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Abstract—The advancing of reverse engineering techniques
has complicated the efforts in intellectual property protec-
tion. Proactive methods have been developed recently, among
which layout-level integrated circuit camouflaging is the lead-
ing example. However, existing camouflaging methods are rarely
supported by provably secure criteria, which further leads to
an over-estimation of the security level when countering lat-
est de-camouflaging attacks, e.g., the SAT-based attack. In this
paper, a quantitative security criterion is proposed for de-
camouflaging complexity measurements and formally analyzed
through the demonstration of the equivalence between the exist-
ing de-camouflaging strategy and the active learning scheme.
Supported by the new security criterion, two camouflaging tech-
niques are proposed, including the low-overhead camouflaging
cell generation strategy and the AND-tree camouflaging strat-
egy, to help achieve exponentially increasing security levels at the
cost of linearly increasing performance overhead on the circuit
under protection. A provably secure camouflaging framework is
then developed combining these two techniques. The experimen-
tal results using the security criterion show that camouflaged
circuits with the proposed framework are of high resilience
against different attack schemes with only negligible performance
overhead.

Index Terms—Active learning, AND-tree, integrated circuit
(IC) camouflaging, provably secure, SAT-based attack.

I. INTRODUCTION

W ITH the increase of integrated circuit (IC) design
costs, intellectual property (IP) privacy and infringe-

ment becomes a significant concern for the semiconductor
industry. One of the major threats arises from reverse engi-
neering (RE) [1]–[4]. By stripping the IC layer by layer,
the gate-level netlist can be extracted and duplicated without
the authorization of the IP holder [4]. To protect IC design

Manuscript received January 29, 2017; revised May 4, 2017 and July 24,
2017; accepted September 1, 2017. Date of publication September 7, 2017;
date of current version July 17, 2019. This paper was recommended by
Associate Editor C. H. Chang. (Corresponding author: Meng Li.)

M. Li, Z. Zhao, and D. Z. Pan are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78712 USA
(e-mail: meng_li@utexas.edu; zzhao@utexas.edu; dpan@utexas.edu).

K. Shamsi and Y. Jin are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
kshamsi@ufl.edu; yier.jin@ece.ufl.edu).

T. Meade is with the Department of Computer Science, University of
Central Florida, Orlando, FL 32816 USA (e-mail: travm12@knights.ucf.edu).

B. Yu is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
byu@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2750088

against RE, IC camouflaging is proposed as a layout-level
technique to hide the circuit functionality [5]–[13]. By syn-
thesizing circuits with logic cells that look alike but can have
different functionalities (also known as camouflaging cells),
the functionality of original circuits cannot be determined from
physical RE.

Existing work on IC camouflaging mainly falls into the
following three categories: 1) fabrication level [5]–[7], [14];
2) cell level [8], [15]–[18]; and 3) gate netlist level [8], [19].
Fabrication-level camouflaging mainly focuses on developing
fabrication techniques that can hide the circuit structure. In [5],
a doping-based technique is proposed to create Always-on
and Always-off transistors by changing the dopant polarity
of the source and drain. A dummy contact-based method is
also proposed to control the connection between two adjacent
layers [7]. Both doping-based and contact-based methods are
shown to be robust against existing RE techniques [5], [7].
Cell-level camouflaging leverages the fabrication techniques
to build camouflaging cells that look alike but may have dif-
ferent functionalities. In [8] and [15], by controlling the doping
scheme or contact configurations, camouflaging cells or lookup
tables are created with multiple possible functionalities. Gate
netlist level camouflaging seeks to develop camouflaging cell
insertion algorithms to maximize the resilience of the circuit
netlist against RE techniques given predefined overhead con-
straints. For example, Rajendran et al. [8], Lee and Touba [19],
and Shamsi et al. [20] inserted interfered camouflaging cells
or camouflaging connections to prevent RE. In [21]–[23],
new low output-corruptibility camouflaging strategies are fur-
ther proposed to protect the circuit from more advanced RE
techniques [24], [25].

Despite the extensive researches on IC camouflaging, there
are still fundamental problems that have not been properly
solved. First, due to the lack of provably secure criteria to
guide IC camouflaging, existing methods tend to over-estimate
the provided security level and are shown vulnerable to the
SAT-based de-camouflaging attacks as well as removal attacks
based on structural and functional information [24]–[27].
Second, the insertion of camouflaging cells usually leads to
large overhead, which places significant limits on their usage
in commercial applications.

In this paper, we propose a new criterion, defined as de-
camouflaging complexity, to directly quantify the security of
the camouflaged netlist. We further identify two key factors
that determine the security of a camouflaged netlist, i.e., the
number of possible functionalities of a camouflaged netlist and
the output Hamming distance between different functionalities.
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To increase the security level of the camouflaged netlist, we
propose two camouflaging strategies targeting at the two iden-
tified factors, including a new low-overhead camouflaging
cell generation strategy and an AND-tree based strategy. We
summarize our contributions as follows.

1) We investigate a new security criterion to quantify the
de-camouflaging complexity and identify two key fac-
tors that can help enforce the security criterion in the
camouflaged netlist.

2) We propose two novel camouflaging strategies to
increase the two identified factors.

3) We develop an IC camouflaging framework combining
the two strategies to further protect the camouflaged
circuits against removal attacks.

4) We verify our proposed security criterion and framework
against state-of-the-art de-camouflaging techniques and
demonstrate great resilience with negligible overhead.

The rest of this paper is organized as follows. Section II
provides a review of existing de-camouflaging attacks and the
preliminaries on active learning scheme. Section III formally
builds the equivalence between SAT-based de-camouflaging
and active learning with key security factors identified.
Sections IV and V describe the camouflaged cell genera-
tion strategy and the AND-tree structure. Section VI proposes
an IC camouflaging framework. Section VII demonstrates
the performance of the proposed camouflaging framework,
followed by conclusion in Section VIII.

II. BACKGROUND

In this section, the RE attack model and attack techniques
are reviewed. We also talk about the active learning scheme,
which lays the foundation for our analysis on de-camouflaging
complexity in Section III.

A. Reverse Engineering Attacks

For an attacker, the main target of RE is to extract the orig-
inal or equivalent circuit with RE techniques. We follow the
widely used attack model and assume the attackers have access
to the camouflaged netlist, which can be acquired from the
physical RE procedure [4], and a black-box functional cir-
cuit. Given the functional circuit, the attackers can select a
sequence of input vectors, import them into the circuit through
the scan chain, query the functional circuit and observe the
corresponding outputs. Attackers will infer the correct cir-
cuit functionality based on the collected input–output pairs. To
explore the input–output patterns, three different methods have
been proposed, including brute force attack [8], testing-based
attack [8], [31], and SAT-based attack [24]–[26], [32].

Brute force attack proposes to randomly sample input vec-
tors for the logic simulation to rule out the false functionalities
but suffers from scalability problem [8]. Testing-based attack
generates the input patterns so that the output of all cam-
ouflaging gates that interfere with the target gate is known,
and a change at the output of the target gate can be observed
at circuit primary outputs [8]. However, by inserting gates
that interfere with each other deliberately, the complexity of
testing-based attack is no better than the brute force attack.

The SAT-based attack is currently the most powerful de-
camouflaging attack method. By iteratively searching the input

Fig. 1. Example of sampling strategy for active learning.

patterns that can differentiate different circuit functionalities,
denoted as discriminating inputs [24], false functionalities are
identified and ruled out. As shown in [24], the SAT-based
attack significantly reduces the number of iterations required
for the de-camouflaging procedure.

