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Abstract—Over the years, autonomous systems have entered
almost all the facets of human life. Gradually, higher levels of
autonomy are being incorporated into cyber-physical systems
(CPS) and Internet-of-things (IoT) devices. However, safety and
security has always been a lurking fear behind adoption of
autonomous systems such as self-driving vehicles. To address
these issues, we develop a framework for quantifying trust in
autonomous system. This framework consist of an estimation
method, which considers effect of adversarial attacks on sensor
measurements. Our estimation algorithm uses a set-membership
method during identification of safe states of the system. An
important feature of this algorithm is that it can distinguish
between adversarial noise and other disturbances. We also verify
the autonomous system by first modeling it as networks of priced
timed automata (NPTA) with stochastic semantics and then using
statistical probabilistic model checking to verify it against prob-
abilistic specifications. The verification process ensures that the
autonomous system behave in accordance to safety specifications
within a probabilistic threshold. For quantifying trust on the
system, we use confidence results provided by the model checking
tool. We have demonstrated our approach by using a case study
of adaptive cruise control system under sensor spoofing attacks.

I. INTRODUCTION

Automation is being increasingly introduced into every man-
made system. Currently, most of the day-to-day applications
are semi-autonomous as they require human intervention in
achieving desired goals. However, the thrust to achieve trust-
worthy autonomous systems, which can attain goals indepen-
dently in the presence of significant uncertainties and for
long periods of time without any human intervention, has
always been enticing. Significant progress has been made
in the avenues of both software and hardware for meeting
these objectives. Currently, space vehicles are autonomous
and there are prototypes of self-driving autonomous vehicles
[1]. However, technological challenges still exist and partic-
ularly in terms of decision making under uncertainty. In an
autonomous system, uncertainties can arise from the operating
environment, adversarial attacks, and from within the system.
As a result of these ambiguities, human-beings lack trust in
these systems and hesitate to use take them for day-to-day use.
For an autonomous system, trust is defined as the ability of the
system to successfully carry out a task, at a particular time, and
in a situation characterized by vulnerability and uncertainty
[2]. To build trust in an autonomous system, manufacturers
have to certify them. Certification is a formal means by
which regulators measure expected performance of different
components of an autonomous system. A generic autonomous
system consist of (i) perception unit, which comprises of

sensing system and its data processing software, (ii) control
and decision making unit, which decides future actions of
the autonomous system, and (iii) execution unit, which carry
out actions provided by the control and decision making unit
[3]. To measure trust, one has to have quantitative value of
following traits of the system (i) performance, which includes
competence, reliability, and robustness, (ii) transparency of
control and decision-making unit, and (iii) security vulnera-
bilities [4]. These factors should be measured both in certain
and uncertain environments. Thus, design and certification
of autonomous systems such as self-driving cars, which can
withstand uncertain conditions is of utmost importance.

Robust control algorithms are being used to make an
autonomous system resilient against environmental and in-
system uncertainties. However, these methods fail to extend
toward uncertainties created by adversarial attacks [5]–[12].
As such we use a statistical probabilistic formal verification
method for certifying autonomous system as trustworthy and
show its resiliency against attacks. In our approach, we assume
that the sensors of the system are being compromised by an
attacker via spoofing or jamming attacks. As a result, the
control and decision making unit of the system get degraded
sensor data, which makes the system behave abnormally. We
also assume that the control and decision making unit, the
actuators, and the diagnostics and fault management sub-
system of the execution unit cannot be modified by an attacker.
However, these units/sub-systems may be affected by internal
and environmental disturbances. With these assumptions, we
first estimate a set of safe states for the vehicle. This estimation
is done at the diagnostics and fault management sub-system
of the execution unit. Then, the safe states are used to monitor
the outputs of the control and decision unit. When a suspicious
state is detected by this sub-system, it alerts the reactive
control sub-system, which is also in the execution unit. This
system takes the necessary actions to keep the autonomous
system within the realms of safety. As the reactive control sub-
system is prone to sensor noise and environmental disturbance,
we verify whether it satisfies the safety requirements with
certain probability value. Based on the verification results
we assign performance measurements to different components
of the execution unit of the autonomous system. As 100%
certification of autonomous system is nearly impossible, we
adopt a probabilistic rating mechanism to assign confidence
values to different units of the system. Thus, we quantify trust
in the system by adding ratings of all these components. We
demonstrate our approach on an autonomous ground vehicle
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under sensor spoofing attacks.

