
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

On-Chip Analog Trojan Detection Framework for
Microprocessor Trustworthiness

Yumin Hou, Hu He, Kaveh Shamsi Student Member, IEEE, Yier Jin Member, IEEE,
Dong Wu, Huaqiang Wu Senior Member, IEEE

Abstract—With the globalization of semiconductor industry,
hardware security issues have been gaining increasing attention.
Among all hardware security threats, the insertion of hardware
Trojans is one of the main concerns. Meanwhile, many cur-
rent Trojan detection solutions follow the assumption that the
hardware Trojan itself should be composed of digital logic. This
assumption is invalidated by recently proposed analog Trojans
which are extremely small and can detect rare events. This paper
proposes a runtime hardware Trojan detection method which is
geared towards detecting such advanced Trojans. The principle
of this method is to guard a set of concerned signals, and initiate a
hardware interrupt request when abnormal toggling events occur
in these guarded signals. To prove the effectiveness of this method,
we design a processor based on ARMv7-A&R ISA, and insert
an analog Trojan into the processor. We fabricated the design in
an SMIC 130 nm process and demonstrate the effectiveness of
the proposed methodology.

I. INTRODUCTION

The globalization of semiconductor industry brings critical
security, integrity, and privacy concerns. The globalization of
the integrated circuit (IC) supply chain makes it difficult and
costly for regulations only to maintain the integrity of the
IC design through the design and fabrication process. This
is especially true for the case of third party components [1].

Among all hardware security threats including reverse en-
gineering, IP piracy, etc., the insertion of malicious logic (aka
hardware Trojans) is still one of the main concerns. Upon
this challenge, researchers from the government, industry and
academia have proposed various techniques to help identify
malicious logic both pre-fabrication, on RTL, netlist, and
layout levels, as well as post-fabrication on manufactured cir-
cuits, using a combination of special testing pattern generation
techniques and side-channel analysis.

Given that most of the hardware Trojans target digital
circuits, almost all Trojan designing methods and detection so-
lutions follow the same assumption that hardware Trojan itself
should be composed of digital logic. This assumption largely
limits the capabilities of many hardware Trojan detection
method in detecting digital Trojans only. Another fundamental
limitation of all the detection schemes is that the effect of

This work is supported by the National Natural Science Foundation of
China under Grant No. 61502032, and by Tsinghua and Samsung Joint
Laboratory. The corresponding author is Hu He.

Y. Hou, H. He, D. Wu and H. Wu are with the Institute
of Microelectronics, Tsinghua University, Beijing, 100084, China
(email: hou-ym12@mails.tsinghua.edu.cn, hehu@tsinghua.edu.cn,
dongwu@tsinghua.edu.cn, wuhq@tsinghua.edu.cn).

K. Shamsi and Y. Jin are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL, USA, 32611 (email:
kshamsi@ufl.edu, yier.jin@ece.ufl.edu).

a small enough Trojan on the logic and on the side-channel
fingerprints of the circuit, can be masked by process variation
and noise. This is exacerbated by the ever-increasing scale of
integration and process-variation in advanced nodes. Recently
proposed analog and RF Trojans [2] fall into this category. An
analog Trojan circuit can detect an extremely rare sequential
event with just a handful of transistors added to the circuit.
This hurdles even invasive detection techniques and poses a
real threat to the IC supply chain despite a decade of research
in the area.

To guarantee the trustworthiness of a microprocessor, it is
desired for designers to consider the existence of such analog
Trojans, and build a corresponding detection framework in
the processor design phase. In this paper, we present a novel
on-chip hardware Trojan detection mechanism called R2D2
geared towards such analog Trojans. Since such analog Trojans
are triggered by high frequency wire-flops in the processor, we
propose an abnormal-toggling detection scheme that can easily
be integrated into the processor with low overhead. We also
discuss why it is difficult to remove it from the design. The
main contributions of the paper are listed as follows:

• We develop an on-chip Trojan detection method. This
method targets hardware Trojans triggered by a succes-
sive toggling events. We present an in-depth security
analysis of the scheme;

• We design a processor based on the ARMv7-A&R ISA,
and insert an analog Trojan (based on the A2 Trojan [2]),
into the ARM processor. We explore the architecture of
the processor and present various novel ways to integrate
the Trojan and its payload;

• We provide simulation results, which demonstrate that
the analog Trojan works on the ARM processor, and the
R2D2 method is effective in detecting the analog Trojan;

• We also provide test results based on the taped-out
chip. We fabricate a proof-of-concept chip in the SMIC
130 nm Mixed-Signal 1P7M process with the hardware
Trojan and the detection mechanism. A testing platform
is constructed to test the fabricated SoC. On-board test
results are collected and presented.

The remainder of the paper is organized as follows: Section
II presents comparison to related works. Section III presents
the R2D2 detection scheme. Section IV provides an overview
of the implemented processor. Section V presents simulation
results and on-board test results, and Section VI concludes the
paper.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

II. RELATED WORKS

Hardware Trojans are typically categorized according to
a) their triggering method e.g. sequential or combinational,
b) their payload e.g. active modification of logic values, or
passive leakage of information through side-channels [3]. Post-
fabrication detection mechanisms fall into testing-based [4],
[5], or side-channel-based [6], [7]. Various statistical methods
have been used to extract the side-channel traces of a Trojan in
a sea of other components. In addition, design time techniques
can also accompany post-fabrication detection such as reduc-
ing rare-events in the circuit [8], or inserting on-chip sensors
that will be measured post-fabrication for Trojan detection [9].

A. Analog Hardware Trojans

Sequentially triggered Trojans can be made extremely dif-
ficult to detect through testing patterns. A digital sequential
Trojan typically requires a large FSM to detect a rare sequence
of events, which in turn can reduce the Trojans resiliency
to side-channel detection techniques. Analog switch-capacitor
circuits on the other hand can be used to do signal shaping
and detection with a much lower transistor count. The analog
Trojan presented in [2] known as A2 uses a simple analog
circuit to detect high frequency toggling.

A2 is a small analog circuit, which can be inserted into
an already placed and routed design. It reads a digital pulse
signal (the trigger input), and triggers the payload when the
pulse signal has toggled with a high frequently for a certain
period of time. The trigger input is connected to a signal that
can be toggled with high frequency through a special code
snipper running on the processor. The attacker insures that
the trigger signal has a much lower toggle rate during typical
workloads. This makes detecting the hardware Trojan difficult
through testing, not to mention that there exists many low
toggling frequency bits in modern processors.