Since all the attack strategies described above rely on query-
ing the functional circuit, we denote them as query-based
attacks. Besides the query-based attacks, new attack scheme
proposed in [27] tries to leverage the structural and functional
footprint of the camouflaging strategies to resolve the orig-
inal circuit functionality. The new attack scheme can work
collaboratively with the SAT-based attack as well. Until now,
no camouflaging strategy has systematically demonstrated
convincing resilience against both attack schemes.

B. Active Learning Scheme

In this section, we provide basic definitions concerning
active learning. For more detailed description, interested read-
ers can refer to [29].

Considering an arbitrary domain X where a concept h is
defined to be a subset of points in the domain, a point x ∈
X can be classified by its membership in concept h, that is,
h(x) = 1 if x ∈ h, and h(x) = 0 otherwise. A concept class
H is a set of concepts. For a target concept t ∈ H, a training
sample is a pair (x, t(x)) consisting of a point x, which is
drawn from X following distribution D, and its classification
t(x). A concept h is defined to be consistent with a sample
(x, t(x)) if h(x) = t(x).

The intuition of active learning is to regard learning as
a sequential process, so as to choose samples adaptively.
Consider a set S of m samples. The classification of some
regions of the domain can be determined, which means all
concepts in H that are consistent with S will produce the same
classification for the points in these regions. Active learning
scheme seeks to avoid sampling new points from these regions,
and instead, samples only from the regions that contain points
which can have different classifications for different concepts
in H, denoted as the region of uncertainty R(S). By itera-
tively sampling from R(S) and updating R(S) based on the
new sample, t can be learned from H. We use the following
example to illustrate the concept of active learning.

Example 1: Consider a 2-D space, and the target t is a set
of points lying inside a fixed rectangular in the plane as shown
in Fig. 1. Assuming we already have some samples with their
classification, R(S) can then be decided. Consider the three
points s1, s2, and s3 in Fig. 1, the label for s1 and s2 can
already be determined based on existing samples. Therefore,
only s3 can help provide further information to decide the
target t from the concept class H.

According to [29], if we define error rate erx∼D(h, t) for
a concept h with respect to the target t and the distribution
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D of points x as erx∼D(h, t) = Prx∼D[h(x) �= t(x)], then by
adaptively sampling from x ∈ X, to guarantee erx∼D(h, t) ≤ ε

with sufficient probability, the number of samples m needed
for active learning is

m = O
(

θdlog

(
1

ε

))

where d is a measure of the capacity of H. Especially, when X
is Boolean domain with X = {0, 1}n and the concept class con-
tains only Boolean function, we have d ≥ (

log2|H|/n
)

[33].
Here, | · | denotes the cardinality of the set. θ is the disagree-
ment coefficient, defined as

θ = supε

Prx∼D[DIS(Hε)]

ε

where Hε = {h ∈ H : erx∼D(h, t) ≤ ε}, DIS(Hε) ={
x : ∃h, h′ ∈ Hε s.t. h(x) �= h′(x)

}
, and Prx∼D[DIS(Hε)] =

Prx∼D[x ∈ DIS(Hε)].

III. IC CAMOUFLAGING SECURITY ANALYSIS

Let co be the original circuit before camouflaging. co has n
input bits with the input space I ⊆ {0, 1}n and l output bits
with output space O ⊆ {0, 1}l. Define the indicator function
eco : I × O → {0, 1} for co, where I × O = {(i, o) : i ∈ I,
o ∈ O}, as

eco(i, o) =
{

1, if co(i) = o

0, otherwise

where eco indicates whether an output vector o can be
generated by co given certain input vector i.

During the process of IC camouflaging, m̃ camouflaging
gates are inserted into the original netlist, whose functionalities
cannot be resolved by physical RE techniques. Let G denotes
the set of all possible functionalities for the camouflaging gate,
where ∀g ∈ G, g : {0, 1}̃n → {0, 1} with ñ as the input number
of the camouflaging gate. Let y denotes m̃ functions chosen
from G, i.e., y ∈ Gm̃, which assigns each camouflaging gate
a function in G and let Y denotes the set of all possible y.
Depending on y, a set of possible circuit functionalities can
be created, denoted as C. Note that co ∈ C. ∀c ∈ C, there
exists a corresponding indicator function ec. Let EC denotes
the set of indicator functions for all c ∈ C.

Based on the attack model described in Section II, after
physical RE, the attacker can acquire the camouflaged netlist
but cannot resolve the functionality of the camouflaging cells.
Equivalently, the attackers can acquire C and EC from phys-
ical RE. For the attackers, to resolve co ∈ C is equivalent to
resolving eco ∈ EC. The attacker can select input pattern i ∈ I,
apply to the black-box functional circuit through circuit scan
chain and get the correct output co(i). Based on (i, co(i)), all
c ∈ C that are not consistent with (i, co(i)) can be pruned.

To evaluate the effectiveness of camouflaging and the hard-
ness of de-camouflaging, we define the de-camouflaging com-
plexity as the number of input–output patterns required to rule
out the false functionalities and resolve co ∈ C, equivalently
eco ∈ EC. To evaluate the de-camouflaging complexity, we
build the equivalence between the SAT-based de-camouflaging
strategy and the active learning scheme as follows.

Fig. 2. Example of the camouflaged netlist.

Fig. 3. Example of the camouflaged netlist and the truth table for all the
possible functionalities.

1) The set of indicator functions of all possible circuit
functionalities EC corresponds to the concept class H.

2) The supply of indicator functions, i.e., I×O, corresponds
to the set of points X.

3) The indicator function of the original circuit functional-
ity eco corresponds to the target concept t.

4) The input–output relation ((i, c(i)), 1) corresponds to the
samples (x, t(x)).

5) The SAT-based de-camouflaging strategy corresponds to
the selective sampling strategy.

Based on the equivalence, the number of input–output pat-
terns required to resolve eco with less than ε error rate and
sufficiently high probability is

m
(
eco , EC

) = O
(

θdlog

(
1

ε

))
(1)

where d ≥ [(log2|EC|)/n] is related to the number of
functionalities in EC. θ is calculated as

θ = supε

Pr(i,o)∼I×O[(i, o) ∈ DIS(Eε)]

ε
(2)

where Eε = {ec ∈ EC : er(i,o)∼I×O(ec, eco) ≤ ε} consists of
all the indicator functions that are different from eco with
probability less than ε, and DIS(Eε) = {(i, o) : ∃ec, ec′ ∈
Eε s.t. ec(i, o) �= ec′(i, o)} consists of all the input–output
pairs (i, o) that lead to different outputs of any pair of indica-
tor functions in Eε . We use the following example to illustrate
Eε and DIS(Eε).

Example 2: Consider the camouflaged circuit and the truth
table of all the possible functionalities of the camouflaged
circuit shown in Fig. 3. The correct functionality is c0 with
y∗ = {BUF, BUF}. Then, for c0, the indicator function ec0

becomes

ec0(i, o) =
{

1, if (i, o) ∈ {(00, 0), (01, 0), (10, 0), (11, 1)}
0, otherwise.