II. ATTACK MODEL

Attack on an autonomous vehicle can be carried out ei-
ther via physical access [5], [6] or remotely [7]–[11]. In
our paper, we consider remote attacks, as attackers getting
physical access of the vehicles internal operation may be
an infeasible assumption. Remote exploitation is possible via
a wide range of attack vectors present in the vehicle such
as telematics system, Wi-Fi, Bluetooth, in-car apps, remote
keyless entry, Tire Pressure Monitoring System (TPMS), radio
data system, and Dedicated Short Range Communications
(DSRC), developed for vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2X) communications [11]. These attack
vectors uses various wireless communication wavelengths to
get access of the in-vehicle network, which comprises of
Controller Area Network (CAN) buses, Local Interconnect
Network (LIN) buses, Media Oriented System Transports
(MOST) buses, and FlexRay buses [13]. As CAN buses
communicate with all the Electronic Control Units (ECUs)
of the vehicle, most of the attacks are targeted toward it [5],
[7], [11]. Control of the CAN bus allows the attacker to take
control of most of the functionalities of the vehicle.

Another form of remote attack target data acquisition unit
of the vehicle, which comprises of sensors [8]–[10], [12]. An
autonomous vehicle has many sensors (radar, lidar, Global
Positioning System (GPS), camera, ultrasonic, and inertial
measurement unit (IMU)) for collecting data of its internal
and external environment [14], [15]. Compromising the data
gathered by these sensors can impact the decisions made by
the motion control unit of the vehicle.

To degrade sensor data quality, an attacker has to carry out
spoofing or jamming attack remotely. Following the attack
models described in [8]–[10], [12], we assume that the attacker
target the hardware layer (external sensors) and has limited
knowledge of sensors firmware or software. We also assume
that they have limited resources to carry out the remote
spoofing attack. Furthermore, the attack can be mounted on the
target vehicle while its stationary or in motion. By carrying out
these attacks, the attacker intends to cause physical damage to
the vehicle.

Based on the remote spoof attacks carried out in [8]–[10],
[12], we can state that the lidar, GPS, radar, camera, and
ultrasonic sensors of the vehicle can be compromised. We
assume that the sensor fusion unit (shown in Figure 1), which
gets processed data of compromised sensors, cannot rectify
the malicious data. Other assumptions are that the adversary
does not have access to the diagnostic and fault management
sub-system of the vehicle and they cannot directly modify the
control and decision unit.

III. RELATED WORK

Verification of autonomous ground vehicles has been receiv-
ing increasing attention over the years [16]–[19]. Stursberg
et al. [16] modeled the cruise control system of vehicle
using hybrid automata with nonlinear continuous dynamics

and polyhedral guard and invariant sets. Then, they used
counterexample-guided verification approach to ensure the
cruise control system of two cars in one lane was operating
correctly to avoid collision. However, their method could
not be scaled to arbitrary number of cars. Loos et al. [17]
used quantified hybrid program for modeling distributed car
control system, where every car was controlled by adaptive
cruise control. They used the automated theorem prover-
KeYmaera - to prove that the control model satisfied the
collision avoidance protocol for arbitrary number of cars on
a street. Wongpiromsarn et al. [18] proposed the framework,
called periodically controlled hybrid automata, for modeling
control systems in which inputs to actuators were given after
a fixed time unit. They verified safety and progress properties
of the planner-controller sub-system of an autonomous ground
vehicle using sum of square decomposition and semi-definite
programming. Althoff et al. [19] used reachability analysis for
safety verification of evasive maneuvers of autonomous ground
vehicle with constant velocity and under uncertainties.

