False Data Injection (FDI) attack
We consider the case where sensor measurements of some

vehicles are compromised in certain times. In FDI attack, we
add random data to some sensor outputs during certain periods
of time.
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Fig. 2: Distance estimation errors of all vehicles produced by
our proposed algorithm (FRDSE), Resilient Distributed

Kalman Filter (RDKF), and Distributed Kalman Filter (DKF)
in attack free scenario. The parameters are set as

(λ,Σv,Σw) = (100, 10I, I). Time in X-axis is simulation
time.

Case 2-a: Resiliency of 5-vehicle platoon
In the first simulation, we set attacks to occur with probabil-

ity pa = 0.99 (i.e. the probability of attack being successful
is high during the attack duration) on t = (21, 50) and we
consider sensors of Car-2 and Car-3 being compromised. The
attack vector is chosen as Gaussian vector with mean 10,000.
We set the parameters (λ,Σv,Σw) = (10, 10I, I), where I is
the identity matrix. Fig. 3 compares the performances of our
proposed algorithm with RDKF and DKF. We observe that
the estimated distance errors of our proposed algorithm and
RDKF caused by the attack on t = (21, 50) are small and the
system is stable, while the error of DKF goes up to 1800 m.
As perturbation in estimation error caused by the malware is
small in our algorithm and RDKF, the likelihood of preventing
a collision is high as they keep the distance error below the
minimum stopping distance, τ = 10m.

One additional simulation with different attacks is com-
pleted in Fig. 4. The large random malicious data with high
probability pa = 0.99 are injected in the two periods of time

with different attack strategy. On t = (31, 50) Car-2 and
Car-3 are compromised and Car-4 and Car-5 are attacked on
t = (71, 90). We set parameters as (λ,Σv,Σw) = (10, 10I, I).
Fig. 4-(a) shows the evolution of the distance estimation errors
of our proposed algorithm. During the attack, the estimation
errors are small enough to prevent vehicle collision for both
FRDKF and RDKF, while the DKF (Fig. 4-(b)) has large
estimation errors that can lead to collision.
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Fig. 3: Performances of our proposed algorithm, RDKF and
DKF against FDI attack. The attack occurs with probability
pa = 0.99 from t = (21, 50) and Car-2 and Car-3 are

compromised. We consider (λ,Σv,Σw) = (10, 10I, I) and
we mark corrupted vehicles as (a). Time in X-axis is

simulation time.
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Fig. 4: Performances of the proposed algorithm (FRDSE),
RDKF and DKF against FDI attack. The attacks are

launched with probability pa = 0.99. Car-2 and Car-3 are
compromised on t = (31, 50) and Car-4 and Car-5 are

attacked on t = (71, 90).
We consider (λ,Σv,Σw) = (10, 10I, I). The corrupted

vehicles are marked with (a). Time in X-axis is simulation
time.

Case 2-b: Execution time with more vehicles
The execution time of our algorithm is much less than

RDKF by the convex and quadratic structure of FRDSE in
equation (8). To illustrate FRDSE’s computational advantages
over RDKF, we implement three algorithms on the platoon
with more vehicles. The experiments are implemented based

TABLE I: Execution time (Seconds) of DKF, RDKF, and
FRDSE with different number of vehicles. Simulation time
is set as t = 50.

No. Vehicles 4 5 6 7 8

FRDSE 0.0221 0.0489 0.0771 0.1098 0.1019
DKF 0.009 0.0142 0.0148 0.0272 0.0277
RDKF 34.4239 37.4263 45.1442 52.4194 60.8529

on the CPU AMD 2600X and MATLAB R2018b. We compare
the execution time of DKF, RDKF, and FRDSE (our algo-
rithm) with different lengths of vehicle platoons (4, 5, 6, 7,
8 vehicles) for simulation time, t = (1, 50). The results are
shown in Table I.

For a platoon of eight vehicles, the execution time of RDKF
is 60.8529 seconds, while the execution time of our proposed
algorithm is only 0.1019 seconds. Overall, our proposed
algorithm is around 500 times faster than RDKF. Though DKF
takes less time to our proposed algorithm, its vulnerability
against attack makes DKF less practicable than FRDSE.

Case 2-c: Parameter tuning
We also verify the discussions about the influence of the

parameters in Section III. Fig. 5 shows experiments of our
proposed algorithm FRDSE with two sets of parameters,
(Σv,Σw, λ) = (10I, I, 100) and (Σv,Σw, λ) = (10I, I, 1000).
The attacks are of FDI type with high probability on t =
(21, 50) and the sensors of Car-2, Car-3 are corrupted. The
results confirm that smaller λ (Fig. 5-(a)) gives slower conver-
gence at the beginning, but makes the algorithm more resilient
to attacks. On the contrary, larger λ (Fig. 5-(b)) gives faster
convergence at the beginning, but makes it less resilient to
attacks.

Under the same settings of the attack, Fig. 6 shows the
results of two experiments with (λ,Σv,Σw) = (100, I, I)
and (λ,Σv,Σw) = (1000, I, 10I). We can see that larger Σw
(Fig. 6-(b)) gives faster convergence at the beginning, but make
our algorithm less resilient to attacks. However, smaller Σw
(Fig. 6-a(a)) makes the algorithm more resilient at the expense
of longer convergence time at the beginning.