Similarly, we can define eci for ci, 1 ≤ i ≤ 3. ec1 has dif-
ferent outputs compared with ec0 at four input–output pairs,
i.e., {(10, 0), (10, 1), (11, 0), (11, 1)}. If we assume (i, o)

follows a uniform distribution, then er(i,o)∼I×O(ec0, ec1) =
4/8 = 1/2. Similarly, we have er(i,o)∼I×O(ec0 , ec2) =
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(a) (b)

Fig. 4. Examples of two different cell camouflaging strategies: (a) XOR-type
and (b) STF-type.

er(i,o)∼I×O(ec0 , ec2) = 1/2. If we set ε = 1/2, E1/2 =
{ec0, ec1 , ec2 , ec3}. We can also determine DIS(E1/2) =
{(00, 0), (00, 1), (01, 0), (01, 1), (10, 0), (10, 1), (11, 1),

(11, 1)} and Pr(i,o)∼I×O [(i, o) ∈ DIS(E1/2)] = 1. By trying
different ε, we know θ get the maximum value, i.e., 2, when
ε = 1/2.

Based on the equivalence of SAT-based attack and active
learning, we can identify two key factors that impact the secu-
rity of different camouflaging strategies, i.e., d and θ , and also
use (1) as a quantitative security evaluation metric. It should
be noted that (1) refers to a specific scenario defined as proba-
bly approximately correct (PAC) learning, which indicates the
output of active learning scheme is an approximation of the
original functionality with a certain probability. However, the
SAT-based attack is an exact learning scheme. Though differ-
ent, the exact learning problem is at least as difficult as the
PAC learning problem, which indicates (1) can still work as
a lower bound of the complexity of the SAT-based attack. In
the following sections, we will propose camouflaging tech-
niques to increase d and θ to enhance the resilience against
SAT-based attack.

IV. NOVEL CAMOUFLAGING CELL DESIGN

In this section, we target at increasing d as in (1). Because
the lower bound of d is in proportional to |C|, i.e., |EC|,
we choose to increase the number of possible functionalities
of the camouflaged netlist. |EC| is related to the number of
camouflaging cells inserted into the circuits, the locations of
inserted cells, and the number of possible functionalities of dif-
ferent camouflaging cells. Traditional strategies usually target
at increasing the possible functionalities for each cell, which
suffers from large overhead and provides insufficient protec-
tion. We observe that the overhead of one camouflaging cell
is mainly determined by its actual functionality in the circuit.
In this section, we will propose two different camouflaging
cell designs, termed as XOR-type cells and stuck-at-fault-type
(STF-type) cells, which incur negligible overhead for some
specific functionality.

A. XOR-Type Cell Camouflaging Strategy

The XOR-type camouflaging strategy leverages the dummy
contact technique. For example, as shown in Fig. 4(a), for a
BUF cell, we modify the shape of the polysilicon to create
an extra overlap between polysilicon and metal layer. Then,
we can configure the functionality of the camouflaging cell
by determining whether the five contacts are real or dummy.

TABLE I
OVERHEAD CHARACTERIZATION OF XOR-TYPE CAMOUFLAGED CELL

TABLE II
OVERHEAD CHARACTERIZATION OF STF-TYPE CAMOUFLAGED CELL

When contact A, B, D, and E are real while contact C is
dummy, the cell functions as a BUF. If contact C is real
while the rest of the contacts are dummy, the cell functions
as an INV. The similar strategy can be applied to other cells,
including AND, OR, and so on.

To evaluate the overhead of the XOR-type camouflaged cells,
standard cells from NanGate 45-nm Open Cell Library [34]
are modified according to the strategy and scaled to 16-nm
technology. Then Calibre xRC [35] is used to extract parasitic
information of the cell layouts. We use SPICE simulation
to characterize different types of gates, which are based on
16-nm PTM model [36]. As we can see from Table I, when
the cell functions as a BUF, the overhead induced by the lay-
out modification is negligible compared with original standard
cells.

B. STF-Type Cell Camouflaging Strategy

The STF-type camouflaging strategy leverages the doping-
based camouflaging technique. The camouflaging cell gener-
ated with the STF-type strategy has exactly the same metal and
polysilicon layer compared with the existing standard cells in
the library. The only difference comes from the type and the
shape of the lightly doped-drain, which makes it very difficult
to distinguish a regular MOS transistor with the Always-on
and Always-off MOS transistor. The STF-type camouflaging
strategy fully leverages this flexibility to create camouflaging
cells with different functionalities.

For example, as shown in Fig. 4(b), for a NAND2 cell, if
we change the doping scheme following [5], we can create
Always-on nMOS transistor and Always-off pMOS transistor
associated with A. This is equivalent to creating a stuck-at-1
fault at input A and the functionality of the NAND cell becomes
an INV for input B. Similar strategy can be applied to all the
other cells in the original library. To characterize the STF-
type cells, we use the same method as described for the XOR-
type camouflaging strategy and the overhead results is listed
in Table II.

C. Discussion

As described above, both XOR-type and STF-type camou-
flaging cells proposed above incur negligible overhead for
some specific functionalities. It should be noted that they
also have different characteristics. For the XOR-type camou-
flaging cell, when the attacker misinterprets the type of the
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(a) (b) (c)

Fig. 5. Two-step IC camouflaging with XOR-type and STF-type cells:
(a) original circuit netlist; (b) change all standard cells into camouflaging
cells that appear to be same and have same functionalities; and (c) random
select cells and replace them with cells that appear to be different but work
with the same functionalities.

contact, the probability of logic error at the output of the cell
is always 1. For the STF-type cell, a misinterpretation of the
doping scheme may not always lead to incorrect logic value
at the output of the gate. For example, consider an AND gate
with ñ inputs, denoted as i1, i2, . . . , ĩn, and first ñ′ inputs are
dummy. Then, the probability of logic error at the output of
the cell can be calculated as

Pe = Pr
i∼I

[(
∪

k∈[̃n′]
ik = 0

)
∩

(
∩

k∈[̃n]\[̃n′]
ik = 1

)]

where [̃n] = {1, 2, . . . , ñ}.
Meanwhile, for the STF-type camouflaging cell, because it

has one or more input pins that do not impact the output of the
cell, it enables to create dummy connections between different
nodes to hide the circuit structure.

To leverage the XOR-type and STF-type cells to camouflage
the original circuits, we propose a two-step strategy. In the first
step, we replace all the standard cells with the camouflaging
cells, e.g., NAND cell to an STF-type NAND cell in Fig. 5(b).
For these camouflaging cells, they are set to work as the cells
that they appear to be, e.g., an STF-type NAND cell works as
a real NAND gate, and therefore, the replacement incurs neg-
ligible overhead based on our characterization results above.
Then, in the second step, we randomly choose a small subset
of gates in the netlist, and replace them with new camouflag-
ing cells that appear differently but indeed work with the same
functionality as the original cells, e.g., a NAND cell is replaced
by an XOR-type AND cell in Fig. 5(c). The overall introduced
overhead is negligible since only a small subset of gates are
modified in the second step. As the attackers cannot determine
the functionality for each cell in the camouflaged circuits, the
total number of possible functionalities can be extremely large.

The effectiveness of the proposed camouflaging cell genera-
tion strategy is verified in Section VII. However, as evaluating
|C| or |EC| accurately is computationally intractable, it is hard
to provide a provably secure guarantee. Meanwhile, the effec-
tiveness of the proposed method is limited by the circuit size
since we only replace original cells in the circuits.