However, these verification methods do not consider an au-
tonomous ground vehicle under adversarial attacks [16]–[19].
To address this scenario, many attack detection and prevention
methods were developed for ground vehicles [20]–[24]. Zheng
et al. [20] analyzed security and safety of in-vehicle control
system and vehicle-to-vehicle communication network using
hybrid modeling, formal verification, and automated synthesis
techniques. They considered cooperative adaptive cruise con-
trol (CACC) as their test case and used an automated theorem
prover to prove a collision avoidance property under time
delay attack on vehicle communication network. Mundhenk
et al. [21] used probabilistic model checker - PRISM, for
quantifying security vulnerability (in terms of confidential-
ity, integrity and availability) of automotive architecture at
design-time. Before using the model checker, they transformed
the automotive communication architecture which consists of
ECUs, heterogeneous bus system, and intra-vehicle networks
into Continuous-Time Markov Chain with transitions given
by exploitability rate and patching rate. However, they did
not consider safety of an operating vehicle under adversarial
attack. Fawzi et al. [23] and Tiwari et al. [22] proposed
detection and prevention methods for an autonomous ground
vehicle under sensor spoofing attacks. In [23], secure states
were first estimated of a linear control system under sen-
sor spoofing attacks using a decoder. Then, a linear static
controller was designed based on the set of secure states.
However, this method did not distinguish between noise and
attack. Moreover, they assumed that not all sensors can be
attacked at the same time. In [22], a learning mechanism was
used to construct a set of invariants called “safety envelope”,
from collected sensor data. Then, the system was monitored
to check if it operated within the safety envelope. In case of a
violating, an alarm was raised depending on whether it was an
attack or noise. The learning algorithm did not require model
of the dynamical system and could distinguish between noise
and attack. Unlike the software approaches, Wolf et al. [24]
proposed a vehicular hardware security module for protecting
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in-vehicle ECUs and their communications.
In this paper, we use networks of priced timed au-

tomata (NPTA) with stochastic semantics for modeling an
autonomous vehicle under adversarial attack. We consider all
sensors of the vehicle are spoofed remotely after determining
the initial state of the vehicle. Moreover, we decouple attack
from environmental and system noise in our vehicular dynam-
ics model.

IV. FRAMEWORK FOR QUANTIFYING TRUST IN
AUTONOMOUS SYSTEM

In this section, we describe our framework for quanti-
fying trust and its various components. At the beginning,
we briefly describe the functional software architecture of
the autonomous ground vehicle under consideration. Then,
we outline the requirements for safe state estimation. Sub-
sequently, we describe the method of our choice for modeling
autonomous vehicle under adversarial attack. We verify the
controller of the autonomous vehicle against probabilistic
safety specification. The confidence interval and confidence
percentage obtained from the verification process helps us in
quantifying trust on the vehicle.

A. Functional Software Architecture of Autonomous Ground
Vehicle

The software architecture of the autonomous ground vehicle
(AV) under consideration (See Figure 1) is similar to the
ones in [3], [15]. The AV has six on-board sensors, global
positioning system (GPS), inertial measurement unit (IMU),
cameras, radars, lidars, and ultrasonic. Raw data from these
sensors are processed into a form which can be understood
by the hierarchical sensor fusion unit. The multi-sensor data
fusion algorithm of this unit uses different combination of on-
board sensor data for object detection and classification. This
data is further combined with information from V2V/V2X
communications and on-board maps to enhance perception of
the vehicle beyond the capabilities of traditional sensors. The
output of the sensor fusion unit is a 3-D map of the environ-
ment, which is used by the control and decision unit along with
information of the current state of the vehicle to generate an
optimal obstacle free trajectory1. Subsequently, the trajectory
execution sub-system uses propulsion, steering, and braking
components to execute the trajectory generated by the control
and decision unit. The diagnostic and fault management (D&F)
sub-system estimates safe states of the vehicle. It analyzes
the generated trajectory to determine whether the vehicle is
operating within the safety domain. In case of any deviation
from the expected behavior, it issues command to the reactive
control sub-system, which immediately responds by taking
action such as braking to avoid collision. The reactive control
sub-system operates in parallel with the trajectory execution
unit and when a threat is identified, its output overrides normal
operation of the vehicle.

