
88 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Enabling Security-Enhanced Attestation With
Intel SGX for Remote Terminal and IoT

Juan Wang, Member, IEEE, Zhi Hong, Yuhan Zhang, and Yier Jin, Member, IEEE

Abstract—Along with the advent and popularity of cloud com-
puting, Internet of Things, and bring your own device, the
trust requirement for terminal devices has increased significantly.
An untrusted terminal, a terminal that runs in an untrustwor-
thy execution environment, may cause serious security issues
for enterprise networks. With the release of Software Guard
Extension, Intel has provided a promising way to construct
trusted terminals and services. Utilizing this technology, we pro-
pose a security-enhanced attestation for remote terminals, which
can achieve shielded execution for measurements and attestation
programs. Furthermore, we present a policy-based measurement
mechanism where sensitive data, including secret keys and pol-
icy details are concealed using the enclave-specific keys. We
implement our attestation prototype on real platform with Intel
Skylake processor. Evaluation results show that our attestation
system can provide much stronger security guarantees, yet incurs
small performance overhead.

Index Terms—Attestation, Internet of Things (IoT), remote
terminal (RT), secure enclaves, Software Guard Extension (SGX).

I. INTRODUCTION

W ITH the rapid development of cloud computing,
Internet of Things (IoT) and bring your own device,

we are witnesses to an explosive growth in the number of ter-
minal devices [1], [2]. However, the security issues of terminal
devices have become increasingly important. Terminal devices
are vulnerable to various security threats. A large number of
terminal devices have been hacked just due to simple pass-
word policy. As a result, a substantial amount of efforts are
required to measure the terminal devices and attest them to be
trusted [3]–[6].

Nowadays there are mainly two methods for constructing
and verifying the trust of terminal devices. The first method
is based on trusted platform modules (TPMs). Under this

Manuscript received September 21, 2016; revised May 24, 2017; accepted
August 13, 2017. Date of publication September 7, 2017; date of current
version December 20, 2017. This work was supported in part by the National
Natural Science Foundation of China under Grant 61402342, Grant 61173138,
and Grant 61103628, and by the National Basic Research Program of China
(973 Program) under Grant 2014CB340600. This paper was recommended by
Associate Editor M. Huebner. (Corresponding author: Yier Jin.)

J. Wang, Z. Hong, and Y. Zhang are with the Department of Computer
Science, Wuhan University, Wuhan 430072, China, and also with the
Key Laboratory of Aerospace Information Security and Trust Computing,
Ministry of Education, Wuhan 430072, China (e-mail: jwang@whu.edu.cn;
whuhongzhi@foxmail.com; yh_zhang@whu.edu.cn).

Y. Jin is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611-6200 USA (e-mail:
yier.jin@ece.ufl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2750067

method, signature and secret keys related to the boot pro-
cess are stored inside the TPM platform configuration regis-
ters [7], [8]. While the measurement value is signed by TPM
and sent to a prover, the prover will verify the signature
and the integrity of measurement results to attest the trust of
attestees. The other method leverages TrustZone to construct
trusted terminal [9], [10]. Trusted services are isolated in a
secure world while untrusted services are running in a nor-
mal world. A trusted service is loaded into a trusted domain
after the secure boot process has finished. The untrusted
services can call the trusted service through the trusted appli-
cation program interface (API). Randomly generated keys
can be obtained from TPMs, or from other systems such as
International Mobile Equipment Identity or physical unclon-
able functions [11]. These keys are used to sign and encrypt
a measurement value.

However, the two methods above still have shortcomings
and challenges. The TPM-based method can only securely
protect keys, measurement values, and other sensitive data
due to design and performance. TPMs cannot ensure the
runtime isolation of program code and data. TrustZone-
based systems suffer from the lack of built-in authentication
when normal-world software communicates with the secure
world. In addition, the current method does not consider
the security of the attention program itself [12], such as
the isolation of attestation program, the security process of
verification procedure, and the protection of transmission
module.

Aiming at these challenges, we propose a security-enhanced
attestation for remote terminals (RTs) and IoT devices. Our
method can achieve shielded execution for measurements and
attestation programs. Furthermore, it can measure RT based
on the custom policy and also the sensitive data including
keys. The policy is sealed by the enclave-specific keys. We
implement our prototype on platform using Intel Skylake pro-
cessor and evaluate its performance. The results show that
the overhead of the measurement module just increase about
3% and the cost of attestation module excluding measurement
module is lower than open source attestation platform, e.g.,
OpenAttestation (OAT) [13].

Our contributions can be summarized as follows.
1) We propose a security-enhanced remote attestation

method for RTs and IoT devices. Our method not only
has the small trusted computing base but also constructs
dynamic attestation method based on multiple enclaves.
Meanwhile our method achieves the sealed storage of
keys, isolated running of attestation program and secure

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:jwang@whu.edu.cn
mailto:whuhongzhi@foxmail.com
mailto:yh\protect _zhang@whu.edu.cn
mailto:yier.jin@ece.ufl.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

WANG et al.: ENABLING SECURITY-ENHANCED ATTESTATION WITH INTEL SGX FOR RT AND IoT 89

communication channel. A challenger can attest RT trust
in a secure environment.