VDD

Trigger input

VDD

Trigger

output

Trigger circuit Detector circuit

M0

M1

M2

M3

M4

Cunit Cmain

Figure 1: Transistor schematic of the analog Trojan circuit from [2]

The transistor schematic of the A2 analog Trojan [2] circuit
is shown in Figure 1. When the trigger input is low, Cunit

is charged to VDD. When the trigger input switches to high,
Cunit shares its charge with Cmain. This will raise the charge
on Cmain by an amount controllable by the size ratio of Cmain

and Cunit. When the trigger input is stationary at either high
or low, the charge at Cmain dissipates through M2 and other
stray-paths. Hence, only with sufficiently frequent toggling of

the trigger input, one can raise Cmain’s voltage. This voltage
is fed to a detector circuit which is an imbalanced inverter
with a controllable switching threshold. The attacker connects
the trigger input to a software controllable bit which has a
low toggling rate, and uses the trigger output to launch the
payload.

B. Runtime Hardware Trojan Detection Methods

Off-line Trojan detection solutions, such as [10]–[12], are
difficult to expose advanced Trojans like A2 because of its
insertion stage and software Triggered mechanism. In this
section, we mainly introduce the runtime protection against
malicious attack.

Application of hardware sensors is able to measure param-
eters of circuits. For example, in paper [13], delay among
the paths between registers are assessed and characterized to
define a reasonable range. All the delays out of the scope are
recognized as malicious behaviors. A shortage of this approach
is much extra circuits overheads must be added to insure the
monitoring effectiveness and accuracy. Whereas A2 does not
disturb any paths’ delays, this sensor based method does not
work in detecting A2 Trojan.

Power consumption and thermal tracking are common used
features in runtime abnormal behavior check. In [14], through
tracking the temperature profile, the impact of Trojan acti-
vation on power consumption in a chip is analyzed. In [15],
hardware Trojan activation is detected by comparison of power
use between Trojan clear and Trojan embedded benchmarks
using machine learning techniques. Another power tracing
based approach is [16], where power monitors are inserted to
chip for characterizing the power supply. However, A2 avoids
all the above methods because too few gates are utilized in A2,
and it will not cause any fluctuation of either thermal change
or power consumption.

Runtime verification provides a comprehensive protection to
ICs once the secure properties are well defined. For instance,
Verifiable ASICs is proposed by Wahby et.al. [17] to verify the
correctness of functionality of hardware system. In their paper,
runtime (or dynamic) verification is performed by implement-
ing an interactive encryption protocol between untrusted ICs
and a trusted IC, where the untrusted ICs are called Prover and
the trusted IC is called Verifier. It is the first attempt to com-
pute proofs of correct execution through utilizing verifiable
computation. However, for security purpose, their correctness
checking method results in too high computational cost and
overhead. Meanwhile, to verify security properties formalized
from ICs permitted and prohibited behaviors, a hardware
property checker in [18] is utilized to detect hardware and
software Trojans, and dynamic checkers in [19] are designed to
disclose Processor’s malicious logic. Again, all these checkers
are not effective in detecting A2 whose behaviors are hard to
be formalized.

The proposed runtime detection method targets A2-alike
Trojans. Compared with these methods, the proposed detection
method is simple and easy to implement. It brings little area
and power overhead.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

III. THE R2D2 DETECTION SCHEME

In this paper, we propose an on-chip runtime hardware
Trojan detection method named R2D2 [20]. R2D2 detection
scheme targets A2-alike analog hardware Trojans. It aims to
detect high frequency toggling on several signals before they
can activate the hardware Trojan.

A. Detection Method Overview

Detection Mechanism

monitoring timing window

(Tm)

attack threshold (Ath)

interrupt

request

monitoring scope

guarded signal 1

guarded signal 2

guarded signal n

...

Figure 2: Mechanism of the hardware Trojan detection method

Due to the small size of the A2 Trojan, and the fact that
it can be connected to any low toggling signal, we conclude
that runtime detection is more feasible. Figure 2 shows the
mechanism of the proposed runtime hardware Trojan detection
scheme. The principle of this method is to guard a set of
concerned software controllable registers or memory related
signals. A hardware interrupt will be generated if abnormal
toggling events occur in the guarded items. The mechanism
cannot be disabled through unprivileged software.

As shown in Figure 2, R2D2 has several parameters that
must be tuned in order to ensure the effectiveness of the
scheme and eliminate false positives. The first parameter is
the size of monitoring timing window denoted by Tm. During
a monitoring window the detection unit counts the toggling
events on the concerned signal. Throughout this time window,
if the toggling frequency increases beyond the Attack threshold
Ath, which is the second parameter, the detection circuit will
generate an interrupt request. The other important parameter is
the monitoring scope which decides the signals to be selected
for monitoring. These signals must be ones that have a low
toggling frequency during normal processor workloads. Each
guarded signal can have a different attack threshold value.

Clk

Guarded

Signal

combinational logic

if a = monitoring timing window

 b = 0

 else

 b = 1
a

b

c combinational logic

 if c = Attack Threshold

 detection output = 0

 else

 detection output = 1

MTW

register

AT

register

Detection

output

clock

counter

toggle

event

counter

Reset

Monitoring

Timing

window

Attack

Threshold

if b=0
c=0

Figure 3: Runtime detection circuit design

The detection circuit is shown in Figure 3. The window size,
Tm, and Ath are written into dedicated registers, Monitoring
Timing Window register (MTW) and Attack Threshold register

(AT) respectively. By keeping these values as software pro-
grammable registers, we can create flexibility and uncertainty
to the defence mechanism and prevent the attacker from
learning them through IC reverse engineering. We must ensure
that only privileged software can configure these registers. The
clock counter is used to count the clock cycle, and compare
with the value in the MTW register. The clock counter is reset
when its value reaches the value in the MTW register, and a
new monitoring window starts. The toggle event counter is
used to count the number of toggle events of the guarded
signal, and compare them with the value in the AT register.
This toggle event counter is reset when a new monitoring
timing window starts. In one monitoring window, if the toggle
event counter reaches the value in the AT register, the detection
output (the alarm signal) will be activated.