1Note: In Figure 1, the current state refer to a trajectory generated in a
previous time step and future state refer to a new trajectory generated by the
control and decision unit after analyzing information from sensor fusion unit.

In this paper, we consider an adaptive cruise control unit,
whose function is to drive the vehicle in an intended trajectory
and avoid collision with other vehicles on the road.

B. Safe State Estimation

We consider an autonomous ground vehicle in which the
D&F sub-system monitors the trajectory generated by the
control and decision unit to ensure the vehicle operates safely.
To perform monitoring, the D&F sub-system estimate a set
of safe states based on the knowledge of overall system
dynamics and disturbances arising from internal components
and external environment.

We first construct an abstract interval around true sensor
measurements using set-membership method [25]. Then, we
estimate the safe states of the system from these sensor values.
The abstract interval is constructed by using manufacturers
specifications about precision and accuracy of sensors, as well
as physical limitations such as sampling jitter and synchro-
nization error. If these information’s are not present, then an
approximate abstract interval is constructed based on empirical
data of initial sensor measurements. Smaller the size of the
interval, higher is the confidence on the sensor measurements.
Anything outside this abstract interval are bad sensor values
(due to adversarial attack) and the trajectory of the system
should never enter the bad states (measured from the bad
sensor values). Information of safe and bad states enables the
D&F sub-system to monitor the system.

C. Modeling of Autonomous Vehicle under Adversarial At-
tacks

Modeling of systems involving interaction of discrete and
continuous dynamics (such as in autonomous ground vehicles)
has been successfully carried out using hybrid system [16],
[17]. Over the years, several computational frameworks have
been developed for representing hybrid system such as hybrid
program, hybrid automata (extends the traditional finite state
automata by incorporating continuous dynamics), networks of
priced timed automata (NPTA), and hybrid petri net. However,
these frameworks did not allow randomness in the design.
Consequently, the theory of stochastic hybrid system and its
modeling formalisms such as Piecewise Deterministic Markov
Processes (PMDP), stochastic hybrid automata, and Switched
Diffusion Processes (SDP), were developed for capturing vari-
ability/uncertainty in the system and performing probabilistic
analysis. This enabled modeling and analysis of uncertain
autonomous systems.

In this paper, we use NPTA with stochastic semantics [26]
for modeling vehicular system dynamics and representing in-
ternal/external disturbances including adversarial attack. Using
this approach we model the adaptive cruise control (ACC)
system of the ground vehicle, which is shown in our case
study.

D. Verification of Autonomous Ground Vehicle

When the D&F sub-system of the execution unit (See Figure
1) identifies a suspicious behavior (state), it issues command
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Fig. 1: Functional software architecture of autonomous ground vehicle.

to the reactive control sub-system, which then carries out the
actions to prevent fatal scenarios. To ensure the reactive control
sub-system behave correctly, we verify that it carries out the
safe actions within a probability threshold. As specifications
for a controller may be violated once in a while due to internal
or external disturbances, we resort to a probabilistic method of
verification. With the help of this approach, we can generate
probabilistic guarantees on whether the system’s state will
transition to a safe state within certain time interval.

Model checking is one of the approach for verifying
stochsatic hybrid systems [27]. In this approach, a stochastic
model M of a system with an initial state s0 is expressed
as a transition system, behavioral specification such as safety
property φ is expressed using bounded linear temporal logic,
θ ∈ [0, 1] is a probability threshold, and ./∈ {>,<,≥,≤
}. Using these notations, the probabilistic model checking
problem can be formally stated as M, s0 |= P./ θ(φ). The
underlying algorithm of this technique explores the state-
space of the model to decide whether M satisfies φ with a
probability >,<,≥, or ≤ to a certain threshold θ. If a case
exists where the model does not satisfy the specification, a
counterexample in the form of a trace is produced by the model
checker.