V. CONCLUSION

In this paper, we have proposed Fast Resilient Distributed
State Estimator (FRDSE), a novel computationally efficient
attack resilient distributed state estimation scheme that can
recursively estimates states and bounds the disturbance on
the state estimate caused by an attack. We prove that the
estimation error of our method asymptotically converges to
zero when there is no attack and noise and has an upper bound
during an attack. By tuning the parameters of our estimator,
we obtain smaller disturbance in estimation errors even in the
presence of an attack and it is more resilient than the DKF.
Our proposed algorithm has more computationally advantages
over the Resilient Distributed Kalman filter (RDKF) and it is
more practicable in real-time computing. In the future, we plan
to extend our algorithm for a time-varying graph.
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Fig. 5: Performance of our proposed algorithm against FDI
attack. The attack occurs with probability pa = 0.99 from
t = (21, 50) and Car-2 and Car-3 are compromised. We

consider (λ,Σv,Σw) = (100, 10I, I) and
(λ,Σv,Σw) = (1000, 10I, I) respectively. The corrupted

vehicles are marked with (a). Time in X-axis is simulation
time.
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[19] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 1 2009.

[20] I. Matei and J. S. Baras, “Performance evaluation of the consensus-
based distributed subgradient method under random communication
topologies,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, no. 4, pp. 754–771, 2011.
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APPENDIX A
TECHNICAL PROOFS

Proof of Theorem 2: We denote the estimation error as
e(i)
k = x̂(i)

k − xk. From equation (8), one has

e(i)
k = arg min

e
λ

∥∥∥Σ
(i)− 1

2
v

(
y(i),a
k − C(i)(e + xk)

)∥∥∥2

2
∥∥∥Σ

(i)− 1
2

v

(
y(i),a
k − C(i)A(e(i)

k−1 + xk−1)
)∥∥∥

+
1

di

∑
j∈N(i)

(e + xk − Ax̂(j)
k−1)TP(j)−1

| (e + xk − Ax̂(j)
k−1)

(10)

For conciseness, we denote the objective function in equa-
tion (10) as e(i)

k := arg mine g(e). When no attacks present,
it follows that y(i),a

k = C(i)xk = C(i)Axk−1 and Ae(i)
k−1 =

Ax(i)
k−1 − Axk−1 = Ax(i)

k−1 − xk. The objective function g(e)
can be simplified as

g(e) =
λ

2mk

(
C(i)e

)T
Σ−1
v

(
C(i)e

)
+

1

di

∑
j∈N(i)

(e− Ae(j)
k−1)TP(j)−1

| (e− Ae(j)
k−1),

where mk := ‖Σ−
1
2

v C(i)Ae(i)
k−1‖. Differentiating the objective

function g(e), we get

∇g(e) =
λ

mk
C(i)TΣ−1

v C(i)e +
2

di

∑
j∈N(i)

P(j)−1
| (e− Ae(j)

k−1)

(11)

Using the fact that ∇g(e(i)
k ) = 0, we have that(

∇g(e(i)
k )
)T

e(i)
k =

λ

mk
e(i)T
k C(i)TΣ−1

v C(i)e(i)
k

+
2

di

∑
j∈N(i)

(e(i)
k − Ae(j)

k−1)TP(j)−1
| e(i)

k = 0.

Note that the covariance matrix P(i)−1
| � 0, then

1

di

∑
j∈N(i)

(e(i)
k − Ae(j)

k−1)TP(j)−1
| (e(i)

k − Ae(j)
k−1) ≥ 0 (12)

Since g(e(i)
k ) ≥ 0 and using equation (12), it follows that

1

di

∑
j∈N(i)

(Ae(j)
k−1)TP(j)−1

| Ae(j)
k−1

≥− λ

2mk

(
C(i)e(i)

k

)T
Σ−1
v

(
C(i)e(i)

k

)
+

2

di

∑
j∈N(i)

(Ae(j)
k−1)TP(j)−1

| e(i)
k

− 1

di

∑
j∈N(i)

e(i)T
k P(j)−1

| e(i)
k

=
λ

2mk

(
C(i)e(i)

k

)T
Σ−1
v

(
C(i)e(i)

k

)
+

1

di

∑
j∈N(i)

e(i)T
k P(j)−1

| e(i)
k (13)

If mk = ‖Σ(i)− 1
2

v C(i)Ae(i)
k−1‖ ≤

λ
2 , from equation (13) one

has

1

di

∑
j∈N(i)

(Ae(j)
k−1)TP(j)−1

| Ae(j)
k−1

≥
(

C(i)e(i)
k

)T
Σ−1
v

(
C(i)e(i)

k

)
+

1

di

∑
j∈N(i)

e(i)T
k P(j)−1

| e(i)
k

= e(i)T
k P(i)−1e(i)

k , (14)

which follows from equation (3) and equation (5).
Since P(i)−1−AT P(i)−1

| A=P(i)−1−AT (AP(i)AT +Σ(i)
w )
−1A=

P(i)−1−(P(i)+A−1Σ(i)
w (A−1)T )

