
Hardware-Software Collaboration for Secure Coexistence

with Kernel Extensions

Daniela Oliveira
University of Florida

Dept. of Electrical and
Computer Engineering

daniela@ece.ufl.edu

Nicholas Wetzel
Bowdoin College

Dept. of Computer Science
nwetzel@bowdoin.edu

Max Bucci
Bowdoin College

Dept. of Computer Science
mbucci@bowdoin.edu

Jesus Navarro
NVIDIA

jnavarro@nvidia.com

Dean Sullivan
University of Central Florida

Dept. of Electrical Engineering
and Computer Science

dean.sullivan@ucf.edu

Yier Jin
University of Central Florida

Dept. of Electrical Engineering
and Computer Science

yier.jin@eecs.ucf.edu

ABSTRACT

Our society is dependent upon computer systems that are the tar-

get of a never-ending siege against their resources. One power-

ful avenue for exploitation is the operating system kernel, which

has complete control of a computer system’s resources. The cur-

rent methodology for kernel design, which involves loadable ex-

tensions from third parties, facilitates compromises. Most of these

extensions are benign, but in general they pose a threat to system

trustworthiness: they run as part of the kernel and some of them

can be vulnerable or malicious. This situation is paradoxical from

a security point of view: modern OSes depend, and must co-exist,

with untrustworthy but needed extensions. Similarly, the immune

system is continuously at war against various types of invaders and,

through evolution, has developed highly successful defense mech-

anisms. Collaboration is one of these mechanisms, where many

players throughout the body effectively communicate to share at-

tack intelligence. Another mechanism is foreign body co-existence

with its microbiota. Remarkably, these properties are not leveraged

in kernel defense approaches. Security approaches at the OS and

virtual machine layers do not cooperate with each other or with

the hardware. This paper advocates a new paradigm for OS de-

fense based on close collaboration between an OS and the hard-

ware infrastructure, and describes a hardware-software architecture

realizing this vision. It also discusses the architecture design at

the OS and hardware levels, including experimental results from

an emulator-based prototype, and aspects of an ongoing hardware

implementation. The emulator-based proof-of-concept prototype,

Ianus, uses Linux as the OS and the Bochs x86 emulator as the ar-

chitecture layer. It successfully minimized kernel extensions inter-

actions with the original kernel. Its security was evaluated with real

rootkits and benign extensions. Ianus’ performance was analyzed

with system and CPU benchmarks and it caused a small overhead

to the system (approximately 12%).1

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Operating system security and pro-

tection

1Copyright is held by the authors. This work is based on an
earlier work: SAC’14 Proceedings of the 2014 ACM Symposium
on Applied Computing, Copyright 2014 ACM 978-1-4503-2469-
4/14/03. http://dx.doi.org/10.1145/2554850.2554923.

General Terms

Security

Keywords

HW-SW collaboration, OS defense, kernel extensions, immune

system

1. INTRODUCTION
Our society has become dependent on increasingly complex net-

worked computer systems which are the target of a never-ending

siege against their resources, infrastructure and operability for eco-

nomic and political reasons. Attacks on computer systems can have

devastating consequences to our society, such as a nuclear power

facility going rogue, an electrical grid shutting down an entire city,

or the financial sector going down after a hit in a bank [1, 2]. One

particularly powerful avenue for system exploitation is the compro-

mise of the operating system kernel, which has complete control of

a computer system’s resources and mediates access of user applica-

tions to the hardware. The current methodology for kernel design,

which involves loadable extensions from third parties, facilitates

system compromises. In this methodology the kernel has an orig-

inal set of components that can be extended during boot time or

while the system is running. This paradigm is adopted by modern

OSes and represents a convenient approach for extending the kernel

functionality.

Kernel extensions, especially device drivers, currently make up

a large fraction of modern kernel code bases (approximately 70%

in Linux and a larger percentage in Windows) [3]. Most of these

extensions are benign and allow the system to communicate with

an increasing number of diverse I/O devices without the need of

OS reboot or recompilation. However, they pose a threat to system

trustworthiness because they run with the highest level of privileges

and can be vulnerable or malicious. This situation is paradoxical

from a security point of view: modern OSes depend and must co-

live with untrustworthy but needed extensions.