In our paper, we use Statistical probabilistic Model Check-
ing (SMC) to verify the reactive control sub-system of the
autonomous ground vehicle against probabilistic safety spec-
ifications (generated from knowledge of system dynamics).
The specifications used in this tool are time bounded. Such
a model checking approach combines randomized simulation
(i.e., Monte Carlo simulation), statistical analysis, and model
checking, and it is scalable to large designs. However, using
large number of digital clocks (we use one clock) in the system
model effects efficiency and scalability of this approach.

E. Quantification of Trust in the Autonomous Ground Vehicle

Our probabilistic approach for safety verification of the
autonomous ground vehicle requires running the system for
certain time units to obtain results. Based on the number of
runs, we obtain an overall estimate of the correctness of the

system. The results are represented in the form of confidence
interval [θ − ε , θ + ε] (where, θ ∈ [0, 1] is the probability
assigned to the safety specification and ε is an approximation
parameter) and confidence (1− δ) (where δ is the confidence
parameter). The value of confidence represents the probability
of the specification satisfying the system model within the
confidence interval for the runs of the system. Higher the
value of confidence within the confidence interval, more is
the likelihood of the vehicle system model satisfying the
safety specification. We write specifications for all the units
of the autonomous ground vehicle under consideration and
obtain their respective confidence values for a fixed confidence
interval. Based on these values, we assign overall trust to the
vehicle.

V. CASE STUDY

As a case study, we consider adaptive cruise control (ACC)
of an autonomous ground vehicle. ACC relies on data from
camera, lidar, or radar to measure distance (d) between a
follower car (fc) and a leader car (lc) on a lane. From distance
measurement, velocity and acceleration of the fc is calculated.
The safety requirement for collision avoidance between fc
and lc is that the distance between them should always
be greater than zero i.e. d > 0. Under normal operation
of the vehicle, the control and decision unit achieves this
condition by adjusting the acceleration of fc. However, under
spoofing attack, the sensors will produce wrong measurements
of distance d. As a result, the control and decision unit will
issue wrong commands to the execution unit, resulting in a
possible vehicular collision. To mitigate this issue, diagnostics
and fault management sub-system should detect this threat
and alert the reactive control sub-system. Subsequently, the
later unit should override normal operation and issue the brake
command.

In our example, we consider safe distance d between fc
and lc is 20 m. When d is < 20 m between the vehicles, the
reactive controller of fc should brake within 600 msec to avoid
collision. We assume the adversary spoofs the lidar signals,
thereby making the sensor detect fake vehicles at a distance
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(a) Model of D&F sub-system. (b) Model of reactive controller sub-system. (c) Model of actuator sub-system.
Fig. 2: Model of vehicular sub-system.

d > 20m, when it is actually less than the safe distance. Due to
this, the reactive controller will not be able to brake within the
desired time, resulting in a collision. However, our safe state
estimation and monitoring method in the D&F sub-system will
detect this fault and notify the reactive controller within the
desired time to prevent collision.

To verify this scenario, we use the UPPAL Statistical
Model Checking (SMC) tool Version 4.1. We build a very
simple timed automata of D&F sub-system (Figure 2a)
with two states (safe and warning).The safe state
indicate that the future state from the control and decision
unit conform with the safe state estimated by the D&F
sub-system. On the contrary, the warning state indicate
suspicious behavior. In our current set-up we assume that the
adversary cannot modify the D&F sub-system directly, but
as the estimation algorithm is not completely accurate, we
assign uncertainty to the state variable of the automaton. The
safe state is initialized with an uncertain variable clk_p
uniformly between [1.00, 2.00]. The automaton transitions to
the warning state when the value of clk_p is > 1 and
it outputs obs_detected!, which is sent to the reactive
controller sub-system (Figure 2b). From the warning state
it transition back to the safe state when clk_p<=4 with
an output obs_clear! and the variable clk_p resets to
0. In order to estimate the probability that the clk_p will
change its value to > 1 within a simulation time bound
of 1000 time units, the following specification will be checked.