V. AND-TREE CAMOUFLAGING STRATEGY

In this section, we target at increasing θ as in (1). In [25],
the AND-tree structure is noticed to achieve good resilience
to SAT-based de-camouflaging attack when the input pins are
camouflaged as shown in Fig. 6. In this section, we provide
formal analysis for the AND-tree structure and further iden-
tify two important characteristics of the AND-tree structure,

Fig. 6. Example of a camouflaged AND-tree structure.

denoted as input bias and tree decomposability, to characterize
its effectiveness in general circuits.

A. Security Analysis of the AND-Tree Structure

Consider the AND-tree structure with n input pins shown
in Fig. 6, where all the input pins are camouflaged with the
XOR-type camouflaging BUF cell. Recall from Section III that
I ⊆ {0, 1}n and Y ⊆ Gn represent all the possible combina-
tions of functionalities for the camouflaging cells. For any
i ∈ I and y ∈ Y , the output of the AND-tree structure can be
expressed as

cy(i) = g1(i1) ∧ g2(i2) ∧ . . . ∧ gn(in)

where ik denotes the kth entry of input i and gk(·) denotes
functionality of the kth camouflaging cell. gk(ik) = ik if the
kth cell functions as a BUF, while gk(ik) = ik if the kth cell
functions as an INV.

Let y∗ ∈ Y denotes the correct configuration for all the cam-
ouflaging cells. Then, depending on y, there are 2n different
circuit functionalities, i.e., |C| = |EC| = 2n. For any y ∈ Y ,
there exists exactly one input i ∈ I such that cy(i) = 1, denoted
as iy. Therefore, we have Pri∼I [cy(i) = 1] = Pri∼I [i = iy].
Now, we have the following lemma for the camouflaged
AND-tree structure.

Lemma 1: For an n-bit AND-tree structure with all tree
inputs camouflaged with XOR-type camouflaging BUF cells,
if the logic values for tree inputs follow identical independent
Bernoulli distribution with probability of 0.5, then, we have
θ = 2n−1.

To prove Lemma 1, we will first demonstrate that when the
logic values for all the tree inputs follow identical independent
Bernoulli distribution with probability of 0.5, for any y �= y∗,
the error rate of the indicator function ecy is 1/2n−1 compared
with ecy∗ . Meanwhile, we will show that DIS(Eε) = I × O.
Then, based on the definition of θ in (2), we will prove that
θ = 2n−1.

Proof: For any y �= y∗, cy is different compared with
cy∗ for exactly two input vectors, i.e., iy and iy

∗
. For iy,

because cy(iy) = 1 while cy∗(iy) = 0, we have ecy(i
y, 1) �=

ecy∗ (i
y, 1) and ecy(i

y, 0) �= ecy∗ (i
y, 0). Therefore, ecy has dif-

ferent outputs compared with ecy∗ at exactly four points, i.e.,
{(iy, 1), (iy, 0), (iy

∗
, 1), (iy

∗
, 0)}. This indicates ∀ecy ∈ EC with

y �= y∗

er(i,o)∼I×O

(
ecy , ecy∗

)

= Pr
(i,o)∼I×O

[
ecy(i, o) �= ecy∗ (i, o)

]

= Pr
(i,o)∼I×O

[
(i, o) ∈

{(
iy, 0

)
,
(
iy, 1

)
,
(

iy
∗
, 0

)
,
(

iy
∗
, 1

)}]

= Pr
i∼I

[
i = iy ∨ i = iy

∗] = Pr
i∼I

[
i = iy

]+ Pr
i∼I

[
i = iy

∗]
. (3)
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Note when y = y∗, er(i,o)∼I×O(ecy , ecy∗ ) = 0. Therefore,

Eε =
{

ecy ∈ EC : er(i,o)∼I×O

(
ecy , ecy∗

)
≤ ε

}

=
{

ecy ∈ EC : Pr
i∼I

[
i = iy

]+ Pr
i∼I

[
i = iy

∗] ≤ ε

}
∪

{
ecy∗

}

=
{

ecy ∈ EC : Pr
i∼I

[
i = iy

] ≤ ε − Pr
i∼I

[
i = iy

∗]} ∪ {
ecy∗

}
.

(4)

Because ∀ecy ∈ Eε , where y �= y∗, is different from ecy∗ at
exactly four points, we have

DIS(Eε) =
{
(i, o) ∈ I × O : Pr

i∼I

[
i = iy

] ≤ ε − Pr
i∼I

[
i = iy

∗]

o ∈ {0, 1}} ∪
{(

iy
∗
, 1

)
,
(

iy
∗
, 0

)}
. (5)

For tree inputs, if the logic values follow independent
Bernoulli distribution with probability of 0.5, ∀iy ∈ I, we have

Pr
(i,o)∼I×O

[
(i, o) ∈ {(

iy, 0
)
,
(
iy, 1

)}] = Pr
i∼I

[
i = iy

] = 1

2n

and ∀ecy ∈ EC with y �= y∗

er(i,o)∼I×O

(
ecy , ecy∗

)
= 1

2n−1
.

Therefore, by setting ε = 1/2n−1, we have Eε = EC and
DIS(Eε) = I × O. According to the definition of θ

θ = Pr(i,o)∼I×O[(i, o) ∈ DIS(Eε)]

ε
= 2n−1.

Hence, proved.
Base on Lemma 1, we now have the following theorem

concerning the security of a camouflaged AND-tree structure.
Theorem 1: For an n-input AND-tree structure with all tree

inputs camouflaged with XOR-type camouflaging BUF cells,
if the logic values for tree inputs follow identical independent
Bernoulli distribution with probability of 0.5, then

m
(

ecy∗ , EC

)
= O(

2n).
Proof: Based on Lemma 1, we have θ = 2n−1 for an

n-input AND-tree. Meanwhile, because |EC| = 2n, we have
d ≥ log2 |EC|/n = 1. Therefore, m(ecy∗ , EC) = O(2n). Hence,
proved.

From Theorem 1, under the assumption that the logic values
for tree inputs follow identical independent Bernoulli distribu-
tion with probability of 0.5, we can formally prove the security
of an n-input AND-tree by showing that the de-camouflaging
complexity of an SAT-based attack scales exponentially with
the increase of tree input size.

B. AND-Tree Structure in General Circuits

According to the analysis above, a stand-alone AND-
tree structure can lead to an exponential increase of de-
camouflaging complexity. However, this may not be true for
an AND-tree structure in general circuits due to the following
reasons.

1) As shown in Fig. 7(a), different tree inputs may not
be independent since their fanin cones can overlap.

(a) (b)

Fig. 7. Two situations that can impact the security of AND-tree structure:
(a) overlapped fanin cone for input pins leads to correlation and (b) extra
path to primary outputs from internal node makes it possible to decompose
the tree.

Meanwhile, the signal probability for each input can also
deviate from 0.5.

2) There are usually more than one primary outputs and
more than one paths from some internal nodes of
an AND-tree to the primary outputs. For example in
Fig. 7(b), Node1 can bypass the root of the tree PO2 and
get observed at the primary output PO1. This can also
reduce the de-camouflaging complexity of the AND-tree
structure.

The two factors are defined as input bias and tree
decomposability.

1) Input Bias Evaluation: Input bias is proposed to charac-
terize the distance between the actual joint signal distribution
for input pins and the ideal independent Bernoulli distribu-
tion. It mainly impact Eε and DIS(Eε). According to (5), to
decide DIS(Eε), we need to calculate the probability of each
input vector, which, however, is intractable for large circuits.
To capture the impact of input bias, we instead consider the
following approximate approach.