Similar to the current scenario of computer security, the mam-

malian immune system faces the exact same challenges every day,

continuously battling against various types of invaders. It is hith-

erto the most successful defense system and has been perfected by

Nature through millions of years of evolution. Leveraging immune

system defense mechanisms built-up over eons is the key to im-

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 22

prove computer systems security, particularly OS security. Among

its various defense mechanisms, two are most relevant. The first

is cooperation. Team work is vital to a properly functioning im-

mune system, where many types of white blood cells collaborate

across the entirety of the human body to defend it against invaders.

The second is foreign body co-existence. The human body has ten

times more microbes than human cells. Most of these microbes are

benign and carry out critical functions for our physiology, such as

aiding digestion and preventing allergic reactions. In spite of that,

a fraction of these microbes pose a threat to our bodies as they can

cause pathologies. The immune system has evolved so that it can

maintain an homeostatic relationship with its microbiota, and this

involves controlling microbial interactions with host tissues, less-

ening the potential for pathological outcomes [4].

Remarkably, these two highly successful immunity mechanisms

have not been applied to OS security. The two key players that

make up a computer system, OS and hardware, interact precari-

ously with each other and do not cooperate. Security approaches

employed at the OS and virtual machine (VM) layers do not cooper-

ate with the hardware, nor do they communicate information to dy-

namically adapt to future incursions. Current virtualization-based

security solutions do not rely on collaboration with the guest OS

because they are based on the traditional paradigm for OS protec-

tion, which advocates placing security mechanisms in a VM layer,

thereby leaving the OS with no active role in its own defense. This

is because the current threat model only defines the VM and the

hardware as trustworthy so that the guest OS is considered untrust-

worthy and easily compromised by malware [5, 6, 7, 8, 9, 10]. This

traditional model suffers from two main weaknesses.

The first weakness is the semantic gap: there is significant dif-

ference between the high level abstractions observed by the guest

OS and the low level abstractions at the VM. The semantic gap hin-

ders the development and widespread deployment of virtualization-

based security solutions because these approaches need to inspect

and manipulate abstractions at the OS and architecture level to

function correctly. To address the semantic gap challenge, tradi-

tional VM-based security solutions use a technique called intro-

spection to extract meaningful information from the system they

monitor [5]. With introspection, the physical memory of the guest

OS is mapped at the VM address space for inspection. High level

information is obtained by using detailed knowledge of the OS lay-

out, algorithms and data structures [11].

The second weakness of traditional VM-based OS defense

mechanisms is the introspection mechanism itself, which is a man-

ual, error prone, and time consuming task that, despite being per-

ceived as secure until recently, does rely on the integrity of the guest

OS to function correctly. Traditional introspection solutions as-

sume that even if the guest OS is compromised, their mechanisms

and tools, residing at a lower-level (VM) will continue to report ac-

curate results. However, Baram et al [12] argued that this security

assumption does not hold because an adversary, after gaining con-

trol of an OS (e.g., through kernel-level rootkits), can tamper with

kernel data structures so as a bogus view of the system is provided

for introspection tools.

This paper advocates a new paradigm for OS defense: OSes

should evolve to closely interact with the hardware playing an

active role in maintaining safe interactions with their extensions.

Similar to the immune system, computer systems should control

the interactions between extensions and the original kernel lessen-

ing the potential for security breaches. In this paper, a hardware-

software (HW-SW) collaborative architecture for OS defense is

proposed. The main idea is that the OS will provide the hardware

with intelligence needed for enforcement of security policies that

allow for safe co-existence of the kernel and its extensions. Specif-

ically, the following security policies are considered:

• Kernel extensions should never directly write into kernel

code and data segments, including limited portions of the

stack segment, except into their own address spaces.

• Kernel extensions should only interact with the kernel and

other extensions through exported functions.2

Enforcing these policies requires architectural support so that

extensions’ execution are monitored and stopped in case of a vi-

olation. Controlling the execution of kernel extensions lies at the

heart of the proposed approach. HW-SW collaboration is necessary

because enforcing these policies requires system-level intelligence

that only the OS can provide and architectural capabilities that only

the hardware can support. For example, only the OS knows the

boundaries of extensions in main memory and addresses of kernel

functions. However, only the hardware can interpose on low level

abstractions such as writes into main memory, invocation of CALL

instructions and origin of the instructions for enforcing the policies.