Pr[<= 1000](<> clk p > 1)

The result of the tool for D&F automata is: confidence
interval [0.9026, 1.00] with 95% confidence after having
generated 36 runs. After the obs_detect! signal is received
by the reactive control automata (Figure. 2b), it transition
from Initial state to Command via Intermediate
state in < 100 time units. In this transition, the controller
sends the command signal_break to the actuator sub-
system (Figure 2c) as an obstacle has been detected. At the
Initial state, internal variable obs is initialized to 0. After
transitioning to Command state, the obs value changes to 1.
This is shown by the method obs_update(1) in Figure
2b. To estimate the probability that the internal variable obs

changes value to 1 in < 100 time units, we use the following
specification.

Pr[<= 1000](<> time < 100 and obs == 1)

The result of the tool for reactive controller automata is:
confidence interval [0.9026, 1.00] with 95% confidence after
having generated 36 runs. Once the obstacle is clear the
automaton transitions to the Initial state via Update
state and the internal variable obs value is reset to 0, shown
in Figure. 2b as obs_update(0). The output of this
transition is the command signal_acc!, which is also
sent to the actuator sub-system. When the actuator automata
(Figure. 2c) receives the command signal_break!
from the reactive control automata, it should transition
from max_velocity state to the break state in < 500
time units. During the same transition, internal variable
apply_break changes its value from 0 to 1. This is
shown by the method break_update(1) of Figure.
2c. To estimate the probability that the internal variable
apply_break changes its value to 1 in < 500 time units,
we use the following specification,

Pr[<= 1000](<> time < 500 and apply break == 1)

The result of the tool for actuator automata is: confidence
interval [0.9026, 1.00] with 95% confidence after having
generated 36 runs. From the break state the automata tran-
sition to stop state in time > 10 time units. During this
transition, variable acc is initialized to an initial value of
60 with an uncertain derivative dv uniformly between [1.00,
2.00]. This uncertainty indicates that the car never comes
to a complete halt at the stop state. After receiving the
command signal_acc! from the reactive controller, the
vehicle transitions back to the acc state. During this transition,
the value of internal variable apply_break changes from
1 to 0 as shown by the method break_update(0) of
Figure. 2c. This transition indicates that the collision has been
avoided and the vehicle resume its motion. All the safety
specifications we considered, were satisfied in the confidence
interval [0.9026, 1.00] with 95% confidence after having
generated 36 runs.
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In Table.1 we have provided summary of trusted and untrusted
signals of automatons of Figure. 2a, 2b, 2c. Now, based on the
results of these automatons, trust on the autonomous ground
vehicle under consideration is 95% for a confidence interval
of [0.9026, 1.00].

TABLE I: Summary of Trusted and Untrusted Signals of Automatons

Signals Untrusted Trusted Reason
obs detect! X Triggered on

encountering bad
states

obs clear! X Doesn’t depend
on bad states

obs detect? X Relies on
obs detect!

signal break! X Doesn’t depend
on bad states

obs clear? X Doesn’t depend
on bad states

signal acc! X Doesn’t depend
on bad states

signal break? X Doesn’t depend
on bad states

signal acc? X Doesn’t depend
on bad states

VI. CONCLUSION

Trust plays an important role in adoption of autonomous
systems such as self-driving vehicles. In this paper, we have
addressed the trust issue in autonomous systems using an
estimation method and statistical model checking approach.
The estimation method identifies safe states based on a set-
membership method and with the help of system dynamic.
The statistical model checking approach provide probabilistic
guarantees on whether various sub-systems of the vehicle will
satisfy safety specifications within some time interval. In our
case study, we use the confidence results generated during
verification process to assign trust on the adaptive cruise-
control unit of the vehicle. In future, we intend to explain
our estimation and verification methods in more sophisticated
systems.
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