According to (3), ∀y �= y∗, we have

er(i,o)∼I×O

(
ecy , ecy∗

)
= Pr

i∼I

[
i = iy

]+ Pr
i∼I

[
i = iy

∗]

≥ Pr
i∼I

[
i = iy

∗]
.

To get a nonempty Eε , we must choose ε ≥ Pri∼I [i = iy
∗
].

Because we always have Pr(i,o)∼I×O [(i, o) ∈ DIS(Eε)] ≤ 1,
then

θ = Pr(i,o)∼I×O[(i, o) ∈ DIS(Eε)]

ε
≤ 1

Pri∼I
[
i = iy∗

] .

Therefore, to evaluate the impact of input bias, we can first
calculate Pri∼I [i = iy

∗
] to get the upper bound of θ . If the

upper bound is smaller than the predefined requirement, then,
we conclude the AND-tree in the circuit is not enough to
guarantee the security.

To evaluate Pri∼I [i = iy
∗
], we consider the procedure as

shown in Fig. 8. We first extract the fanin cone for all the tree
input pins as in Fig. 8(b). Then, as in Fig. 8(c), we form the
circuit that connects each tree input pin to its desired logic
value. The output of the formed circuit equals to 1 if and
only if the logic values for all the tree inputs equal to y∗.
Therefore, if we force the output equals to 1 and solve the
value for the circuit primary inputs, we can get Pri∼I [i = iy

∗
].

We formulate the problem as an SAT problem and show the
pseudocode in Algorithm 1. FORMSATPROB grabs the fanin
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(a) (b) (c)

Fig. 8. Exact calculation of Pri∼I [fy∗ (i) = 1]: (a) original tree structure;
(b) fanin cone extracted for all the tree input pins; and (c) form the circuit that
connects all tree input pins to the desired logic values, i.e., {y∗1, y∗2, y∗3, y∗4, y∗5}.
By forcing the output of the formed circuit to 1, we can solve the logic values
for the circuit primary inputs iteratively as in Algorithm 1.

Algorithm 1 Algorithm of Calculating Pri∼I [i = iy
∗
]

1: F← FORMSATPROB(G, i, y, y∗);
2: Cnt← 0;
3: while F is satisfiable do
4: it ← SATSOLVE(F);
5: Cnt← Cnt + 1;
6: if Cnt

2|i| ≥ Th then
7: Return Cnt

2|i| ;

8: F← F ∧ (i �= it);
9: Return Cnt

2|i| ;

cone for the tree input pins and forms the SAT equation as
in Fig. 8(c) (line 1). Cnt is used to count the total number
of input vectors that satisfy the SAT equation, which in turn
can be used to calculate Pri∼I [i = iy

∗
]. We initialize Cnt to 0

and iteratively solve the SAT problem to search for the input
vectors until the SAT problem is not satisfiable or Cnt is larger
than a pre-defined threshold.

Given Pri∼I [i = iy
∗
], we can determine the upper bound of

the de-camouflaging complexity for the tree structure. When
the upper bound is large enough, to further evaluate the tree
structure, we adopt the normalized Kullback–Leibler (KL)
divergence to calculate the distance between the actual dis-
tribution for logic values of tree input pins compared with the
ideal distribution. Normalized KL divergence for two discrete
probability distribution, P and Q, is calculated as

KL(P|Q) = 1

n

∑
i

P(i)log
P(i)

Q(i)
. (6)

In our case, since Q is uniform, KL(P|Q) = (n−Hp)/n, where
Hp is the total entropy of distribution P. Note that the larger
the KL divergence is, the closer KL(P|Q) approaches to 1 and
the worse the security of the AND-tree is.

2) Tree Decomposability Characterization: To characterize
the impact of multiple paths to primary outputs, we propose
the concept on tree decomposability.

Definition 1 (Decomposable Tree): An AND-tree structure
is decomposable if: 1) there exists a path from the internal
node of the tree to the primary output that can bypass the root
of the tree and 2) change of the logic value of the internal
node can be observed at the primary output through the path.

Both of the conditions are important. For example, the
AND-tree structure in Fig. 7(b) is decomposable because the
internal node Node1 can bypass the root of the tree PO2 and

Fig. 9. Proposed IC camouflaging flow.

Algorithm 2 Determine Whether an AND-Tree Is
Decomposable

1: // G is the original circuit and Gt is the AND-tree
2: // rt is the root of the tree
3: U← TOPOLOGICALSORT(r, Gt);
4: for u ∈ U do
5: if u. fanout > 1 then
6: {p1, . . . , pm} ← DFS(u, G);
7: if ∃i, s.t. r /∈ pi then;
8: return True;
9: return False;

get observed at the output PO1. Tree decomposability is unde-
sired because it enables the attacker to first de-camouflage the
subtree structure rooted at Node1, and then de-camouflage the
remaining part of the tree. The number of input vectors needed
to de-camouflage the decomposable AND-tree is thus lim-
ited by the sum of the input vectors needed to de-camouflage
the two subtrees. Because the sizes of the two subtrees are
much smaller than the original AND-tree, the de-camouflaging
complexity becomes much smaller.

To determine whether an AND-tree is decomposable, we
propose the algorithm shown in Algorithm 2. We traverse the
tree structure in a reverse topological order starting from the
root. For each internal node u of the tree, if it has more than 1
successors, then, we do a depth-first search starting from u
and keep a record of all the paths from u to the primary
outputs. If the tree root exists in each path, then, the tree is
nondecomposable.

VI. PROVABLY SECURE IC CAMOUFLAGING

In this section, we will leverage the proposed camouflaging
cell generation method and the AND-tree structure to pro-
vide provably secure camouflaging strategy. The overall flow
of the proposed IC camouflaging framework is illustrated in
Fig. 9. The first step is the camouflaging cell library gener-
ation with the proposed techniques described in Section IV
with an accurate characterization of timing, power, and area
overhead for each cell. In the third step, existing AND-tree
structure is detected for the original netlist. If the predefined
de-camouflaging complexity is not satisfied, new AND-tree
structure needs to be inserted as in the fourth step. In the fifth
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(a) (c)

(b)

(d) (e)

Fig. 10. Detect tree structure in topological order: (a) circuit netlist and (b)–(e) start from primary inputs to calculate tree structure in topological order.

Algorithm 3 Algorithm of AND-Tree Detection
1: Let {AND, ANY, OR} denote a set of tree types.
2: U← TOPOLOGICALSORT(G);
3: for u ∈ U do
4: if u is primary input then
5: u. treetype← ANY;
6: u. treeinput← u;
7: else
8: if u. gatetype ∈ {BUF, INV} then
9: u. treetype← u. fanin . treetype;

10: u. treeinput← u. fanin . treeinput;
11: else if u. gatetype ∈ {AND, NAND, OR, NOR} then
12: if u. gatetype ∈ {AND, NAND} then
13: u. treetype← AND;
14: else if u. gatetype ∈ {OR, NOR} then
15: u. treetype← OR;
16: for v ∈ u. fanin do
17: if v. treetype = u. treetype and

SIZE(v. fanout) = 1 then
18: u. treeinput .ADD(v. treeinput);
19: else
20: u. treeinput .ADD(v);
21: else
22: u. treetype← ANY;
23: u. treeinput← u;
24: if u. gatetype ∈ {INV, NOR, NAND} then
25: u. treetype← INVERT(u. treetype);
26: return U.

step, we leverage the inserted AND-tree structure to protect
all the primary outputs. We further camouflage the AND-tree
structure to enhance the resilience against tree removal attack
in the sixth step.