The cooperation benefits are clear when one considers that the OS

and the hardware have access to a distinct set of functionalities and

information, which in combination allows for enforcement of secu-

rity policies that control the execution of kernel extensions.

This paper discusses the challenges of designing a hardware ar-

chitecture that allows for cooperation and communication with the

OS. An emulator-based proof-of-concept prototype called Ianus 3

was developed to validate the hardware implementation and the

paradigm. It uses the Bochs Intel x86 emulator [13] as the architec-

ture layer and Linux Ubuntu 10.04 (kernel version 2.6.32) as guest4

OS. Ianus’ experimental evaluation showed it successfully confined

extensions into their own address spaces and contained their inter-

actions with other parts of kernel code and data. Ianus’ security was

assessed with a set of real kernel rootkits which were all stopped

before any malicious actions were performed and with benign ex-

tensions that could run normally. The overhead to the system was

analyzed with a set of system and CPU benchmarks and was found

to be low, approximately 12%.

This paper is organized as follows. Section 2 discusses the chal-

lenges of HW-SW collaboration for security and the main require-

ments for such architecture. Section 3 describes in details the de-

sign and implementation of an emulator-based proof-of-concept

prototype validating this vision. In section 4 the paper shows the

experimental analysis of the prototype in terms of security and per-

formance. Section 5 brings a discussion of other aspects of the

hardware implementation and future work. Section 6 summarizes

relevant related work in kernel protection and hardware support for

system security. Section 7 concludes the paper.

2. CHALLENGES FOR HARDWARE-

SOFTWARE COOPERATION
The main challenge to HW-SW cooperation is that current secu-

rity approaches are single-layered and separate the field into dis-

tinct realms, either hardware or software. These approaches are

2Exported functions are those required by extensions to perform
their tasks and can be viewed as the kernel interface to extensions.
Kernel extensions, when loaded into the system can also export a
subset of their functions to other extensions.

3Ianus is an ancient Roman God who has two faces, each look-
ing in the opposite direction. His image is associated with the abil-
ity of imagining two opposites or contradictory ideas existing si-
multaneously.

4The term “guest" is used here because the operating system is
running on top of an emulator, which runs on a host OS.

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 23

isolated and work independently. Security solutions at the OS and

VM layers do not cooperate with the hardware, nor do they commu-

nicate information about attacks. Hardware security approaches,

on the other hand, mainly focus on Trojan prevention and detec-

tion and rarely leverage system level context. Further, OS defense

approaches generally make the flawed assumption that the under-

lying hardware is trustworthy, while hardware malware has been

found in many embedded systems from chips used by the military,

to off-the-shelf consumer electronics [14, 15, 16].

The main step for allowing HW-SW cooperation is implement-

ing the communication interface between OS and hardware follow-

ing a pre-defined communication protocol. The goal is to provide

a physical mechanism for hardware and software to communicate,

apply security policies, exchange intelligence, and physically mon-

itor system operations. This hardware component, named hard-

ware anchor, is designed and implemented in the processor with

the goals of minimizing the performance overhead and better uti-

lizing existing hardware resources.

The hardware anchor is made of two main components: a cross-

boundary interface and a software operation checker. The cross-

boundary interface enables communication and information ex-

change between the OS kernel and the processor. The anchor re-

ceives and interprets security instructions from the OS kernel, col-

lects system-level intelligence and enforces the security policies.

The security instruction is a new instruction added to the proces-

sor and behaves like a software interrupt with parameters passed

in general purpose registers. The intelligence information includes

boundaries of extensions, kernel function addresses and types (ex-

ported or non-exported), user-defined sensitive information, and

protected memory spaces. Since the security instruction fetch-

ing and decoding functionalities share the on-board processor re-

sources with normal instructions, the cross-boundary interface will

be seamlessly embedded with the processor. The information col-

lected through the interface will be stored inside secure hash tables

within the processor, and cannot be accessed by any other hardware

module.