−1 is positive semi-definite
for any i, we have

e(i)T
k P(i)−1e(i)

k ≤
1

di

∑
j∈N(i)

(Ae(j)
k−1)TP(j)−1

| Ae(j)
k−1

≤ 1

di

∑
j∈N(i)

e(j)T
k−1 P(j)−1e(j)

k−1 ≤ max
1≤i≤n

e(i)T
k−1P(i)−1e(i)

k−1,

which implies that max1≤i≤n e(i)T
k P(i)−1e(i)

k does not in-
crease as k increase and thus, it converges. Next, we
show that max1≤i≤n e(i)T

k P(i)−1e(i)
k converges to zero. If

this is not the case, we assume η ≥ 0 is the limit of
max1≤i≤n e(i)T

k P(i)−1e(i)
k . For any ε > 0, there exists a large

K(ε) such that η < e(l)T
k P(l)−1e(l)

k < η+ ε,∀k > K(ε) where
l satisfies e(l)T

k P(l)−1e(l)
k = max1≤i≤n e(i)T

k P(i)−1e(i)
k . Then it

implies that∣∣∣∣∣∣ 1

dl

∑
j∈N(l)

e(j)T
k−1 (ATP(j)−1

| A− P(j)−1)e(j)
k−1

∣∣∣∣∣∣ < ε.

Therefore,

‖e(j)
k−1‖

2 <

∥∥∥∥(ATP(j)−1
| A− P(j)−1

)−1
∥∥∥∥ dlε, ∀j ∈ N (l)

It reaches that

η < e(l)T
k P(l)−1e(l)

k ≤ ‖e
(l)
k−1‖

2‖P(l)−1‖

<

∥∥∥∥(ATP(j)−1
| A− P(j)−1

)−1
∥∥∥∥ · ‖P(l)−1‖dlε,

which implies that η = 0 as ε > 0 is arbitrary small.
Hence, the estimation error ‖e(i)

k ‖ converges to zero as
max1≤i≤n e(i)T

k P(i)−1e(i)
k converges to zero.

Proof of Lemma 1: Note that the objective function of
equation (8) is quadratic and the minimizer can be found by
taking derivative of equation (8). It is followed that

0 =
2

di

∑
j∈N(i)

(
P(j)−1
| x̂k − P(j)−1

| Ax̂(j)
k−1

)

+
λ(C(i)TΣ

(i)−1
v C(i)x̂k − C(i)TΣ

(i)−1
v y(i),a

k )∥∥∥Σ
(i)− 1

2
v (y(i),a

k − C(i)Ax̂(i)
k−1)

∥∥∥
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Organize the equation above and we obtain that

x̂(i)
k =

 λC(i)T Σ
(i)−1
v C(i)∥∥∥∥Σ

(i)− 1
2

v (y(i),a
k − C(i)Ax̂(i)

k−1)

∥∥∥∥ +
2

di

∑
j∈N(i)

P(j)−1

|


−1

·

 λC(i)T Σ
(i)−1
v y(i),a

k∥∥∥∥Σ
(i)− 1

2
v (y(i),a

k − C(i)Ax̂(i)
k−1)

∥∥∥∥ +
2

di

∑
j∈N(i)

P(j)−1

| Ax̂(j)
k−1


Proof of Theorem 3: Let y(i),a

k = C(i)Ax̂(i)
k−1 + η(i) for

some η(i) ∈ Rq and for simplicity, we denote hi = Ax̂(i)
k−1.

Then, we rewrite equation (9) as

x̂(i)
k =

 λ∥∥∥Σ
− 1

2
v η(i)

∥∥∥C(i)TΣ−1
v C(i) +

2

di

∑
j∈N(i)

P(j)−1
|

−1

·

 λ∥∥∥Σ
− 1

2
v η(i)

∥∥∥C(i)TΣ−1
v (C(i)hi + η(i)) +

2

di

∑
j∈N(i)

P(j)−1
| hj


= hi +

 λ∥∥∥Σ
− 1

2
v η(i)

∥∥∥C(i)TΣ−1
v C(i) +

2

di

∑
j∈N(i)

P(j)−1
|

−1

·

 λ∥∥∥Σ
− 1

2
v η(i)

∥∥∥C(i)TΣ−1
v η(i) +

2

di

∑
j∈N(i)

P(j)−1
| (hj − hi)


Since, for each i and k, C(i), x̂(i)

k−1,P
(i)−1
| are fixed and

bounded, then for any y(i),a
k , we have that

‖x̂(i)
k ‖ ≤ ‖h

i‖+
2

di

∥∥∥∥∥∥∥
 ∑
j∈N(i)

P(j)−1
|

−1
∥∥∥∥∥∥∥ ·λ‖C(i)Σ

− 1
2

v ‖+
2

di

∑
j∈N(i)

‖P(j)−1
| ‖ · ‖hj − hi‖

 ,

(15)

which implies that ‖x̂(i)
k ‖ is bounded.