2) We present policy-based measurement mechanism.
Administrators can collect and monitor the runtime
status through the custom measurement policy, while
the policy will be protected by the Software Guard
Extension (SGX) seal key.

3) We implement RT attestation service for the first time
on real physical platform with Intel Skylake processor
running Linux. Furthermore, the performance is evalu-
ated and the results show that the additional overhead is
trivial.

The remainder of this paper is organized as follows.
Section II provides some background information relating to
our system including problem description, the threat model and
Intel Software Guard Extension. Section III provides a system
overview. Section IV introduces the design of secure isolation.
Section V describes our policy-based measurement mech-
anism. Section VI shows the security-enhanced attestation
procure. Section VII describes the implementation and eval-
uation of our prototype and presents the results and analysis.
Section VIII shows some related work. Section IX concludes
this paper.

II. BACKGROUND

A. Problem Description

The trust of terminal devices is critical to enterprise net-
works because they are vast and vulnerable to attacks. The
remote attestation mechanism of TCG can report the environ-
ment fingerprint of devices to attesters so as to validate the
identity and the trust status of attestees. However, TPM-based
attestation cannot protect the attestation program from tamping
with and leaking sensitive information in runtime execution.
ARM TrustZone can also be used to implement attestation of
devices, but the transfer process from secure world to normal
world and the trusted API of TrustZone service are vulnera-
ble to attacks. Furthermore, attestation program protected by
TrustZone may be threatened if one of programs in secure
world has security weaknesses since all of protected programs
run in the same isolated memory region.

Aiming at the challenges above, we propose SGX-based
attestation service that can achieve security-enhanced attesta-
tion service. Our approach separates attestation service into
untrusted module and trusted module. Meanwhile we isolates
trusted attestation modules to different enclaves so that pro-
tecting the security of attestation program. We also present
policy-based measurement. Challengers can send its mea-
surement policy to attested entities. Attestation program will
collect the measurement values of remote devices according to
the measurement policy, sign and send them to the challengers.
After validating the identity of the measurement values, the
attesters will compare the measurement result with the base-
line value which is collected in a clean state of the attested
platform. If the measurement value matches the baseline value,
we can determine that the attested platform is trusted otherwise
it is untrusted. In the attestation procedure, we uses SGX quote
operation to implement the signature of measurement values.

B. Threat Model

We follow the assumptions in the SGX model, where the
processor is trusted and has not been tampered with. We
allow the adversary to carry physical attacks on the system,
such as modifying memory and changing I/O signals. We
also assume that enclave programs are trusted and other pro-
grams in the system, including the BIOS, OS, and VMM are
untrusted. We also assume the certificate authority (CA) to be
trusted. However, adversaries can control the system outside
the enclave, such as inserting malicious software in the sys-
tem, and changing configuration parameters. In addition, the
adversary may monitor and control network communication
and will further attempt to impersonate the RT as to attempt
to defeat server-side validation.

Note that we do not consider distributed denial of service
attacks and side-channel attacks such as timing attacks, cache-
collision attacks because that type of attacks can be mitigated
by current defense mechanisms [14]–[16]. In addition, other
side channel attacks, such as power analysis, require hard-
ware modifications, and are ultimately a limitation of our
approach.

C. SGX

The SGX by Intel Corporation was announced in Q1 2013
as an extension to the x86_64 instruction set architecture. It
provides a way for applications to secure a portion of its
address space and place data and code within this container.
Intel calls this container an enclave. There is no set limit to
the number of enclaves a process can own. Furthermore, it is
important to notice that a process is strictly limited by the hard-
ware in directly accessing the enclave’s contents, whilst the
enclave is free to access any portion of the process’s memory.

SGX assumes that everything on a system with the excep-
tion of the processor can be compromised. That is, OS, drivers,
BIOS, hypervisor, and system management mode are untrust-
worthy. As such, any secrets in an enclave remain protected
even when the attacker has full control of the computer system.
Code and data within the enclave is encrypted and crypto-
graphically signed as to ensure its secrecy and integrity. The
boundary of the security mechanism is the CPU package itself.
Enclave code and data inside the CPU remain unencrypted.
If this code or data is ever to leave the CPU package, it is
encrypted and cryptographically signed. If a portion of an
enclave is to enter the CPU again, it is decrypted inside the
CPU after the integrity checking. This mechanism prevents
bus sniffing, tampering with memory and cold boot attacks
against an SGX-enabled system.

1) Enclaves: Enclave is a protected container for sensitive
data and code [17]. SGX allows applications to be specified
the trusted part and untrusted part. The code and data sections
of trusted part need isolated protection. It is not necessary to
do extra works on data or code before creating an enclave,
but the data and code must be measured when loading into
an enclave [18]. Once the protected part of an application
has been loaded into an enclave, SGX protects them from
external software, no matter it is a malicious program or just
a normal one.