B. Parameter Tuning

Monitoring timing window

Cycle 1 Cycle 2

Trigger time Triggered

Figure 4: The detection method analysis

The first step in securing R2D2 is tuning the scheme’s
timing parameters. Per Figure 4, the toggling time it takes for
a Trojan to trigger is denoted by Tt, and the average toggling
frequency during this period is denoted by ft. We first assume
that Tt is shorter than twice the size of the monitoring window
size Tm. The worst case scenario occurs when the triggering
duration scope Tt falls equally into two monitoring windows.
In this case, to make sure that the sequential pulse signal can
be detected, the attack threshold Ath should be smaller than
half of the number of toggle events Nt required to trigger
the attack. In addition, the value of Ath/Tm should be higher
than the average benign toggling frequency fa of the guarded
signal to avoid false detection. This request is trivial since the
guarded signals are supposed to have extremely low toggling
rates.

In conclusion, we give the following parameter setting
constrains: {

assume Tt 6 2Tm

fa × Tm ≤ Ath ≤ Nt/2

If the Trojan trigger time Tt is longer than twice of the
monitoring window size Tm we just need to make sure that
the attack threshold is smaller than the number of toggling
events during one of the monitoring windows. The constraint
conditions are summarized as below:{

assume Tt > 2Tm

fa × Tm < Ath ≤ Tm × ft

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

⇒ fa × Tm < Ath ≤ Tt/2× ft = Nt/2

Combining these two situations, we conclude the parameter
setting constrains for this detection method as below:{

fa ≤ Ath/Tm ≤ 1
Ath ≤ Nt/2

The first condition ensures that the detection scheme elim-
inates false positives and the second condition ensures that
attacks will be detected. Once the attack threshold is set, it
can detect hardware Trojans whose trigger time is longer than
twice of the attack threshold. Only hardware Trojans whose
trigger time is shorter than twice of the attack threshold have
a chance of evading the detection. In addition, we give the
detection rate of this method below, where n stands for the
number of toggling events required to activate the hardware
Trojan. The designer can obtain an estimate of n and Tt

by simulating possible analog Trojan designs in the specific
Technology. Note that since these values are programmable
they can also be tuned post-fabrication to give the best results.

detection rate =

 0 n ≤ Ath
n/Ath− 1 Ath 6 n 6 2Ath
1 n ≥ 2Ath

In theory an attacker can fine-tune the Trojan to trigger it
sooner than the attack threshold. Hence, the closer the designer
sets the attack threshold to the benign toggling frequency
of the guarded signals the more difficult it becomes for the
attacker to evade detection. Note however that this competition
is in favor of the defender due to two reasons. First, the
defender may be able to sustain false alarms. If a false alarm
occurs, execution falls into an interrupt handler. The interrupt
handler can perform a quick integrity check, e.g. verify if the
security-critical state of the processor such as privilege levels
have been modified or not and return to normal operation if
no such violation is detected. Second, the defender is tuning
the attack threshold through a precise digital counter, whereas
the attacker has to fine-tune the threshold through an analog
circuit which has a higher susceptibility to process variation.

Final

Trigger

A
single-stage

trigger

circuit A

single-stage

trigger

circuit B

B

OA

OB

single-stage

trigger

circuit A

single-stage

trigger

circuit B

single-stage

trigger

circuit C

A

B

C

OA

OB

OC

Final

Trigger

Final Trigger = OA | OB Final Trigger = (OA & OB) | OC

Figure 5: Multi-stage trigger method from [2]

It is possible that the hardware Trojan is triggered by a
combination of multiple single-stage trigger outputs, as shown
in Figure 5. Assume the single-stage trigger output is 0 when
activated. As shown in the figure on the left, the final trigger
will be activated when both trigger circuit A and trigger circuit
B are activated. If we replace the OR gate with AND gate, the
final trigger will be activated when either trigger circuit A or

trigger circuit B is activated. In this case, the trigger condition
is the same with single-stage trigger. But it makes the trigger
more flexible, since the final trigger can be activated when one
of many single-stage trigger works. The figure on the right
shows a two level trigger input circuit. The final trigger will
be activate when trigger circuit C and either trigger circuit A
or trigger circuit B is activated.

For OR operation, there are two approaches to activate the
final trigger. The first method is to toggle wire A and wire
B alternatively for required cycles. This requires the Trojan
designer to reduce the toggling frequency requirement of the
single-stage trigger. The second method is to toggle wire A
for require cycles to active activate trigger circuit A, and then
toggle wire B for required cycles to active activate trigger
circuit B. This method requires the retention time of the first
level trigger circuit be long enough. Multi-stage trigger method
can make the trigger more flexible, and can reduce false
activation. But it is not easy to choose many wires suitable
to trigger the attack, and to write software to make all the
wires toggle as expected. If the wires are far from each other,
it will be difficult to insert the Trojan in a layout. Multi-
stage trigger method also means more complex analog circuit
design. All these features limits the complexity of multi-stage
trigger circuits, and limits the difficulty to detect them.

From the defender’s perspective, we should consider the
worst case (the ideal case for the attacker). The monitored
parameter is the toggling frequency of possible victim wires.
For R2D2 method, the advantage of multi-stage trigger method
is that it can reduce the required toggling frequency of a victim
wire. But anyhow, the required togging frequency is doomed
to be higher than common case. For OR operation, assume it
combines N single-stage outputs to trigger the attack. Ideally,
it reduce the required toggling rate (ft) by N times (ft/N).
ft/N will be definitely above normal toggling rate. Note that
if ft/N is near or even lower than common case toggling
rate, it can be easily detected. It is feasible for us to choose
appropriate MTW and AT values. In the worst case scenario,
we will sacrifice false positive rates for higher security level.
False positive event only requires the CPU to halt for further
checking, but will not affect the processor’s function.

C. Scope Selection

Guarded

Signal

Detection

Circuit

Detection

output

Signal 2

Signal 1

Signal n
0

1

0

1

0

1

Detection

Circuit

time multiplexing

Guarded

Signal Detection

output

Gate 1 Gate 2 Gate n…

…

Figure 6: Detection circuit for multiple guarded signals

Selecting the set of guard signals is also a critical part of the
design. The goal of the defender is to maximize the coverage
of low toggling rate signals while minimizing the hardware
overhead of the detection mechanism.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