A. AND-Tree Detection in Original Netlist

AND-tree represents a set of circuit structures. We denote
all the circuit structures that generate 1 as output for only one
input vector as AND-tree and those that generate 0 as output
for only one input vector as OR-tree. The pseudocode of the
algorithm to detect the tree structure is shown in Algorithm 3.
We start from the primary inputs of the circuit and sort all the
circuit nodes in a topological order (line 2). For each node,
we keep a record of the tree rooted at this node by recording
the input pins of the tree. For primary inputs, the type of tree
rooted at the node can be treated as either AND-type or OR-
type (lines 4–6). For the internal nodes, to determine the input
pins of the tree structure, we consider the gate type of the node
and its predecessors in the circuit graph. Depending on the
type of the gate, there are different possibilities (lines 7–31).

Fig. 11. Insert AND-type tree structure to the circuit (Node2 is stuck-at-0
to guarantee the functional correctness).

First, if the gate is INV or BUF, the node will have the same
tree as its input (lines 8–10). For INV, function INVERT() is
called to change the tree type from AND-type to OR-type or
vice versa. Second, if the gate is AND or OR, the tree type
rooted at the node can first be determined (lines 12–16). Then,
to determine the input pins, there are two situations depending
on the tree types of the predecessors and the node. When the
tree types are the same, larger tree structure can be formed
(lines 18 and 19). Otherwise, only the predecessors can be
added to the tree (lines 20–22).

Example 3: Consider the circuit shown in Fig. 10(a). As
in Fig. 10(b), for primary input Node1, the tree type is ANY
and the input of the tree is {Node1}. For internal node Node5,
since it is connected with Node1 through a BUF, the tree type
for Node5 is also ANY and the inputs is also {Node1}. For
Node8, since it is connected with an XOR gate, the tree type
becomes ANY and the inputs to the tree is the node itself,
i.e., {Node8}. Consider Node7, since it is connected with an
OR gate, the tree type has to be OR. For the two inputs,
i.e., Node5 and Node2, since the tree types for both nodes
are ANY, they can be combined to form a large tree structure.
Therefore, the input pins for the tree rooted at Node7 becomes
{Node1, Node2}. Similarly, we can determine the tree type and
tree inputs for Node9. Because Node9 is connected with a NOR

gate, the tree type becomes AND.
After the calculation of the tree structure rooted at each

node, we can examine whether the predefined de-camouflaging
complexity is satisfied as described in Section V-B. If the
requirement is not satisfied, new tree structures need to be
inserted.

B. Stochastic Greedy AND-Tree Insertion

When inserting the AND-tree into the circuit, we need
to guarantee the functionality of the original circuit is not
changed. We leverage the STF-type camouflaging cells as
described in Section IV. Consider an example circuit as shown
in Fig. 11. To insert an AND-tree structure at Node1, we
first insert an OR gate to Node1 with the other input Node2
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Algorithm 4 Algorithm of Stochastic Greedy AND-Tree
Insertion

1: UPO ← POs;
2: U← TOPOLOGICALSORT(G);
3: REMOVECRITICALNODE(U);
4: while UPO �= ∅ do
5: for u ∈ U do
6: u. score← COMPUTEIS(G);
7: UIS ← FINDTOPK(U);
8: uc ← RANDOMSELECTCAND(UIS);
9: G← ANDTREEINSERT(uc, G);

10: UPO ← REMOVECOVEREDPO(UPO, uc);
11: return U;

as dummy pin. Then, an AND-tree structure is created with
Node2 being the root. The input pins of the AND-tree struc-
ture are connected to the primary inputs and camouflaged with
XOR-type cells.

To detect the stuck-at 0 fault at Node2, we again follow
the same analysis as in Section V. The logic value of Node2,
which is 0 in reality, can be expressed as

cy(i) = gn+1(g1(i1) ∧ g2(i2) ∧ . . . ∧ gn(in)).

Note that gn+1(i) = 0 indicates there is a stuck-at-0 fault at
Node2, and gn+1(i) = i otherwise. Among all the possible
configurations, there are 2n correct configurations with gn+1
interpreted as stuck-at-0 and 2n incorrect configurations with
gn+1(i) = i. For any false configuration y, cy outputs 1 for
exactly one input vector, denoted as iy, and thus, is different
from cy∗ for exactly one input vector. For the corresponding
indicator function, ecy is different from ecy∗ at exactly two
points, i.e., {(iy, 1), (iy, 0)}. Therefore, ∀y with cy �= cy∗ , we
have

er(i,o)∼I×O

(
ecy , ecy∗

)

= Pr
(i,o)∼I×O

[
ecy(i, o) �= ecy∗ (i, o)

]

= Pr
(i,o)∼I×O

[
(i, o) ∈ {(

iy, 0
)
,
(
iy, 1

)}]
= Pr

i∼I

[
i = iy

]
. (7)

Since we connect the input pins of the inserted tree structure
with circuit primary inputs, we can assume no input bias for
tree inputs, which indicates

Pr
i∼I

[
i = iy

] = 1

2n
.

Similar to proof in Section V-A, if we set ε = 1/2n, then, we
have Eε = EC and DIS(Eε) = I × O. In this case, θ = 2n.
Therefore, m(ecy∗ , EC) = O(2n).

Therefore, the required number of input vectors to de-
camouflage the circuit increases exponentially to the size of
the inserted AND-tree structure. The insertion of OR-tree fol-
lows the same procedure except that we need to use an AND
gate with stuck-at-1 fault at the dummy input, which is the
root of the OR-tree structure.

To insert the tree structure into the circuit, we pro-
pose a stochastic greedy tree insertion algorithm as shown

Fig. 12. SPS-based functional attack: when g is OR gate, SPS(o) = 5
16 and

when g is XOR-type camouflaging cell, whether g works as an OR gate or a
NOR gate are equally possible for the attacker [27], and thus SPS(o) = 0.

in Algorithm 4, which tries to minimize the performance
overhead and guarantee the functionalities for all primary out-
puts are protected. We first add all the primary outputs to
protect in a set UPO. Then, we traverse the circuit graph in a
topological order and calculate an insertion score (IS) for each
internal nodes. IS is defined to consider the node’s switching
probability SA, observe probability Pob and the number of pri-
mary outputs NO that have not been camouflaged in its fanout
cone, which is calculated as

IS = α × SA− β × Pob

NO
. (8)

where α and β are coefficients defined to balance SA and Pob.
Note that we get rid of the circuit nodes along critical paths in
the process to minimize the impact on performance. We find
k nodes with the smallest scores from U and randomly select
one node as the candidate for tree insertion. All the primary
outputs in the fanout cone of the candidate node are removed
from UPO and the procedure is continued until all the primary
outputs are protected.