90 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Data in memory is vulnerable to probing and malicious tam-
pering. For example, memory leak attacks can potentially leak
sensitive data from the system. Although solutions such as full
memory encryption [19] or oblivious memory [20] have been
proposed, these systems are not deployable in practice without
considerable change. Furthermore, not all portions of memory
contain sensitive information. Intel SGX opts by providing a
special memory location, called the enclave page cache (EPC),
where code and data from the enclaves is kept [21]–[23]. SGX
also defines a security boundary on the CPU package itself.
Any enclave-related data or code leaving the CPU is encrypted
by a memory encryption engine (MEE) and kept in the EPC.
When enclave code or data enters the CPU, the MEE decrypts
it. Consequently, an attacker can only obtain ciphertext by
leaking enclave code or data from outside the enclave.

Code outside an enclave has no access to the data inside,
and code inside an enclave can only access the data and code
belongs to the same enclave. For the memory space outside
the EPC, the memory access mechanism has no difference
with the normal. Such a memory protection mechanism, not
only prevents the data inside an enclave from being tapped
or tampered by malicious software, but also forbids the code
inside an enclave to get data from other enclaves.

When a process terminates, its enclave instances are
destroyed and the data and code it holds will disappear. To
preserve some secret data in an enclave for future use, SGX
offers a sealing function. Sealing can encrypt the data inside
an enclave and store them on a permanent medium such as a
hard disk drive, so the data can be used the next time. When
sealing data, there are two options available: sealing to the
current enclave using the current version of the enclave mea-
surement (MRENCLAVE) or sealing to the enclave author uses
the identity of the enclave author (MRSIGNER). In this paper,
we use both mechanisms.

2) Attestation in SGX: In Intel SGX, attestation is the
process of demonstrating that a piece of software has been
authenticated on the platform and is being protected by an
enclave [21]. Once an enclave is loaded, it is safe for a third
party to communicate sensitive data to it. To achieve this goal,
platform needs to supply third party with a credential which
reflects its enclave security information and enclave signature.
SGX supports two kinds of attestation, local (intraplatform)
attestation and remote (interplatform) attestation. Local attes-
tation is designed for enclaves on the same platform. When the
attestation process completes, a secure session is established
between two enclaves and they can call function and get data
from each other. Remote attestation is a mechanism designed
for the attestation between an enclave and a remote (not in
the same platform) party. A remote challenger can get enclave
information and platform security state through this process,
then it will decide whether the enclave and the platform are
trustworthy according to its local security configuration.

In the process of local attestation, an enclave asks hard-
ware to generate a credential, known as a report, and send
this report to another enclave on the same platform which can
verify this report. An enclave report contains the following
data: measurement of the code and data in the enclave, a hash
of the public key in the independent software vendor (ISV)

certificate, user data, other security related state information,
and a signature block over the above data.

For remote attestation, an application can also send an
enclave report to a quoting enclave to produce a type of cre-
dential that reflects enclave and platform state. This credential
is called quote which is signed with an EPID private key [22].
Quoting enclave is an Intel provided enclave, which can pro-
cess enclave report and convert report into enclave quote. Only
the quoting enclave has access to the Intel EPID key. The
quote is a data structure used for remote attestation and its
main content is the same with report.

This quote can be passed to entities on another platform for
verification. A quote includes the following data: measurement
of the code and data in the enclave, a hash of the public key in
the ISV certificate, the product ID and security version num-
ber of the enclave, attributes of the enclave, user data and a
signature block over the above data.

III. SYSTEM OVERVIEW

Our main goal is to achieve the trusted remote attestation
of RTs and IoT devices by using the SGX technology. The
proposed solution can prevent against security threats during
remote attestation and monitor the runtime status of the RT,
so as to detect it in real time and eliminate the possible risks
of tampering in the RT.

A. Design Overview

The idea of our system revolves around sensitive modules
during remote attestation being isolated into enclaves. The
sensitive modules include the measurement module, the key
storage module, the verification module of the server side, and
the session module. The enclave can provide isolation for these
modules and sealing storage for keys so as to prevent attackers,
including malicious insiders, from tampering with programs or
stealing keys and other sensitive information. When the crit-
ical status or configurations of attestees have been modified,
it will be detected immediately by the attestation server and
then the attesters can judge whether the terminals are trusted.
Administrators can also take relevant measures to control the
terminal. For example, they can recover the tampered data
or disable the terminal to access the high-security services
and even temporarily disable access to the enterprise internal
network.

As shown in Fig. 1, the system is composed of remote attes-
tation server (RAS), RT, and CA. The RAS is the verifier for
remote attestation and the RT is the prover to be verified.
The hardware of each side should support SGX. To prevent
malicious attackers from tampering the attestation process and
eavesdropping attestation results, we put main modules of our
system into secure enclaves, such as the transport layer secu-
rity (TLS) module, the measurement module, the attestation
service, and the verifying module. We also use the sealing
storage of SGX to protect the critical keys and security poli-
cies in the process of attestation. The main process of the
system is described as follows.

1) RAS and RT start the TLS service and attestation ser-
vice. The services are then called into the respective

WANG et al.: ENABLING SECURITY-ENHANCED ATTESTATION WITH INTEL SGX FOR RT AND IoT 91

Fig. 1. Design framework of attestation.

enclave to be executed. TLS service and attestation ser-
vice generate a private–public key pair and request the
CA for issuing the public key certificates. The private
key is sealed by the Sealkey which is generated in the
corresponding enclave based on the public key of signer.