We first note that since the Trojan detection circuit will be
small, we can easily insert several units in the design without
incurring significant overhead. In addition, we propose to XOR
a set of guarded signals together to reduce hardware consump-
tion. Figure 6 shows an example circuit. Since the guarded
signals all have low toggling rates when running common pro-
grams, the XOR of the signals should also have low toggling
rate. If one of the guarded signal toggles frequently, the XOR
result toggles as well. But toggling events of other XORed
wires will, to some extend, mask the toggling event of the
victim wire. So parameters of the detection circuit need to be
modified accordingly. From the Trojan designer’s perspective,
the difference of toggling frequency between the victim wire
and other wires will be significant. So the decrease of toggling
frequency of the victim wire will be trivial. We only need
to lower the Ath value properly. If the attacker knows the
existence of the detection circuit and the XOR solution, it is
possible for them to mask the high frequent toggling event. For
example, they can make one XORed wire toggle oppositely
with the victim wire. To realize this goal, they need to infer
from the layout, the wires are XORed together with the victim
wire, and make one wire toggles as expected to mask the
victim wire. This is not easy to realize. If the attacker can
infer from the layout, the signals that are guarded, they can
simply attach the Trojan to signals that are not guarded by the
detector. To thwart this we can use two well known hardware
security measures: 1) Post-fabrication in-house configuration.
We can use light-weight configurable MUX-trees [21] and
route the detection unit to a large number of potential victim
signals through the configurable tree. The MUXes are then
configured post-fabrication to select only a subset of those
signals unknown to the attacker. 2) Split-manufacturing. We
can perform the wiring of the detection circuitry in a trusted
foundry. While the substrate devices and the bottom metal
layers (including the possible Trojan circuitry) are fabricated
in the untrusted process, the guarded signals are connected in
a split-manufacturing style back-end-of-line (BEOL) process
unknown to the attacker. The set of guarded signals can be
changed on every batch of chips to create a moving target
defence against the attacker. The ReRAM-CMOS technology
we use to fabricate our demonstration chip perfectly embraces
programmable MUX-trees, and BEOL split-manufacturing. As
shown in Figure 6, we can also divide the guarded signals
into several groups with each group having different detection
parameters Ath and Tm. The XOR gates can time-multiplex
to reuse the detection circuit as well. Figure 3 show how the
XOR gates can reuse the toggle event counter. In this case, we
need to shrink monitoring window width, and reduce attack
threshold accordingly. We can also add more toggle event
counters into detection circuit if necessary.

D. Removal Attack Resiliency

Another important security concern is that the attacker may
find the detection circuit and modify/remove it. We assume
that the attacker has extracted a netlist from the design layout.
Then it would be feasible for the attacker to find the detection
unit and the alarm signal and simply disconnect it from

the interrupt unit. We need to verify whether the detection
circuit works as expected. A low-cost solution to this problem
would be to perform testing-based verification of the detection
circuitry post-fabrication. This can be done by performing
reads and writes to the AT and MTW registers and the scope
variables. Then various toggling benchmark codes can be
used on multiple signals inside the detection scope to test
whether the correct interrupt line is triggered at the correct
clock cycles. The only way for the attacker to circumvent
this stress-testing, is to clone all the software behavior of
the detection circuitry by modifying the digital circuitry. This
task would be impossible without significantly disrupting side-
channel fingerprints. In essence, such modifications will fall
into the realm of digital Trojans for which there are an array
of available effective Trojan detection schemes.

IV. DEMONSTRATION DESIGN

We demonstrate the effectiveness of the proposed detection
scheme and the operation of the hardware Trojan itself on
an in-house designed ARMv7 compatible processor which is
described herein. ARM processors are the most popular pro-
cessors in the mobile and embedded system domain. Hence,
the security of systems based on ARM architectures is of
critical concern.

A. The ARM-compatible Processor

We propose a fused microarchitecture [22]–[24] based on
the ARMv7-A&R ISA [25]. ARMv7-A&R was the up to date
ARM ISA when we started this project. This ARM processor
is named Merlin. Merlin integrates in-order superscalar and
VLIW [26]. Normally, Merlin works under dual-issue in-
order superscalar mode. It can be switched to six-issue VLIW
mode when the task is compute-intensive. It was evaluated
based on the gem5 simulator [27], and proved to be feasible,
before real hardware design [28]. Using michroarchitectural
techniques [29], Merlin expands the digital signal processing
capabilities of the ARM processor. Merlin supports most
traditional ARM instructions, but does not support some ISA
extensions, such as Thumb, ThumbEE, Jazelle, Floating-point,
and Advanced SIMD. We realize 181 ARM instructions in
total, which is enough to run common benchmarks, such
as DhryStone, CoreMark, DSPStone, and EEMBC telecom.
There are 7 execution modes defined in ARMv7-A&R ISA,
while Merlin works only under user mode.

Branch prediction plays a significant role in improving
the processor performance, especially for processors with
deep pipeline stages. Merlin has a 10-stage pipeline. Branch
prediction happens at the first stage of the pipeline. Until the
first execution stage (the eighth stage in the pipeline) stage,
the correct branch direction can be acquired, and the predicted
direction can be verified to be correct or not. In this design,
we propose a combined Bimodal and PAp branch prediction
method [30]–[33]. This method achieves 94% prediction ac-
curacy, with limited hardware budget.

Merlin has 16 KB of on-chip L1 instruction Cache, with
a 256-bit wide port, and 32 KB dual-port data memory, with
each port being 64-bits wide. Merlin has six functional units,

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ROM
ITCM

SRAM

system

SRAM

AHB

SPI0

system

control
AHB2APB

SD Host

Controller
DMA

PLL

RRAM

4×128KBMerlin

UART0

UART1

SPI1

TIMER

I2C

GPIO

RTC

JTAG CPU_SELECT

3.3V/4V

outside

CLK

RSTN

AHB BUS 1

AHB BUS 2

APB BUS

Figure 7: The SoC chip diagram

consisting of two arithmetic units, two multiply units, and two
load/store units. An SoC [34] is designed, where Merlin is
used as an MCU. The chip diagram is shown in Figure 7. On
this chip, Merlin is integrated with DMA, ROM, SRAM, four
128KB embedded ReRAM, and a variety of peripheral I/O.
The Dhrystone performance of Merlin is 1.9 DMIPS/MHz,
which is comparable to ARM Cortex-A8 processors.

B. A2-like Analog Trojan in Merlin

When inserting the analog Trojan trigger circuit into the
Merlin processor, we should first select a viable trigger input.
The trigger input should have low toggling rate in common
cases. It should be controllable through software, so that the
trigger code can make it toggle at high frequency to launch
the attack. We also discuss what can be utilized as the payload
of the trigger in the Merlin processor.