The second anchor component, the system operation checker, is

also located in the processor and monitors OS operations based on

information collected through the cross-boundary interface. For ex-

ample, the OS will downcall the anchor to provide memory bound-

aries of extensions whenever they are installed in the system. The

hardware anchor will then record this information and block all of

the extension’s operations at the architectural level that violate the

security policies.

The system operation checker performs security validations to

make sure OS extensions operate within the restricted boundaries

defined by the security policies. The checker operates in a preven-

tive mode so that any operations issued by kernel extensions will

be checked for trustworthiness before they are performed. Sev-

eral types of security checks can be performed. For example, the

checker can monitor reads and writes in kernel space and calls to

kernel functions.

OS kernel security instructions are the software counterpart of

the hardware anchor. The OS kernel is modified to include calls to

the hardware at specific points in its execution. For example, im-

mediately after boot, the OS will perform calls to the hardware to

pass kernel function addresses. The kernel also calls the hardware

every time a new extension is installed/uninstalled to pass/remove

its boundaries in main memory. It also calls the hardware to pass

addresses of functions added by the extension. Whenever an exten-

sion allocates memory, the kernel calls the hardware to update the

extension boundary. A diagram of the proposed hardware anchor

enhanced architecture is shown in Figure 1.

Figure 1. Architecture - High level view.

3. EMULATOR-BASED PROTOTYPE
The immune system-inspired kernel defense approach involves

an OS that directly downcalls the hardware to pass information

about loading, unloading and memory boundaries of extensions.

Upon being processed by the CPU these downcalls are forwarded

to handlers at the architecture layer, which are also responsible for

maintaining the information passed. Figure 1 shows Ianus’ high

level view, which has the following key features: OS downcalls,

downcall processing handlers, extensions’ information kept in the

architecture layer, and a checker for memory writes and function

calls.

Downcalls are direct calls from the OS to the CPU (Step 1 in

Figure 1) and can have a variable number and type of parameters.

Ianus has downcalls for extension loading, unloading, and dynamic

allocation and deallocation of kernel memory. Every time an exten-

sion is loaded, the OS downcalls the CPU to pass the extension’s

name and the address and size of its object code. The extension’s

name uniquely identifies it in the system. When an extension al-

locates memory, the OS downcalls the CPU passing information

about the address and size of the area. Memory dynamically allo-

cated by extensions, despite being part of the kernel, do not receive

the same level of protection given to original kernel data areas. The

security policy adopted is to not allow kernel code and data being

overwritten (bypassing kernel exported functions) by extension’s

instructions, which are considered low integrity. However, exten-

sions cannot be prevented from writing into their own allocated

memory areas, which requires tracking at the architecture layer.

When an extension frees memory, the OS downcalls the CPU to

provide it with the memory region address. Memory deallocated

by an extension is considered again a high-integrity area of kernel

space.

Upon receiving a downcall the CPU delegates its processing to

specific handlers (Step 2 in Figure 1), which create objects rep-

resenting extensions and their attributes in the architecture layer.

Extensions’ memory boundaries (a range of linear addresses) are

kept in an internal hash table per extension at the architecture

layer. When an extension is unloaded the handler destroys the cor-

responding extension’s object and removes the extension’s corre-

sponding linear addresses from the extension’s hash table. When-

ever kernel memory is allocated the handler checks if the instruc-

tion performing the allocation belongs to any of the extensions and

if it does, the handler inserts this area into the extension’s hash

table. Finally, when kernel memory is deallocated, the handler

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 24

checks if the area belongs to any of the extensions active in the

system and if it does, this memory region is removed from the ex-

tension’s hash table of linear addresses.

3.1 Assumptions and Threat Model
This paradigm assumes an active OS which, like the immune

system, is in charge of its own protection against its community of

extensions with the support of the architecture layer. It is assumed

that most kernel extensions are benign, but a small fraction of them

will attempt to compromise the kernel and execute malicious ac-

tions.

It is also assumed an establishment time immediately after boot

and all code and data present in the system before it are considered

trustworthy. All extensions installed in the system are monitored,

but they do not suffer any restriction on their execution, as long as

they do not attempt to bypass kernel exported functions and write

into the kernel code and data segments.