C. AND-Tree Camouflaging Against Removal Attack

Though AND-tree structure provides good resilience against
SAT-based attack, because it has obvious structural and func-
tional footprint, it is possible for the attacker to identify and
remove it. Yasin et al. [27] proposed to identify the AND-tree
by calculating the SPS for each circuit node. SPS of a signal
s is defined as Pr [s = 1]−0.5. In Fig. 12, we use an example
to illustrate the attack process. Starting from primary inputs,
the attacker traverses the circuit netlist topologically. For a
standard cell, the signal probability can be easily calculated
while for a camouflaging cell, because its actual functionality
in the circuit is unknown the authors calculate the signal prob-
ability as the average value for different functionalities. For a
signal with large uncertainty, its SPS approaches to 0. For the
root of an AND-tree, its SPS approaches to −0.5 exponen-
tially with respect to the size of the AND-tree. This makes it
possible for the attacker to identify the inserted tree structure
by SPS. Besides the SPS-based attack, because a nondecom-
posable AND-tree is an isolated structure that does not have
many connections with the original circuit, the attackers can
also leverage this structural footprint to detect the inserted
AND-tree structure. Therefore, we propose to camouflage the
structure both functionally and structurally.

We use the example in Fig. 13 to illustrate our AND-
tree camouflaging strategy. Consider an 8-input AND-tree in
Fig. 13(a). We first replace the standard cells in the AND-tree
with camouflaging cells that look the same and share the same
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(a) (b) (c) (d)

Fig. 13. AND-tree protection: (a) original AND-tree structure; (b) and (c) functional camouflaging to reduce SPS for the root node; and (d) structural
camouflaging to add dummy connections from AND-tree internal nodes.

(a) (b) (c)

Fig. 14. Comparison on AND-tree insertion strategy: (a) Anti-SAT [22];
(b) CamoPerturb [21]; and (c) our insertion strategy.

functionality, as in Fig. 13(b). Then, we replace the NAND,
NOR, and INV cells with XOR-type camouflaging cells that
look different but share the same functionality, as in Fig. 13(c).
Because the attacker cannot determine whether the output of
each cell in the AND-tree is negated or not, e.g., whether an
AND cell works as an AND or a NAND cell in the circuit,
the SPS for each node in the AND-tree is always kept as 0
according to [27].

To prevent removal attack based on the structural
information, we leverage the STF-type camouflaging cell to
connect the internal nodes of the AND-tree to other gates as
in Fig. 13(d). For an ñ-input AND-tree, there are in total ñ−1
gates in the tree following the structure in Fig. 13(a). To ensure
the size of the largest AND-tree detected by the attacker to
be less than ñ′, we can always insert O((ñ − 1)/(ñ′ − 1))

STF-type camouflaging cells to create dummy connections to
the internal nodes as in Fig. 13(d). Meanwhile, to prevent
the attackers from identifying the inputs to the AND-tree,
we can insert extra XOR-type BUF cells to other primary
inputs. Note that the inserted AND-tree is nondecomposable
from the defense perspective since the logic value of AND-
tree internal nodes cannot be sensitized through the dummy
connections. However, for the attackers, because he cannot
determine the connections are dummy based on the structural
attack following Algorithm 3, the largest nondecomposable
tree that can be detected by the structural attack is reduced
significantly. Therefore, the resilience to SAT-based attack is
not impacted, while the vulnerability to removal attacks is
mitigated significantly.

D. Comparison Between State-of-the-Art Techniques

The idea to leverage AND-tree structures has also been
explored by Anti-SAT [22] and CamoPerturb [21]. Now, we
compare the three strategies in terms of security, overhead,
and impact on the original circuit, i.e., whether resynthesis is
required.

TABLE III
COMPARISON WITH CAMOPERTURB [21] AND ANTI-SAT [22]

Assume an AND-tree with ñ-bit inputs is to be inserted
into the circuit. As shown in Fig. 14(b), for the Anti-SAT
strategy, two subtrees of the same size, denoted as Sub1 and
Sub2, are inserted into the circuit. An INV is inserted at the
output of Sub2. XOR-type BUF cells are inserted at the input
pins of the two AND-trees. For the circuit to function cor-
rectly, the XOR-type BUF cells of same input signals in the
Sub1 and Sub2 need to have the same functionality. To de-
camouflage the circuit, the attacker always needs to query 2ñ

input vectors [22].
For CamoPerturb, to insert an ñ-bit AND-tree, a specific

input vector i∗ is first selected. Then, original circuit is resyn-
thesized by flipping the output value corresponding to i∗. An
AND-tree is then inserted to correct the flipped output just for
i∗. Based on [21], to de-camouflage the circuit, all input vec-
tors are discriminating inputs and for each i �= i∗, at most one
false functionality can be pruned. However, i∗ can rule out all
the false functionalities. Therefore, on average, 2ñ−1 input vec-
tors need to be measured. While the best case and worst case
de-camouflaging complexity become 2ñ and 1. In our strategy,
the de-camouflaging complexity is always 2ñ because, for any
input vector, exactly one false functionality can be ruled out.

The three strategies mainly introduce area and power over-
head while the impact on timing can be negligible by avoiding
any modification of circuit critical paths. Compared with our
method, Anti-SAT suffers from almost double area and power
overhead because one AND-tree and one NAND-tree of the
same size is inserted. For CamoPerturb, besides the overhead
introduced by the inserted AND-tree, extra overhead can be
introduced in the process of resynthesis. We summarize the
comparison in Table III. As we can see, our strategy for AND-
tree insertion provides the best security guarantee without the
requirement for resynthesis.

VII. EXPERIMENTAL RESULTS

In this section, we report on our experiments to demonstrate
the effectiveness of the proposed IC camouflaging strategy.
The camouflaging algorithm is implemented in C++. The
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(a) (b) (c)

Fig. 15. Effectiveness of tree structure and impact of tree decomposability and input bias: (a) de-camouflaging complexity and time for ideal AND-tree
structure; (b) change of de-camouflaging complexity and time with the size of the largest nondecomposable tree; and (c) change of de-camouflaging complexity
and time with the input bias.

TABLE IV
VERIFY THE PROPOSED CAMOUFLAGING CELL GENERATION STRATEGY

BY DE-CAMOUFLAGING TIME, ATTACK ON INDIVIDUAL POS AND

INTRODUCED OVERHEAD

SAT-based de-camouflaging algorithm is adopted from [25]
and the SPS-based removal attack is implemented follow-
ing [27]. We run all the experiments on an eight-core 3.40-GHz
Linux server with 32-GB RAM. The benchmarks are cho-
sen from ISCAS and MCNC benchmarks [37], [38]. For
the de-camouflaging algorithm, we set the runtime limit to
1.5× 105 s.

A. Verification of Camouflaging Cell Generation Strategy

We first demonstrate the security achieved by using camou-
flaging cell generation strategy. As described in Section IV-C,
we first replace all the standard cells with camouflaging cells
and then, randomly change ten cells with camouflaging cells
that appear to be different but work with the same func-
tionality. In Table IV, we show the introduced overhead,
de-camouflaging complexity and time. N/A indicates that the
camouflaged netlist cannot be resolved within 1.5 × 105 s.
As we can see, the area overhead is on average 0.68% and
the power overhead is on average 0.55%, both of which are
very small even for small benchmark circuits. Meanwhile, for
large circuits, with the camouflaging cell generation strategy,
the de-camouflaging algorithm cannot be finished within the
predefined time. As we have pointed out in Section IV-C,
the SAT-based algorithm can still de-camouflage some small
benchmarks with less than 1600 gates. Also, for the circuits
that cannot be fully de-camouflaged, we can still run de-
camouflaging attacks for each primary outputs separately and
partially de-camouflage the design as shown in the partial

TABLE V
EXISTING TREE STRUCTURE IN BENCHMARK CIRCUITS

column in Table IV. The experimental results demonstrate both
the effectiveness and the limitation of the camouflaging cell
generation strategy.