N Z C V Q
IT

[1:0]
J I F T M[4:0]Reserved GE[3:0] E AIT[7:2]

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

S

Figure 8: ARM CPSR register

1) Select the Trigger Input: In ARMv7-A&R ISA, there
are 16 core registers including R0-R12, SP (Stack Pointer),
LR (Link Register), and PC (Program Counter) under user
mode. For each core register, it is possible that the register
is frequently used during a time period. So it is not safe to
utilize these registers to trigger the attack.

Another software reachable register is CPSR (Current Pro-
gram Status Register). The definition of CPSR is shown in
Figure 8. APSR (Application Program Status Register) is the
same register as the CPSR in ARMv7-A&R ISA, but the
APSR must be used only to access the N, Z, C, V, Q, and
GE[3:0] bits. N, Z, C, and V are condition flags. Q is the
overflow or saturation flag. GE[3:0] are the greater-than or
equal flags. In the Merlin processor, we realize all these flag
registers as part of APSR. All the flag registers can be modified
directly using the MSR instruction, or be modified indirectly
using arithmetic or logic instructions.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

N Z C V Q GE

Figure 9: Toggling rate of the NZCV, Q, and GE registers when
running the MFCC program

Table I: Some special instructions in ARMv7-A&R ISA

Instruction Introduction
PLD, PLDW, PLI Preloading caches

CLREX Clear local exclusive access record
DBG Provide a hint to debug and related systems

DMB, DSB Memory barriers that regulate memory accesses

Figure 9 shows the toggling rate of the NZCV, Q, and GE
registers when running MFCC, which is a speech recognition
program. We can see that the toggling rate of N, Z, C registers
are all below 5%. V, Q, GE registers does not toggle at all in
this benchmark. So these registers can be utilized as the trigger
input. We also utilize one reserved bit, CPSR[23], as the mode
switch flag in Merlin. We name it CPSR S. The toggle rate
of CPSR S is decided by the users. CPSR S always has very
low toggling rate, since it may degrade the performance if the
processor is to switch between the two modes too frequently.
So the CPSR S bit can also be used as the trigger input.

The bits in CPSR that we do not implement in Merlin
include IT[7:0], J, T, E, A, I, F, and M[4:0]. These bits cannot
be modified by MSR instruction directly, but some of these
bits can still be used as the trigger input. J and T compose the
instruction set state register. It indicates whether the processor
is working under ARM, Thumb, ThumbEE, or Jazelle mode.
The BLX instruction calls a subroutine at a PC-relative address,
and changes instruction set from ARM to Thumb, or from
Thumb to ARM. Exchange of the instruction set between
ARM and Thumb can make the T bit toggle frequently. While
there is little chance that this happens in common cases. So the
BLX can be utilized to trigger a Trojan in an ARM processor.
IT[7:0] is the IT block state register. This field holds the If-
Then execution state bits for the Thumb IT instruction. It
is possible to make one bit in IT[7:0] toggle by exchanging
between IT mode and normal mode. E is the endianness
mapping register. Normally, endianness is not changed in one
application, so the E bit almost does not toggle at all. But
we can use the SETEND instruction to set and clear this bit,
to make E bit toggle frequently. A (Asynchronous abort), I
(IRQ), and F (FIQ) are mask bits. These bits are less software
controllable, and it could be dangerous to use these bits to
trigger a Trojan attack.

There are also many special instructions which are rarely
used in common programs. Signals related to these instructions
are predicted to have low toggling rates. So these instructions
can also be used to trigger the attack. We list some of the spe-
cial instructions in Table I. For example, the PLD instruction
signals the memory system that data memory accesses from a
specified address are likely to happen in the near future. The

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

memory system can respond by preloading the cache line into
the data cache (pre-fetching). In Merlin, PLD is decoded in the
D unit, and then it signals the DMMU. Continuous execution
of PLD can make the related signals toggle frequently.

Clock

Bp_en

Figure 10: Branch prediction enable signal toggling rate when run-
ning MFCC program

Clock

Bp_en

Figure 11: The branch prediction enable signal toggles more fre-
quently if triggered by software

Regarding Merlin, there is another method to trigger the
attack. As we mentioned before, Merlin adopts a combined
Bimodal and PAp branch prediction method. Merlin fetches
256bit instructions each time, including 8 to 16 instructions.
This is called an instruction packet. Once branch instructions
are found in the instruction packet, the branch prediction
mechanism is enabled. As shown in Figure 10, Bp en stands
for branch prediction enable signal. We can see that the
Bp en signal rarely toggles when running MFCC program.
Whereas, we can make the branch predictor work more fre-
quently simply by adding branch instructions into the program.
Figure 11 shows that, when running the designed program, the
Bp en signal toggles more frequently than running the MFCC
program.

Analog

trigger

circuit

Trigger

input

Peripherals

...

Payload
Trigger

output

COM port

SerDes

PLL

Cache Controller

Bus Controller

DDR PHY

Victim

Figure 12: Possible payloads in Merlin processor

2) Select the Payload: As shown in Figure 12, for the target
SoC, a hardware Trojan can bring many security issues. For
example, the hardware Trojan may attack memory mapped
I/O to invalidate the peripherals, or attack the COM port, or
SerDes to cut the communication of the SoC. It can also attack
the PLL to slow down the chip, or attack the cache controller,
bus controller, AD/DA converter, DDR PHY, and so on, to
make the chip lose its functionality.

In the hardware implementation, we select the CPSR J
bit as the trigger input. Since Merlin does not support ISA
extensions, this bit has no function. We use R0 as the attack

while success==0 do

 i ← 0

 R0 ← 0

 while i<200 do

 CPSR_J ← 0

 CPSR_J ← 1

 i ← i+1

 end while

 if read(R0) ≠ 0 then

 success ← 1

 end if

end while

Figure 13: Trojan trigger code

payload. Once the attack is triggered, the value store in R0

will be modified. The trigger code is shown in Figure 13.
We generate the trigger input by frequently writing 0 and 1 to
CPSR J alternatively. When the Trojan is triggered, it changes
the value stored in R0 from 0 to 1 so that we can observe the
change through a register read.

V. EXPERIMENTAL RESULTS

Considering that the MCU is digital logic, and the hardware
Trojan is analog circuitry, we use Synopsys CustomSim to run
simulation. By declaring the name of the analog top-level cell
and the analog netlist, CustomSim will simulate the digital
logic via VCS [35], and call the related analog simulator to
simulate the analog logic. In this section, we will give the
simulation result, and introduce the SoC fabrication.