2) The attestation service of RAS challenges the RT for
trusted verification.

3) The attestation service of RT calls the local TLS service
to build the security session channel with RAS and then
sends its attestation public key to RAS.

4) The attestation service of RAS sends the trusted verifi-
cation policy to RT through the security channel. This
policy is encrypted by the public key of RT.

5) In the enclave, RT decrypts the policy and calls the mea-
surement program to detect the system according to the
policy. RT quotes the measurement results and the list
of measurement and then sends the results to RAS.

6) RAS verifies the signature and compares it with the
baseline values stored in the server. If the result is the
same as the baseline value, it verifies that the terminal
is trusted.

B. Trust Policy Model

In our system, the trusted policy determines the information
that needs to be verified in the remote attestation process. The
trusted policy includes a policy of integrity checks, the system
environment, and configuration information. The integrity pol-
icy defines which modules in the system need to be verified.
The system environment includes the version of the system
and kernel, the main information of devices, and a list of
critical programs in the system and their version numbers.
The configuration information includes password policies, ser-
vice settings, and user settings. We obtain a baseline value
for the system information on the first controlled run of the
system by using the trusted policy to train the attestation
model. Baseline values can also be obtained in a different way,

such as detecting the system for this data using a specially
crafted program. In our system, we provide a Web interface
for administrators. Therefore, the trusted policy of terminal
can be customized by the administrators and be sent to the
terminal. The system also allows the administrators to modify
the trusted policy.

IV. ENFORCING SECURITY ISOLATION

As we mentioned above, our remote attestation system is
composed of an RT, an RAS, and a CA. In the following,
we describe the key components of our system and analyze
the detailed construction of each modules. To prevent mali-
cious attackers tampering and to protect the communication,
the security of the storage, and keys the key module of the
RAS and RT should be isolated and sealed.

A. Remote Terminal

As shown in Fig. 2, RT is divided into four modules, includ-
ing TLS service module, attestation module, measurement
module, and untrusted modules.

TLS service module, being responsible for generating keys
and obtaining certificates, is further divided into the keys part,
the decryption and encryption part, and the network commu-
nication part. The keys part generates asymmetric key pairs
for communicating with RAS, and communicates with CA to
obtain the necessary public key certificates. Once the certifi-
cates have been obtained, the keys part of the module will
exchange the certificates information and negotiate a session
key with RAS by means of network part. This session key will
be utilized by attestation module and measurement modules.
In order to protect the integrity and confidentiality of private
key and certificates, the keys part are hosted inside an SGX
enclave. Encryption and decryption operations, which associ-
ated with the session key and performed by encryption and
decryption part, are also hosted inside of an SGX enclave to

92 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 2. Isolation design of RT.

guarantee the confidentiality of the session keys. The untrusted
network communication part is responsible for the transfer of
data between RAS and CA.

The attestation module provides keys generation and sign-
ing functionality and is divided into two parts. Due to their
nature in confidentiality, these parts are run inside enclaves.
Different from the keys part of TLS service module, this one
is used to generate a key pair to prove its identity in remote
attestation process. During attestation process, signature part
uses the private part of their key to sign the measurements.
After receiving the policy file and data from RAS’s attestation
module, the signature part uses RAS’s public key to verify its
identity and then transfers it to other modules according to the
process.

In measurement module, the policy analysis part parses the
policy file and generates a checklist. To ensure confidential-
ity of the policy file, it runs inside an enclave. The message
gathering part runs partially within enclave, while other parts
running outside due to the invoked system calls. The policy
file is sealed inside the enclave and stored on disk.

B. Remote Attestation Server

As shown in Fig. 3, RAS consists of four modules, including
TLS service module, attestation module, verification module,
and the untrusted module. Corresponding to RT’s TLS service
module, RAS’s TLS service module are also hosted inside
an SGX enclave after the system is booted. This module is
responsible for generating RAS’s key pair and communicating
with CA to obtain the public key certificate. After obtaining the
certificate, it will communicate with RT to exchange the certifi-
cate and the negotiated session key. For function independent
consideration, attestation module can be divided into keys part
and signature part. After receiving the measurement from the
measurement module, the signature part uses the RT’s public
key to verify the signature of the measurement and transfers
it to the verification module. Also, in attestation process, the

Fig. 3. Isolation design of RAS.

signature part uses its own public key to sign the policy and
other data to prove its identity.

The policy part and the comparison part, which are the key
components of verification module, cooperate in measurement
process. We designed the Web part for users to define the
policy which will be translated as policy file by the policy
part. After receiving the measurement from RT, the compari-
son part compares RT’s measurement results to the local data
and provides feedback to the Web part. All the policy file and
measurement results should be sealed inside the enclave and
stored in disk.

V. MEASUREMENT

The measurement module is used to collect system main
properties according to the measurement policy. The policy
will be sent to RT from attestation server. Once terminal has
received measurement policy, it will launch measurement pro-
grams into an enclave to obtain the required system informa-
tion. The measurement generally includes system information,
security policy, running status, and system integrity policies.