3.2 Implementation
An emulator-based proof-of-concept prototype, Ianus, was im-

plemented to evaluate this architecture. Ianus used the Bochs x86

32-bit emulator as the architecture layer and Linux Ubuntu 10.04

kernel version 2.6.32 as the guest OS. Bochs was used due to its

flexibility for performing architectural changes. The modifications

in the guest OS consisted of a total of seven downcalls added to the

kernel as assembly instructions. Bochs was extended with downcall

processing handlers, an anchor instruction (downcall), data struc-

tures for keeping extensions’ attributes and range of memory areas,

and a checker invoked in all functions performing writes in main

memory.

3.2.1 OS Downcalls and Handlers

The downcalls are implemented as an unused software interrupt

in the Intel 32-bit x86 architecture (unused vector 15). The INT

n instruction generates a call to the interrupt or exception handler

specified by the destination operand. This operand (the interrupt

vector) is an 8-bit number from 0 to 255, which uniquely identifies

the interrupt. Vector 15 is reserved by Intel and is not in use. The

INT n instruction was modified to handle vector 15 and this new

software interrupt is handled similarly to how system calls are pro-

cessed with parameters passed in general purpose registers (EAX,

EBX, ECX, EDX, ESI, EDI, and EBP).

The extensions’ downcalls were placed in the system calls

sys_init_module and sys_delete_module. It was necessary to

insert two different downcalls in sys_init_module because dur-

ing extension loading, after the initialization function is invoked,

the memory area corresponding to the extension’s init part is freed.

The first downcall is placed after the extension’s initialization func-

tion is invoked and passes the extension’s name, and the address

and size in bytes of the extension’s init and core parts. The corre-

sponding handler adds the memory range of the init and core parts

(as linear addresses) into the extensions’ hash table at the architec-

ture layer.

After sys_init_module invokes the initialization function, a

second downcall signals the architecture layer that the extension’s

init part will be freed. The corresponding handler removes the init

memory region from the extensions’ hash table. A downcall is also

inserted in the system call sys_delete_module (invoked when

an extension is unloaded) to remove the extension’s information

(attributes and memory regions) from the architecture layer.

Downcalls were also placed into the kernel functions kmalloc()

and vmalloc() to handle memory dynamically allocated by ex-

tensions. The addresses of the callers of these allocation functions

were obtained using the __builtin_return_address gcc hack

to the Linux kernel [17], and allowed the architecture layer handlers

to discover whether the caller function belonged to any of the active

extensions. This strategy allows the distinction between memory

allocations made by an extension and by the original kernel. If the

address of the caller belongs to any of the extensions, the handler

adds this newly allocated memory region to the extensions’ hash

table. Downcalls were also inserted in the corresponding dealloca-

tion functions kfree() and vfree(). The corresponding downcall

handlers check whether the caller’s address belongs to any of the

active extensions tracked and if it does, remove the freed memory

range from the extensions’ hash table.

The downcall handlers at the architecture layer must translate

virtual addresses from the OS into linear addresses. Each virtual

address is represented by a segment and an offset inside this seg-

ment. The virtual addresses are included in the machine language

instructions to specify the address of an operand or instruction. For

example, in the assembly instruction MOVE EDI,[EBX], the con-

tent of memory location given by register EBX is stored into reg-

ister EDI. In this case, register EBX contains the offset of a virtual

address in a particular segment. However, the security mechanisms

at the architecture layer deal with linear addresses. In the Intel x86

architecture (used in this work) a linear address is a 32-bit number

used to address a memory range up to 4 GB (addresses 0 to 232−1).

Linux employs a limited form of segmentation by using three

registers (cs, ds, and ss) to address code (CS), data (DS) and

the stack (SS) segments. Processes running at user-level mode use

these registers to address respectively the user code, data and stack

segments. Code executing at kernel-level use these registers to ad-

dress the kernel data, code and stack.

Each handler, upon receiving a virtual address from the OS in

one of the general purpose registers must translate it into a linear

address. The virtual address (segment and offset) is forwarded to

the segmentation unit in the architecture layer and translated into a

32-bit linear address that can be used to index the extensions’ hash

table. Downcalls passing memory addresses can refer to data struc-

tures stored in the kernel DS or code in the kernel CS. For instance,

the name of an extension or the address of a dynamically allocated

memory region are located in the kernel DS. An extension’s core

and init parts reside in the kernel CS.