A. Simulation Results

Trigger Time = 9μs

Rentention Time = 15μs

Trigger

Input

Trigger

Output

Cap

Voltage

Trigger

Input

Trigger

Output

Cap

Voltage

Figure 14: A2 Trojan simulation result

Figure 14 shows the simulation result of the A2 analog
circuit. The frequency of the processor is 150MHz. We choose
the CPSR J as the trigger input. The toggling frequency of
the trigger input signal is 20MHz. The trigger time is 9 µs. It
means that the analog Trojan is activated after 180 toggling
events of the trigger input. This result demonstrates that the
analog hardware Trojan works in the ARM processor.

Figure 15 shows the simulation result of the R2D2 detection
circuit. The detection circuit guards the CPSR J register. We
set the attack threshold as 64, and the monitoring timing
window is 256 clock cycles. From Figure 15, we can see that

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Attack

Detect

Trigger

Input

Trigger

Output

Figure 15: R2D2 detection circuit simulation result

Attack

Detect

Trigger

Input

Trigger

Output

Figure 16: A2 attack simulation without detection

the attack-detected signal generates a low level pulse, after
several toggling events of the trigger input. No trigger output
is generated. It means that the Trojan is detected and the attack
is prevented. The simulation result when we turn the detection
circuits off is shown in Figure 16. The attack-detected signal
remains 1. Trigger output is generated after several number
of toggling events of the trigger input. The result shows that
the R2D2 detection method is effective in detecting the analog
Trojan.

B. Fabrication

6
.5

m
m

5μ
m

9.2mm

31μm

Figure 17: The SoC chip layout

The demonstration SoC is fabricated using the SMIC 130
nm Mixed-Signal 1P7M process. The layout of the MCU and
the analog hardware Trojan is shown in Figure 17. Figure 18
shows the photo of the SoC silicon die. In the SoC, the MCU
is integrated with 16 KB on-chip L1 program Cache, and 32
KB dual-port data SRAM. ROM is used to store the boot
loader. It also embraces 4Mb embedded ReRAM. As shown
in Figure 17, the chip area is 9.2 mm by 6.5 mm. The area
of the analog hardware Trojan is 31 µm by 5 µm. Trojan-to-
circuit ratio is 2.6× 10−6.

The detection circuitry is also included in the fabricated
SoC, and it is guarding the CPSR J signal in the MCU. The

MCU

D
a

ta
 S

R
A

M

ReRAM
array

ReRAM
array

ReRAM
array

ReRAM
array

Decoder Decoder Decoder Decoder

Driver Driver Driver Driver

L1 Program Cache

ROMPLL
System SRAM

B
T

B
 T

a
b

le

Figure 18: Photo of SoC silicon die

detection circuit is included in the MCU, by automatic place
and route, the gates composing the detection circuits are scat-
tered in the layout. The post-layout area of the detection circuit
is about 2225 µm2. Detection-to-circuit ratio is 3.7×10−5. For
the detection circuit, the main area consumption comes from
the counters. The size of the counters is related to parameters
setting. We set Tm=256, Ath=64, so the clock counter width
is 8, and the toggling event counter width is 6. This includes
about 70 gates. The AT register and MTW register include
about 12 gates. With these parameters we were able to verify
the operation of the Trojan and detection circuitry successfully.

While we did not implement the ReRAM MUX-trees in
the demonstration chip we were able to verify that there is
sufficient routing area to route the detection unit to more guard
signals through MUX-trees. Note that the detection scheme is
implemented in digital logic and uses gates similar to other
components. This helps better hide the detection circuit from
an attacker. Furthermore, the placement tool distributes the
detection units making it more difficult to spot them in the
layout.

C. On-board Evaluation

Figure 19: The PCB board and test environment

1) Test environment: Figure 19 shows the PCB board and
the test environment. The test program is stored into SPI Flash
ROM. When the board is powered on, the processor will start
executing the program stored in flash automatically. We can
see printed information on PC screen through UART.

2) Trojan functionality: The trigger output signal of the
analog Trojan circuit is connected to a GPIO, we can capture
the waveform of the Trojan output signal via a oscilloscope,
as shown in Figure 20. The Trojan output signal generates a

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Figure 20: Analog Trojan circuit on-board test result

21.2 us width low level pulse. This result is consistent with
the simulation result shown in Figure 14 and Figure 16. In
different experiments, the width of the low level pulse signal
varies between 20 us and 30 us.

When the analog Trojan is triggered, it will change the value
of R0 from 0X0 to 0X1. We can see the printed value of R0
through UART. As shown in Figure 21, after Trojan attack,
the value of R0 is changed from 0X0 to 0X1.

Serial port setting

serial port

Baud rate

data width

parity bit

stop bit

flow control

Figure 21: Printed information of the analog Trojan and R2D2
detection circuit

3) R2D2 detection functionality: The detection circuit will
generate a hardware interrupt when possible Trojan is detected.
The IRQ number is 15 in this design. As shown in Figure 21,
when the detected wire is made toggle frequently by running
the test program, the detection circuit initiate IRQ 15.

The results demonstrate the feasibility of analog Trojan in
the ARM-compatible processor, and the effectiveness of R2D2
detection method.

Table II: Area comparison between Merlin processors with and
without the R2D2 detection circuit

slice LUTs slice registers
Merlin 104330 212243

Merlin with detection 104354 212268
increase 0.023% 0.012%

4) Area analysis: In section V-B, we estimate the area of
the detection circuit in gate level. Based on the parameters
of the detection circuit, we estimate that it includes about
70 gates, and the post-layout area of the detection circuit
is about 2225 µm2. There is no easy way to verify this
estimation, because the circuits are synthesized from the
hardware description language, and it is not easy to find out
which gates compose the detection circuit, considering that the
gates are scattered into the layout by automatic placement and
routing. To provide a more intuitional illustration of the area

increase, we synthesize two designs on the same FPGA board.
The two designs are the Merlin processor with and without
the R2D2 detection circuit, separately. The FPGA device we
use is Xilinx XC7Z045FFG676-2. As shown in Table II,
compared with the Merlin processor, Merlin processor with
R2D2 detection circuit utilizes 0.023% and 0.012% more slice
LUTs and slice registers separately. The area increase is trivial.
The area synthesize result shows, quantitatively, how much
hardware resource is used by the detection circuit, but it is
not proportional to the chip area. Many factors affects the
area of the chip layout, and such amount of hardware resource
increase is negligible.