System information consists of operating system version,
kernel version, devices information, and installed applications.
Security policies can be used to collect secure configuration
about authentication, access control and security audit to mea-
sure the status of the system security policy. For example, for
authentication, we gather and check user names as well as
the policy of password validity and complexity. Also we can
obtain the access control policy to check whether the system
configuration meets required configuration values. In addition,
the security audit policy can be collected to make sure the
security audit is enabled and the audit policy is correct.

In order to monitor malicious behaviors, the measurement
module is designed for detecting system’s running status,
such as running processes, opened services, and opened ports.
Moreover, the integrity of the system boot will be measured.
The integrity values of system boot can be sealed with SGX

WANG et al.: ENABLING SECURITY-ENHANCED ATTESTATION WITH INTEL SGX FOR RT AND IoT 93

key. However, currently enclaves can only be created and ini-
tialized in kernel mode, but they cannot be allowed to be
entered in the kernel mode. Hence, we need to invoke the
enter instruction in user mode and then return to the kernel
mode.

VI. SECURITY-ENHANCED ATTESTATION

The purpose of attestation is to collect measurement val-
ues of the RT and verify these values. When getting real-time
measurement values, we compare them with the baseline val-
ues that we obtained in clean state and then decide whether
they are trustworthy. Current remote attestation such as OAT,
cannot guarantee its own security [13]. In order to solve this
problem, we present a new remote attestation method combine
with Intel SGX base on TLS. The main process of our remote
attestation is depicted as follows.

1) RT→RAS: Request connection. RT initiates a connection
request to RAS.

2) RAS→RT: MSG1. MSG1 = cert. RAS receives the RT’s
connection request and sends its own certificate to RT.

3) RT→RAS: MSG2. MSG2 = pk1. RT generates the ECC
key pair pk1, priv1, and sends pk1 to RAS.

4) RAS→RT: MSG3. MSG3 = pk2 || quotetype || policy
|| Sign(pk1,pk2) || MAC(pk2 || quotetype || policy ||
Sign(pk2,pk1)). RAS generates the ECC key pair pk2,
priv2. Choosing the type of quote and the measurement
policy it needs, using the private key to generate signa-
ture of pk1 and pk2. By DH protocol and ECC nature,
RAS can get sharedkey, and use sharedkey to gener-
ate message authentication code. Send all of the above
information to RT.

5) RT→RAS: MSG4 MSG4 = E(quote || measurement
|| hash(quote || measurement)). RT gets MSG3, gen-
erates quote according to the quote type and gener-
ates measurement according policy. Then, RT generates
the hash of quote and measurement. Finally, RT uses
the sharedkey to encrypt the above and sends it
to RAS.

Finally, RAS receives the encrypted result which will be
decrypted and checked in an enclave. If the measurement
result and quote fit in with the security requirement, RAS will
validates the RT as a trusted terminal.

The advantage of this attestation mechanism is that we
use the SGX to achieve the double-sided attestation based
on enclave and SGX remote attestation. So both session and
attestation process are securely protected.

VII. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We implemented our method on a computer with an Intel
Skylake processor i7 6700 and memory of 8 GB. The operating
system we use is Ubuntu 14.04/64 bits and the compiler we
use is g++ version 4.8.4.

We use the library libsgx_urts offered by SGX to
implement enclave creating and destroying. SGX provides a
tool called Edger8r, it can divide our program into trusted

Fig. 4. Time cost between measurement program in enclave and outside.

and untrusted parts according to the EDL file which is writ-
ten by us. Furthermore, it generates the proxy port so that
the trusted and untrusted part of the program can use enclave
call (ecall) and out call (ocall) to communicate with each
other.

SGX provides a cryptographic algorithm library
SGX_tcrypto. It supplies some common algorithm
such as SHA256, ECC256, and AES. The public key
cryptographic algorithm we used in this paper is ECC256.
We use sgx_ecc256_create_key_pair() to generate
the key pair in enclave and we use the SHA256 as hash
algorithm. As for the important random number nonce, we
call sgx_read_rand() to produce it in enclave.

Our measurement modules includes 1785 lines C code. TLS
and attestation modules include about 9600 lines Java code and
1000 lines C code.

B. Evaluation

1) Enclave Performance: Using SGX technology in the
protection of program security may introduce additional over-
head inevitably. Through analysis, we believe that extra
overhead introduced by SGX mainly from two aspects.

1) Creating enclave, destroying enclave, and some other
management operations on enclave.

2) ecall and ocall in a program may cause the program
to switch its execution code between the trusted and
untrusted parts.

We found that the structure of an SGX program may influ-
ence the running time at some degree in the process of actual
operation. Therefore, we may optimize our program by design-
ing an appropriate program structure, dividing a program into
trusted and untrusted parts properly, avoiding frequent ecall
and ocall to reduce the additional overhead introduced by
SGX. We run our measure program in an enclave and out-
side enclave (normal) ten times to evaluate the influence on
program performance caused by SGX. The results is depicted
in Fig. 4.

Average running time for measurement program protected
by SGX is 1358.83 and 1320.67 ms for the normal. From
the experimental data, the average running time of our SGX
enhanced measurement program is about 3% more than that
running in the normal environment.