3.2.2 OS and Downcall Integrity

A key requirement of the proposed architecture is to guarantee

the integrity of the OS downcalls. A kernel extension does not have

privileges to issue downcalls and should not tamper with downcalls

issued by the original kernel. This policy prevents a malicious ex-

tension from issuing a bogus downcall, or tampering with informa-

tion passed by the original kernel to the architecture layer. These

goals are addressed through the verification of all writes into kernel

code and data segments and the origin of a downcall instruction.

The first security policy adopted is that kernel extensions are not

allowed to perform write operations into the kernel code and data

segments. The architecture layer contains a module for checking

the validity of all write operations performed in the kernel code

and data segments using Algorithm 1. This check is performed

immediately before an instruction attempts to write a value into a

memory location (mAddr). The architectural functions that per-

form writes into memory were instrumented to invoke the checker

before any write is performed in main memory.

Whenever a write operation is about to be performed, it is

checked whether the write is being attempted at kernel mode. This

is done by checking the CPL value, which is represented by a 2-bit

field in the cs register. Then it is checked whether the linear ad-

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 25

Algorithm 1 Checker for the validity of write operations in main

memory

Input: mAddr, the address to be written in memory and iAddr

the address of the instruction performing the store operation.

Output: An exception is raised if the write is invalid.

if (CPL == 0) && (ISADRESSFROMEXTENSION(iAddr)) &&

(!ISADDRESSFROMEXTENSION(mAddr) then

if (segment 6= SS) then

EXCEPTION

else

if (lAddr > EBP) then

EXCEPTION

end if

end if

end if

function ISADDRESSFROMEXTENSION(addr)

for i = 0 to Extension.length do

if Extensioni[addr] then

return true

end if

end for

end function

dress of the instruction storing data (iAddr) into memory belongs

to any of the extensions’ memory region monitored at the architec-

ture layer. Next, it is checked whether the memory address being

written (mAddr) belongs to an extension itself, which is not con-

sidered a security violation. Following, the segment being written

is checked. If the write is attempted at the data or code segments,

an exception is raised because it is considered a security violation

(Step 4 in Figure 1). If the segment is SS (stack) it is checked

whether the target address is higher than the current value of reg-

ister EBP. If it is higher, this is an indication of a stack corruption

attempt and an exception is raised. The kernel has the discretion

to treat this policy violation the way it finds most appropriate. One

possible action is to unload the offending extension from the sys-

tem.

The integrity of downcall instructions is checked with architec-

tural support. Upon execution of the INT $15 instruction it is

checked whether the instruction bytes come from an extension.

This is done by hashing the current instruction linear address to

the hash tables that maintain the memory regions for extensions.

If the instruction belongs to any of the extensions, an exception is

raised.

3.2.3 Monitoring Non-Exported Function Calls

In the proposed architecture extensions interactions with kernel

functions are monitored. Extensions are supposed to only invoke

kernel exported functions. A function call checker intercepts all

CALL instruction invoked by an extension and verifies whether its

target address belongs to an exported function. If the target ad-

dress of the CALL instruction corresponds to a non-exported func-

tion (from the kernel or other extensions) or even to an address that

does not correspond to a function (an indication of a return-oriented

attack [18]), the CPU raises an exception.

The addresses of all kernel functions (exported and non-

exported) are obtained from the System.map file created during ker-

nel compilation and made available to the architecture layer. Func-

tions are distinguished from static data structures by the symbol

type or by where the symbol is located. For example, if the symbol

belongs to the text section, it corresponds to a function. Exported

symbols are identified by their prefix: in System.map all exported

symbols start with the prefix ksymtab.

Extensions also contain their own symbols (static data structures

and functions) and can export some of them. Whenever an ex-

tension is installed, the OS extracts information about its symbols

(names, types, virtual addresses and whether they are exported) and

executes a downcall to make this information available to the ar-

chitecture layer. Extensions’ symbols information in Linux can be

obtained through the sym field in the module struct (exported

symbols), and through the extension’s symbol tables contained in

the __ksymtab, __ksymtab_gpl and __kstrtab sections of the

extension code segment (all symbols) [19]. When an extension is

unloaded, its symbols are removed from the kernel and from the

architecture layer. The complete information about kernel and ex-

tension’s symbols is kept at the architecture layer in a hash table

indexed by the symbol’s address (linear address).