123.1 123.1

121.9

120.6

119

120

121

122

123

124

Analog Trojan and detection circuit power

evaluation (mW)

Figure 22: Power analysis of the analog Trojan and the R2D2
detection circuit

5) Power analysis: Figure 22 shows the power analysis of
the analog Trojan and the R2D2 detection circuit. To separate
the experiments on the analog Trojan and the R2D2 detection
circuit, we use one wire as the Trojan trigger input, and use
another wire as the guarded signal of the detection circuit.
As a result, the detection circuit does not work when the
Trojan is triggered, and the Trojan will not be triggered when
the guarded signal of the detection circuit toggles. Thus, we
can test the power consumption of the analog Trojan and the
detection circuit separately.

The first two columns (Trojan-disable and Trojan-active)
show the Trojan power experiments. Trojan-disable and
Trojan-active run the same test program (program 1). The
only difference is that Trojan enable signal is set as 0 for
Trojan-disable test, and Trojan enable signal is set as 1 for
Trojan-active test. The detection circuit does not work in these
two experiments. These two tests shows the power comparison
when the processor works normally and when the analog
Trojan is triggered. As Figure 22 shows, power consumption
under these two occasions are both 123.1 mW. The analog
Trojan causes no power increase to the processor.

The last two columns (Detection-disable and Detection-
active) show the R2D2 detection circuit power experiments.
Detection-disable and Detection-active run the same test pro-
gram (program 2). The only difference is that the detection
enable signal is set as 0 for Detection-disable test, and the
detection enable signal is set as 1 for Detection-active test. Pro-
gram 1 and program 2 are also similar, except that they make
different wires toggle. The trigger input signal of the analog
Trojan does not change in these two experiments. As shown in

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Figure 22, the power consumption in detection-disable test and
detection-enable test is 121.9 mW and 120.6 mW separately.
When the detection circuit is active, the power of the processor
is slightly smaller than in normal scenario. That is because the
detection circuit will trigger a interrupt request when suspect
Trojan is detected, and it causes the processor to stall for a
few cycles.

D. Discussion

R2D2 Trojan detection scheme can be integrated into EDA
tools. As shown in Section V-B, the detection circuit is small,
and it will bring little overhead to insert many of the detec-
tion circuit into the design. EDA tools can collect toggling
frequency data of wires through functional simulation, and
decide the detection scope. Then, DEA tools can add detection
circuits into the design. It can XOR the target wires nearby
to reduce area consumption. EDA tools can also help to make
the detection circuits more stealthy by scattering the circuits
into the layout and adding configurable MUX-trees to mask
the detected wires.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implement an analog Trojan in a in-
house designed ARM processor. We also propose a runtime
Trojan detection method. The method targets Trojans trig-
gered by toggling events, overcoming a significant limitation
of existing Trojan detection schemes in detecting A2-alike
Trojans. The chip is also fabricated using SMIC 130 nm
Mixed-Signal 1P7M process. A PCB board is fabricated. Both
simulation result and on-board evaluation result prove that
this method is effective in detecting an analog Trojan inserted
in the ARM processor. We intend to continue this research
direction by exploring topics such as optimal parameter tun-
ing, post-fabrication configuration using ReRAMs, and split-
manufacturing.

REFERENCES

[1] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and
defense,” Integration the VLSI Journal, vol. 55, pp. 426–437, 2016.

[2] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in Security & Privacy, 2016, pp. 18–37.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” Design Test of Computers, IEEE, vol. 27, pp.
10–25, 2010.

[4] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), 2008, pp. 51–57.

[5] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachris-
tou, K. Roy, and S. Bhunia, “Hardware Trojan detection by multiple-
parameter side-channel analysis,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2183–2195, 2013.

[6] M. Banga and M. Hsiao, “A novel sustained vector technique for the
detection of hardware Trojans,” in 22nd International Conference on
VLSI Design, 2009, pp. 327–332.

[7] S. Saha, R. S. Chakraborty, S. S. Nuthakki, D. Mukhopadhyay et al.,
“Improved test pattern generation for hardware trojan detection using
genetic algorithm and boolean satisfiability,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2015,
pp. 577–596.

[8] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan activation
time,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 1, pp. 112–125, 2012.

[9] S. Kelly, X. Zhang, M. Tehranipoor, and A. Ferraiuolo, “Detecting
hardware trojans using on-chip sensors in an asic design,” Journal of
Electronic Testing, vol. 31, no. 1, pp. 11–26, 2015.

[10] X. Guo, R. G. Dutta, and Y. Jin, “Eliminating the hardware-software
boundary: A proof-carrying approach for trust evaluation on computer
systems,” IEEE Transactions on Information Forensics and Security
(TIFS), vol. 12, no. 2, pp. 405–417, 2017.

[11] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Automatic code converter
enhanced pch framework for soc trust verification,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 12, pp.
3390–3400, 2017.

[12] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 697–708.

[13] J. Li and J. Lach, “At-speed delay characterization for ic authentication
and trojan horse detection,” in Hardware-Oriented Security and Trust,
2008. HOST 2008. IEEE International Workshop on. IEEE, 2008, pp.
8–14.

[14] D. Forte, C. Bao, and A. Srivastava, “Temperature tracking: An inno-
vative run-time approach for hardware trojan detection,” in Computer-
Aided Design (ICCAD), 2013 IEEE/ACM International Conference on.
IEEE, 2013, pp. 532–539.

[15] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection tech-
nique for hardware trojans using machine learning in frequency domain,”
in Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on.
IEEE, 2015, pp. 185–186.

[16] S. Kelly, X. Zhang, M. Tehranipoor, and A. Ferraiuolo, “Detecting
hardware trojans using on-chip sensors in an asic design,” Journal of
Electronic Testing, vol. 31, no. 1, pp. 11–26, 2015.

[17] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish, “Verifiable
asics,” in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
2016, pp. 759–778.

[18] X. T. Ngo, J.-L. Danger, S. Guilley, Z. Najm, and O. Emery, “Hardware
property checker for run-time hardware trojan detection,” in Circuit
Theory and Design (ECCTD), 2015 European Conference on. IEEE,
2015, pp. 1–4.

[19] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Evaluating security
requirements in a general-purpose processor by combining assertion
checkers with code coverage,” in Hardware-Oriented Security and Trust
(HOST), 2012 IEEE International Symposium on. IEEE, 2012, pp. 49–
54.

[20] Y. Hou, H. He, K. Shamsi, Y. Jin, D. Wu, and H. Wu, “R2D2: Runtime
reassurance and detection of A2 trojan,” in Hardware-Oriented Security
and Trust (HOST), 2018 IEEE International Symposium on. IEEE,
2018.