94 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

TABLE I
SEAL AND UNSEAL OPERATING TIME

In addition, we also tested CPU utilization of measurement
in enclave and in normal environment. We found that the pro-
gram protected with enclave does not introduce overhead for
CPU utilization. The CPU utilization of program in enclave
and in normal environment is almost equal.

2) Seal Performance: We need to use sealing function
offered by Intel SGX, so we should also consider the influ-
ence caused by seal and unseal operation. We perform seal
and unseal operations on different size data including 0.9, 1.8,
3.6, and 7.2 kB. The average operating time they cost is listed
in Table I.

3) Attestation Performance: In order to test the perfor-
mance about the attestation described in Section V, we run our
SGX enhanced attestation along with normal OAT for several
times. We measure the time from an RT accepting the chal-
lenge to sending its measurement back to RAS. We want to
illustrate that our design is feasible and efficient here and we
believe that the measurement should be determined by the spe-
cific platform and, so the measurement policy we use is empty
in our evaluation. The terminal which is attested by RAS will
not perform measurement work and return an empty measure-
ment. As shown in Fig. 5, the running time cost of the SGX
enhanced attestation is lower than the original OAT, during the
attestation process.

The main reason is that the original architecture of OAT uses
TPM to save and quote measurement values and the longer
time overhead of TPM’s I/O operations increases the original
OAT’s time overhead. Compared with OAT, our security-
enhanced attestation mechanism relies on CPU instructions
to save and quote measurement values and does not have the
interaction with I/O, hence its time overhead is lower that the
traditional OAT.

C. Security Analysis

In the overall architecture, our design provides three security
features as follows.

1) Providing runtime protection for attestation programs
against runtime attacks. Therefore, our multiple mod-
ules are placed in different enclaves for protection. So
when an attacker tries to perform tempering attacks, the
attack is invalid for the integrity measurement of the
enclave. At the same time, when an attacker tries to per-
form a memory leaking attack, the attacker only gets the
encrypted memory and cannot get real data in protected
memory.

2) The integrity protection of the key data. The genera-
tion, use, and storage of policy files and keys are in the
protection of enclave in running time. When these key
data need to be stored on disk, they are stored after being
encrypted and measured to prevent from being tampered.

Fig. 5. Time cost between security-enhanced attestation and OAT.

During the communication between RAS and RS, these
key data have been protected by TLS protocol and ses-
sion key encryption. Attackers could not get the data
through eavesdropping on communication channels.

3) Customized and trustworthy attestation content for
remote attestation. Users can use policy files to cus-
tomize their needs for attestation. And compared with
the TPM remote attestation, our design is more focused
on runtime security of RT. In the realization of the
integrity measurement, we use the CPU-related hardware
information which is physical unclonable and collect the
system environment information. So it can effectively
prevent counterfeit attacks.

VIII. RELATED WORK

Validating the running state of devices is an important task
for the security of RTs and IoT devices [3]–[6]. Remote attes-
tation has been used to resolve this issue. That is, the terminal
can prove to remote server what software is running on the
devices and whether they have been tampering with.

TPM-based attestation leverages a security chip called as
TPM [7], [8] to ensure that a system platform has been
securely launched. For this method, TPM serves as the
root of trust and provides the isolated storage for platform
keys and measurement values. Attestation program collects
and reports the measurement values which is signed and
securely saved through TPM so as to validate the trust of
attestees. Brickell et al. [24] and Camenisch et al. [25]
also presented direct anonymous attestation protocol which
can provide anonymous identity based on group signature.
However, TPM-based attestation cannot achieve runtime pro-
tection for attestation program.

GlobalPlatform first announced their own standardization of
the TEE in 2010 [26]. TEE leverages the isolation mechanism
of ARM TrustZone to provide secure execution environment
for mobile application [9], [10], [27], [28]. ARM TrustZone
is also used to attest the running environment of devices.
Santos et al. [29] presented an approach of building trust
chains on mobile and construct the trusted language runtime
that protects the confidentiality and integrity of .NET mobile
application from OS security breaches. Li et al. [30] proposed
a secure online mobile advertisement attestation using ARM

WANG et al.: ENABLING SECURITY-ENHANCED ATTESTATION WITH INTEL SGX FOR RT AND IoT 95

TrustZone. However, TrustZone-based attestation is still vul-
nerable to attacks because attestation programs share the same
secure world with others program.

Our method leverages software guard extension to provide
secure isolated environment for remote attestation program
and data. Attestation can be implemented in multiple enclaves
on real physical platform. It achieves the confidentiality and
integrity for main code, data and transmission during the whole
attestation procedure.

SGX [21], as a new hardware-aided security technology,
has been used to construct trusted computation environ-
ment. VC3 [31] implements the verifiable and confidential
execution of MapReduce jobs in untrusted cloud environ-
ments using SGX. The sensitive code and data during the
MapReduce process are protected with isolation and sealing
storage. Haven [32] achieves shielded execution of unmodi-
fied legacy applications, including SQL server and Apache,
on a commodity OS (Windows) and commodity hardware. It
builds on Drawbridge, a system supporting low-overhead sand-
boxing of Windows applications. SGX is used to isolate the
Drawbridge into a sure enclave. Moreover, VC3 and Heaven
have been implemented in SGX emulator. SCONE [33] uses
SGX to protect container key processes from outside attacks
that support a set of shields including file system shield, net-
work shield and console shield. Meanwhile it also designs an
asynchronous system call mechanism to reduce SGX-imposed
enclave transition overheads.