Whenever the CPU is about to execute a CALL instruction, the

following checks are performed. First the function call checker

determines if the function invocation is being performed at kernel

level. Following, it determines whether the CALL function comes

from a extension’s code. Next, it is determined whether the CALL

target can be found in the symbols table at the architecture layer

and whether the symbol is exported. If the symbol is not exported

it is verified whether the extension invoking the function actually

owns it, which is allowed. If those checks do not pass, an exception

is raised. Another possibility is the target of the CALL instruction

not belonging to any symbol in the kernel or in its extensions. In

this case, the symbol is not a function, which is an indication of a

return-oriented attack [18].

3.2.4 Monitoring Extensions’ Access to Data Struc-
tures

Algorithm 1 can be extended for fine-grained monitoring of how

extensions access kernel data structures. Data structures allocated

by the kernel should only be modified by extensions indirectly

through kernel exported functions. A direct access to a kernel data

structure is considered a security vulnerability. Knowledge about

the boundaries of all dynamic and static data structures in main

memory is required for the monitoring of read/write access to ker-

nel data structures by extensions. The boundaries of kernel static

data structures can be found in the System.map file as explained in

section 3.2.3.

Dynamically allocated data structures, however, cannot be found

in a static file such as System.map as they are unknown at com-

pilation time. In Linux dynamic data structures are created via the

slab allocator [20], which divides groups of objects into caches that

store a different type of object. For example, the task_struct

cache is a group of data structures of this type. In the slab allocator,

three functions control the dynamic allocation/deallocation of ker-

nel data structures: kmem_cache_create, kmem_cache_alloc,

and kmem_cache_free. The first function, kmem_cache_create

is invoked only once when the system is booted and creates a new

cache for a particular type of data structure, e.g., task_struct.

The second function kmem_cache_alloc is used to allocate mem-

ory for a new data structure for the cache type passed as argument

(the cache type determines the type of the data structure). For ex-

ample, the cache mm_struct is used to allocate data structures of

that corresponding type. The third function kmem_cache_free is

used to return the memory area allocated to a data structure to the

corresponding cache when it needs to be deallocated.

In Ianus the slab allocator’s functions from the OS are instru-

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 26

mented to inform the architecture layer whenever a data structure

of a particular type is created and freed. Two hash tables at the

architecture layer are used to keep this information. The first, the

Data Structure Type is indexed by the data structure’s type (the

cache name) and also contains its size in bytes. Whenever a new

cache is created, a new entry is inserted in this table. The second

hash table, called Data Structure, is indexed by the data structure’s

linear address and keeps up-to-date information about the active

data structures in the kernel. Whenever a kernel data structure is

created, a new entry is inserted in this table. When a data structure

is deallocated its entry is removed from the table.

In this extension, Algorithm 1 works as follows. After verifying

that the segment being written is not the stack (segment 6= SS), it

checks whether the segment being written is the data segment (DS).

If it is, the memory checker records in a file, which is available

to the system administrator, the type of the data structure being

accessed.

3.3 Aspects of the Hardware Implementation
In the current hardware implementation, the anchor is embedded

in the open-source SPARC V8 processor, as per the diagram shown

in Figure 2. It includes the cross-boundary interface, the software

security checker, and hash tables to store system level intelligence,

such as extensions boundaries and addresses of kernel functions

and static data structures. The hardware anchor monitors all traffic

through the processor and takes control when a recognized down-

call is issued through the interface. When a recognized downcall is

fetched, the anchor halts the Integer Unit (IU), transfers the control

of incrementing the program counter to the Anchor Control Unit

(ACU), and ports the instruction-cache (I-cache) and data-cache

(D-cache) data wires to the ACU. In this way, the SPARC architec-

ture specific interrupt handling is suspended and subsequent fetch,

decode, and execution stages are controlled by the ACU only.