[21] X. Tang, G. De Micheli, and P.-E. Gaillardon, “A high-performance fpga
architecture using one-level rram-based multiplexers,” IEEE Transac-
tions on Emerging Topics in Computing, 2017.

[22] C. Villavieja, J. A. Joao, R. Miftakhutdinov, and Y. N. Patt, “Yoga: A
hybrid dynamic VLIW/OoO processor,” 2014.

[23] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous block
architecture,” in IEEE International Conference on Computer Design,
2014, pp. 386–393.

[24] Khubaib, M. A. Suleman, M. Hashemi, W. Chris, and Y. N. Patt,
“Morphcore: An energy-efficient microarchitecture for high performance
ILP and high throughput TLP,” in Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 305–316.

[25] ARM, “ARM information center,” 2017. [Online]. Available: http:
//infocenter.arm.com

[26] Z. Shen, H. He, X. Yang, D. Jia, and Y. Sun, “Architecture design
of a variable length instruction set VLIW DSP,” Tsinghua Science &
Technology, vol. 14, no. 5, pp. 561–569, 2009.

[27] N. Binkert, B. Beckmann, G. Black, A. Saidi, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, and S. Sardashti, “The gem5
simulator,” ACM Sigarch Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[28] Y. Hou, H. He, X. Yang, D. Guo, X. Wang, J. Fu, and K. Qiu, “Fumicro:
A fused microarchitecture design integrating in-order superscalar and
VLIW,” VLSI Design, 2016.

[29] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2012.

[30] J. K. F. Lee, “Analysis of branch prediction strategies and branch target
buffer design,” Computer, vol. 17, no. 1, pp. 6–22, 1984.

[31] J. E. Smith, “A study of branch prediction strategies,” Proceedings of
the 8th annual symposium on Computer Architecture, vol. 29, no. 6, pp.
135–148, 1981.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2864246, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[32] J. Hoogerbrugge, “Dynamic branch prediction for a vliw processor,”
in International Conference on Parallel Architectures & Compilation
Techniques, 2000, pp. 207–214.

[33] G. Palermo, M. Sam, C. Silvan, V. Zaccari, and R. Zafalo, “Branch
prediction techniques for low-power vliw processors,” in ACM Great
Lakes Symposium on Vlsi 2003, Washington, Dc, Usa, April, 2003, pp.
225–228.

[34] S. Furber, “ARM system-on-chip architecture,” Network IEEE, vol. 14,
no. 6, p. 4, 2000.

[35] G. Nunn, F. Delguste, A. Khan, A. Verma, and B. Geden, “White
paper using digital verification techniques on mixed-signal socs with
customsim and vcs,” Synopsys, Tech. Rep., 2011.

Yumin Hou received the B.S. degree in Micro-
electronics from the School of Microelectronics and
Solid-State Electronics, University of Electronic Sci-
ence and Technology of China, Chengdu, China, in
2012. She is currently a Ph.D. candidate in Electron-
ics Science and Technology at Tsinghua University,
Beijing, China, under the supervision of Dr. Hu
He. Her main research interests include computer
architecture design, Processing-in-Memory architec-
ture and programming model design, and processor
security.

Hu He received his B.S. and Ph.D. degree from the
Department of Automation and the Institute of Mi-
croelectronics, Tsinghua University respectively. He
is currently an associate professor with the Institute
of Microelectronics, Tsinghua University, Beijing,
China. His research interests include DSP archi-
tecture, compiler, processor hardware security, and
Processing-in-Memory architecture. His group has
developed several generation DSPs in last decade.
One VLIW DSP developed for wireless communi-
cation and finally used in video surveillance system

for cryptography processing was volume produced. He is also interested in
spiking neural network learning method, neuromorphic computing, and neural
network hardware accelerator.

Kaveh Shamsi received the B.S. degree in Elec-
trical Engineering from the Sharif University of
Technology, Tehran, Iran, in 2014, the M.S. degree
in Computer Engineering from the University of
Central Florida, Orlando, US in 2017. He is currently
pursuing a Ph.D. degree in Electrical and Computer
Engineering at the University of Florida Florida,
Gainesville, US under the supervision of Dr. Yier
Jin. His research focuses on analog and digital circuit
design, formal methods, and algorithms in hardware
security. He is the recipient of the HOST’17 best

paper award and the GLSVLSI’18 best paper candidate.

Yier Jin is currently an associate professor in the
ECE Department at the University of Florida. He
received his PhD degree in Electrical Engineering
in 2012 from Yale University after he got his B.S.
and M.S. degrees in Electrical Engineering from
Zhejiang University, China, in 2005 and 2007, re-
spectively.

His research focuses on the areas of trusted em-
bedded systems, trusted hardware intellectual prop-
erty (IP) cores and hardware-software co-protection
on computer systems. He proposed various ap-

proaches in the area of hardware security, including the hardware Trojan
detection methodology relying on local side-channel information, the post-
deployment hardware trust assessment framework, and the proof-carrying
hardware IP protection scheme. He is also interested in the security analysis
on Internet of Things (IoT) and wearable devices with particular emphasis on
information integrity and privacy protection in the IoT era. He is awarded the
DoE Early CAREER Award in 2016 and is the best paper award recipient of
DAC’15, ASP-DAC’16, HOST’17, ACM TODAES’18, and GLSVLSI’18.

Dong Wu received the B.S. degree in electronic
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2001, and Ph.D. degree in microelectronics
from Tsinghua University, Beijing, China, in 2006.
He is an associate professor in Tsinghua University,
and his research focus is circuit design for sensors
and memories.

Huaqiang Wu is presently the deputy director of the
Institute of Microelectronics, Tsinghua University,
Beijing, China. Dr. Wu received his Ph.D. degree
in electrical engineering from Cornell University,
Ithaca, NY, in 2005. Prior to that, he graduated from
Tsinghua University, Beijing, China, in 2000 with
double B.S. degrees in material science engineering
and enterprise management. From 2006 to 2008, he
was a senior engineer in Spansion LLC, Sunnyvale,
CA. He joined the Institute of Microelectronics,
Tsinghua University in 2009. His research interests

include emerging memory and neuromorphic computing technologies. Dr. Wu
has published more than 100 technical papers and owns more than 60 patents.
Dr. Wu is also served as the director of Micro/Nano Fabrication Center and
deputy director of Beijing Innovation Center for Future Chips.