SGX protects the confidentiality and integrity for user pro-
grams with isolated and shielded memory region. However,
it is vulnerable to several side-channel attacks. Xu et al. [34]
used the page fault channel to extract complete text documents
and outlines of JPEG images from widely deployed applica-
tion libraries on Haven and Ink Tag. Shinde et al. [15] showed
that the page fault side-channel has sufficient channel capacity
to extract bits of encryption keys from commodity implemen-
tations of cryptographic routines of OpenSSL and Libgcrypt
shielded in SGX enclave and then propose PF-obliviousness
and design deterministic multiplexing approach that eliminates
information leakage via page fault channel to prevent this type
side-channel. Déjá Vu [16] provides a software framework
that enables a shielded execution to detect privileged side-
channel attacks to SGX using by a trustworthy reference-clock
based on transaction synchronization extensions, a hardware
implementation of transactional memory.

In this paper, we focus the attestation mechanism based
on SGX. Although side-channel attacks are important security
threats for SGX, some current defense mechanisms [14]–[16]
have been proposed to resolve this issue.

IX. CONCLUSION

In this paper, we have proposed a security-enhanced attes-
tation approach for verifying the trust of RT. In our system,
the attestation service including the measurement module and
attestation module is divided into trusted and untrusted parts.
The trusted parts are isolated in different enclaves and pro-
tected from malicious insider attacker. The sensitive data
including keys and policy are also sealed in EPC. In addition,

we have presented the policy-based measurement, so that
the administrator can achieve custom measurement through
self-defining policies. Our experimental results and analy-
sis showed that our approach brings little overhead while
enhancing security of the attestation procedure.

ACKNOWLEDGMENT

The authors would like to thank G. Jianjun from Intel and
L. Xin from Nationalz for their generous help, some valuable
comments, and opinions on this paper.

REFERENCES

[1] J. Wang et al., “Poster: An E2E trusted cloud infrastructure,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, Scottsdale, AZ, USA,
2014, pp. 1517–1519.

[2] B. Yang, D.-G. Feng, Y. Qin, and Y.-J. Zhang, “Secure access scheme
of cloud services for trusted mobile terminals using TrustZone,” Ruan
Jian Xue Bao/J. Softw., vol. 27, no. 6, pp. 1366–1383, 2016.

[3] J. Lyle and A. Martin, “On the feasibility of remote attestation for Web
services,” in Proc. Int. Conf. Comput. Sci. Eng., Vancouver, BC, Canada,
2009, pp. 283–288.

[4] Y. M. Yussoff, H. Hashim, and M. D. Baba, “Identity-based trusted
authentication in wireless sensor networks,” Int. J. Comput. Sci. Issues,
vol. 9, no. 3, p. 230, 2012.

[5] K. E. Defrawy, A. Francillon, D. Perito, and G. Tsudik, “Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust,” in
Proc. Isoc, San Diego, CA, USA, 2012.

[6] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A security architecture for tiny embedded devices,” in Proc. Eur. Conf.
Comput. Syst., Amsterdam, The Netherlands, 2014, Art. no. 10.

[7] TPM Main Specification Level 2 Version 1.2, Revision 116. Accessed:
Sep. 15, 2017. [Online]. Available: https://trustedcomputinggroup.org/
tpm-1-2-protection-profile/

[8] (2014). Trusted Platform Module Library, Family 2.0, Revision 01.16.
[Online]. Available: http://www.trustedcomputinggroup.org

[9] “Security technology. Building a secure system using TrustZone tech-
nology,” ARM Tech. White Paper, 2009.

[10] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT: Secure
channel between rich execution environment and trusted execution
environment,” in Proc. NDSS, 2015.

[11] L. Tan and J. Chen, “Remote attestation project of the running environ-
ment of the trusted terminal,” J. Software, vol. 25, no. 6, pp. 1273–1290,
2014.

[12] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “Systematic
treatment of remote attestation,” Cryptol. ePrint Archive, Tech. Rep. 713,
2012.

[13] Open Attestation. [Online]. Available: https://01.org/zh/openattestation?
langredirect=1

[14] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge AES against cache-based software side channel
vulnerabilities,” Cryptol. ePrint Archive, Tech. Rep. 2006/052, 2006.

[15] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proc. ACM Asia Conf. Comput.
Commun. Security, Xi’an, China, 2016, pp. 317–328.

[16] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privi-
leged side-channel attacks in shielded execution with Déjá Vu,” in Proc.
ACM Asia Conf. Comput. Commun. Security, Abu Dhabi, UAE, 2017,
pp. 7–18.

[17] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying con-
fidentiality of enclave programs,” in Proc. ACM Sigsac Conf. Comput.
Commun. Security, Denver, CO, USA, 2015, pp. 1169–1184.