B. Evaluation of AND-Tree-Based Camouflaging Strategy

To evaluate the security of the AND-tree-based camouflag-
ing strategy, we start from stand-alone tree structures. As we
can see in Fig. 15(a), both the de-camouflaging time and com-
plexity increase exponentially as we expect. To examine the
impact of tree decomposability, we fix the size of an AND-tree,
i.e., 15 input pins, and change the size of the largest nonde-
composable subtree in the 15-input AND-tree. The size of
other nondecomposable subtrees is limited to be smaller than
3. We show the change of the de-camouflaging time and com-
plexity in Fig. 15(b). As we have discussed in Section V-B2,
the de-camouflaging complexity of the 15-input tree is limited
by the sum of the de-camouflaging complexity of each sub-
tree. As in Fig. 15(b), the de-camouflaging complexity indeed
reduces exponentially with the size of the largest nondecom-
posable tree. We also verify the impact of input bias. We add
extra circuits to the fanin cone of the tree input pins and
gradually changes the input number of the extra circuits to
change the KL divergence of the input distribution compared
to the uniform distribution. As we show in Fig. 15(c), with
the decrease of the input number of the circuits in the fanin
cone, i.e., the increase of the normalized KL divergence, both
the de-camouflaging time and complexity decreases.

To further examine the AND-tree structure, we consider the
tree structure in the original netlist. We detect the existing
AND-tree structure following Algorithm 3. In Table V, we
list the input size of the largest decomposable tree detected in
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Fig. 16. Tradeoff between overhead and de-camouflaging complexity (dotted
lines indicate extrapolation).

TABLE VI
INTRODUCED OVERHEAD OF THE TREE-BASED CAMOUFLAGING

STRATEGY WHEN 64-INPUT AND-TREE IS INSERTED

the original netlist, i.e., D-tree, and the largest detected nonde-
composable tree in the original netlist, i.e., ND-tree. For most
of the circuits, the existing nondecomposable tree structure is
very small. For benchmark c2670 and k2, large tree structure
exists. The calculation of normalized KL divergence indicates
that high bias exists for the input pins of the tree structure in
k2 since the value is very close to 1. We camouflage the input
pins for tree structures in both benchmarks and use the SAT-
based method to de-camouflage. For c2670, original circuit
functionality cannot be resolved within the predefined time
threshold, while for k2, the de-camouflaging algorithm fin-
ishes within 8.5 s and 70 iterations. The results demonstrate
the importance to consider both tree decomposability and input
bias to evaluate the impact of the AND-tree structure in circuit
netlist.

Then, we insert tree structure into the benchmark circuits
following Algorithm 4. We set α = β = 1 for IS evaluation.
We show the tradeoff between the area overhead and the de-
camouflaging time and complexity in Fig. 16 for benchmark
c880. As we can see, the area overhead increases linearly
with respect to the size of the inserted tree while the de-
camouflaging time and complexity increases exponentially.
We then insert 64-input AND-tree structure to benchmark
circuits. We leverage the SAT-based attack to de-camouflage
the camouflaged circuits. We also extract the subcircuits for
each primary output and try to resolve the circuit separately.
We show the results in Table VI. As we can see, the SAT-
based attack cannot de-camouflage any primary output of each
benchmark circuits. We also report the introduced overhead,
including power, area, and timing in Table VI. As shown in
Table VI, the main overhead comes from area and power
while the impact on timing is negligible. Meanwhile, for large
circuit, e.g., des, the area and power overhead is less than 2%.

TABLE VII
AREA AND POWER OVERHEAD COMPARISON

WITH ANTI-SAT AND CAMOPERTURB

We then compare the proposed tree insertion strategy with
Anti-SAT [22] and CamoPerturb proposed in [21]. We use all
the three methods to insert 64-bit AND-tree into the bench-
mark circuits and compare the introduced power and area
overhead in Table VII. Since analytical comparison on the
de-camouflaging complexity is provided in Section VI-D, we
do not run SAT-based attack for the three strategies. As in
Table VII, our method achieves similar overhead compared
with Anti-SAT. CamoPerturb suffers from larger power and
area overhead compared with Anti-SAT and our strategy since
large overhead is introduced in the resynthesis process.

C. Impact of Structural and Functional Camouflaging

We now verify the effectiveness of the structural and func-
tional camouflaging for the AND-tree-based camouflaging
strategy and demonstrate the introduced overhead. We insert
AND-tree with 64 input bins. We consider SPS-based meth-
ods proposed in [27] as functional attack and tree detection
algorithm following Algorithm 2 as structural attack, which
represents the state-of-the-art removal attack strategies. As
shown in Table VIII, after structural and functional camou-
flaging, the area and power overhead increases on average by
5.1% and 0.3%. However, for large benchmarks, i.e., des, the
total area and power overhead after structural and functional
camouflaging is less than 3%. After structural and functional
camouflaging, SPS for the each internal node of AND-tree
becomes 0.0, and the size of the largest nondecomposable
AND-tree that can be detected following Algorithm 3 (i.e.,
“detected AND-tree” in Table VIII) is 4. Therefore, struc-
tural and functional camouflaging can protect the inserted tree
structure against the state-of-the-art removal attack strategies.
Meanwhile, as we have discussed in Section VI-C, because
the logic value of internal nodes of the AND-tree cannot be
observed from the dummy connections, the overall resilience
to SAT-attack is not reduced. As shown in Table VIII, for
the circuit netlists after structural and functional camouflag-
ing, SAT-attack cannot be finished within the predefined time
threshold.

D. Effectiveness of Combination of Two Camouflaging
Strategies

Finally, we demonstrate the effectiveness of combining the
two camouflaging strategies, i.e., camouflaging cell generation
strategy and AND-tree-based camouflaging strategy. To com-
bine the two camouflaging strategies, we first insert an AND-
tree structure into the original netlist following Algorithm 4.
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TABLE VIII
VERIFICATION OF OVERHEAD AND EFFECTIVENESS OF STRUCTURAL AND FUNCTIONAL CAMOUFLAGING

(a) (b)

Fig. 17. Verification of the effectiveness of combining the proposed
two camouflaging techniques on benchmark c880: comparison on (a) de-
camouflaging complexity and (b) de-camouflaging time (dotted line indicate
extrapolation).

Then, we leverage the XOR-type and STF-type cells to further
camouflage the circuit netlists following the strategy described
in Section IV-C. We examine the effectiveness of the com-
bined strategy by comparing the de-camouflaging complexity
and time with the situation when only AND-tree-based strat-
egy is used. We run the experiments on benchmark c880. As
shown in Fig. 17, by combining the two camouflaging strate-
gies, both the de-camouflaging complexity and time are further
increased, which indicates better security level.

VIII. CONCLUSION

In this paper, we have proposed a quantitative security
criterion for de-camouflaging complexity measurements. The
security criterion was formally analyzed based on the equiv-
alence between the de-camouflaging strategy and the active
learning scheme. Meanwhile, two camouflaging techniques
were proposed: 1) the low-overhead camouflaging cell library
and 2) the AND-tree structure, following the security crite-
rion. A provably secure camouflaging framework was then
developed to combine the two techniques, which achieves
exponentially increasing security levels at the cost of lin-
early increasing overhead. The experimental results using the
security criterion demonstrated that the camouflaged circuits
with the proposed framework achieve high resilience against
the SAT-based attack with an only negligible performance
overhead.
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