[18] F. McKeen et al., “Innovative instructions and software model for
isolated execution,” in Proc. HASP ISCA, 2013, pp. 10–15.

[19] M. Henson and S. Taylor, “Memory encryption: A survey of existing
techniques,” ACM Comput. Surveys, vol. 46, no. 4, pp. 1–26, 2014.

[20] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious ram simula-
tion,” in Proc. 23rd Annu. ACM SIAM Symp. Discr. Algorithms (SODA),
2012, pp. 157–167.

[21] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions,”
in Proc. HASP ISCA, 2013, pp. 11–17.

https://trustedcomputinggroup.org/tpm-1-2-protection-profile/
https://trustedcomputinggroup.org/tpm-1-2-protection-profile/
http://www.trustedcomputinggroup.org
https://01.org/zh/openattestation?langredirect=1
https://01.org/zh/openattestation?langredirect=1

96 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

[22] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technol-
ogy for CPU based attestation and sealing,” in Proc. 2nd Int. Workshop
Hardw. Archit. Support Security Privacy, vol. 13. 2013.

[23] Software Guard Extensions Evaluation SDK for Linux* OS User Guide.
Accessed: Sep. 15, 2017. [Online]. Available: http://www.intel.com

[24] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,”
in Proc. 11th ACM Conf. Comput. Commun. Security, Washington, DC,
USA, 2004, pp. 132–145.

[25] J. Camenisch et al., “One TPM to bind them all: Fixing TPM 2.0 for
provably secure anonymous attestation,” in Proc. IEEE Symp. Security
Privacy (SP), San Jose, CA, USA, 2017, pp. 901–920.

[26] “The trusted execution environment: Delivering enhanced security at a
lower cost to the mobile market,” Glob. Platform White Paper, pp. 1–26,
2011.

[27] “Get into the zone: Building secure systems with ARM TrustZone
technology,” White Paper, vol. 160, 2013.

[28] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing root of trust
for ARM TrustZone using on-chip SRAM,” in Proc. 4th Int. Workshop
Trustworthy Embedded Devices, Scottsdale, AZ, USA, 2014, pp. 25–36.

[29] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone
to build a trusted language runtime for mobile applications,” ACM
SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 67–80, 2014.

[30] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using TrustZone,” in Proc. 13th Annu. Int.
Conf. Mobile Syst. Appl. Services, Florence, Italy, 2015, pp. 75–88.

[31] F. Schuster et al., “VC3: Trustworthy data analytics in the cloud using
SGX,” in Proc. 36th IEEE Symp. Security Privacy, San Jose, CA, USA,
May 2015, pp. 38–54.

[32] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in Proc. 11th USENIX Symp. Oper. Syst.
Design Implement., Broomfield, CO, USA, Oct. 2014, pp. 267–283.

[33] S. Arnautov et al., “SCONE: Secure Linux containers with Intel SGX,”
in Proc. 12th USENIX Conf. Oper. Syst. Design Implement., Savannah,
GA, USA, 2016, pp. 689–703.

[34] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in Proc.
Security Privacy, San Jose, CA, USA, 2015, pp. 640–656.

Juan Wang (M’12) received the B.S. and M.S.
degrees in computer science and the Ph.D.
degree in information security from Wuhan
University, Wuhan, China, in 1998, 2004, and 2008,
respectively.

She is currently an Associate Professor with the
Computer Science Department, Wuhan University.
In 2010, she was a Visiting Scholar with Arizona
State University, Tempe, AZ, USA. Her research
has been supported by NSF and the National
Basic Research Program of China (973 Program).

She has authored and co-authored over 30 papers and holds 10 patents in
security areas. Her current research interests include trusted computing,
hardware-based security protection, and cloud security.

Dr. Wang was a recipient of Hubei Science and Technology Progress
Award.

Zhi Hong is currently pursuing the master’s degree
with the Computer Science Department, Wuhan
University, Wuhan, China.

His current research interests include trusted com-
puting and Software Guard Extension.

Yuhan Zhang is currently pursuing the master’s
degree with the Computer Science Department,
Wuhan University, Wuhan, China.

Her current research interest includes trusted com-
puting. She is currently focusing on the use of
Software Guard Extension in the area of trusted
computing.

Yier Jin (M’13) received the B.S. and M.S. degrees
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2005 and 2007, respectively,
and the Ph.D. degree in electrical engineering from
Yale University, New Haven, CT, USA, in 2012.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA. His
current research interests include trusted embedded
systems, trusted hardware intellectual property (IP)
cores, and hardware-software co-protection on com-

puter systems. He proposed various approaches in the area of hardware
security, including the hardware Trojan detection methodology relying on
local side-channel information, the post-deployment hardware trust assess-
ment framework, and the proof-carrying hardware IP protection scheme. He
is also interested in the security analysis on Internet of Things (IoT) and
wearable devices with particular emphasis on information integrity and pri-
vacy protection in the IoT era.

Dr. Jin was a recipient of the DoE Early CAREER Award in 2016 and the
Best Paper Award of DAC’15, ASP-DAC’16, and HOST’17.

http://www.intel.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