Many OS downcalls will pass virtual addresses through the an-

chor, for instance the initial virtual address of a recently loaded

extension. Therefore, the ACU also acts to control the Memory

Management Unit (MMU) by severing the MMU input/output lines

from the processor and porting them to the anchor. Subsequent

MMU virtual-to-physical translations will operate on virtual ad-

dresses passed by the OS through the anchor. The physical ad-

dresses are returned to the ACU to be stored as system level intelli-

gence needed for enforcement of security policies. Once the ACU

finishes operating on the passed OS intelligence, control is given

back to the IU and the input/output lines are returned to normal

functionality. The ACU acts as the processor control unit by direct-

ing data flow when an OS downcall is issued. The hash tables that

store system-level intelligence are part of the hardware anchor and

are not accessible to any other component of the processor.

4. EXPERIMENTAL EVALUATION
This section presents the results of the experiments validating

Ianus. All experiments were executed in an Intel quad core 3.8

GHz with 16 GB RAM and running Linux Ubuntu 12.04 as host

OS. Each performance experiment was executed ten times and

the results were averaged. The evaluation assessed Ianus secu-

rity and performance. The security analysis investigated whether

Ianus guaranteed the integrity of the downcalls and the informa-

tion passed through them, the protection level against kernel-level

malware (rootkits), and whether or not it caused disruption in the

normal operation of benign modules (false positives). The perfor-

mance analysis investigated Ianus’ overhead to the system (OS, ar-

chitecture layer and the two combined).

Figure 2. Hardware Anchor - Detailed view.

4.1 Security Analysis
Ianus’ security was analyzed against real rootkits that exercised

the following security concerns: (i) tampering with kernel code

and data, (ii) tampering with downcall parameters, and (iii) issuing

bogus downcalls. False positives were also evaluated with benign

kernel modules and drivers. Table 1 shows the rootkits tested in

this evaluation. The last two rootkits in the table were implemented

by the authors and this section details their interactions with Ianus’

security mechanisms.

4.1.1 Tampering with Kernel

The authors implemented a kernel rootkit (General Keylogger)

as a loadable kernel module (LKM) that attempts, like most rootk-

its, to corrupt the OS’s system call table. In its initialization func-

tion the rootkit replaces a pointer to a legitimate system call func-

tion with a pointer to its malicious version of the system call. This

is a very common type of kernel attack in spite of recent Linux

versions attempting to make the system call table inaccessible to

kernel extensions. The rootkit has keylogging capabilities and was

based on the system call hijacking approach described in [21]. The

rootkit hijacks the system call table by first locating its address in

the kernel through brute force and writes into the system call table

by first setting the CR0 register’s first bit to 0, which changes the

CPU from protected to real mode. After tampering with the sys-

tem call table, the rootkit puts the CPU back to protected mode.

These actions were done with the kernel functions read_cr0 and

write_cr0.

When this malicious extension is loaded, the architecture layer

has complete information about its boundaries in memory. When

the initialization function is invoked, one of its instructions at-

tempts to perform a write operation in an area which is part of the

kernel data segment. The goal is to overwrite this area with a ma-

licious address into one of the slots of the system call table. The

write operation is checked at the architecture level and it is detected

that (i) it is performed in kernel mode, (ii) the target memory loca-

tion is in the kernel data segment, (iii) the instruction bytes come

from the text of the extension’s init part, and (iv) the memory area

being written is not part of any extension’s dynamically allocated

memory region. The write operation is aborted (thus preventing

any compromise) with the CPU raising an exception handled by

the OS. All other rootkits that operate by tampering with the sys-

tem call table were stopped similarly.

4.1.2 Issuing a Bogus Downcall

Here the goal was to evaluate whether or not kernel-level mal-

ware could issue bogus downcalls to the CPU. The authors im-

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 27

Table 1. Rootkits used in the security evaluation.

Name Attack approach Functionalities
KBeast system call hooking network activity, process and file hiding, keylogging,

anti-delete, anti-kill and anti-remove
bROOTus system call hooking covert channel, module, process and file hiding, keylog-

ging and privilege escalation
LVTES system call hooking keylogging
rkit system call hooking privilege escalation
kbd_notifier registration of malicious function

with notifier chain
keylogging

Bogus Downcall direct invocation of INT $15 issuing of a bogus downcall to the hypervisor
General Keylogger system call hooking keylogging

Table 2. Extensions’ access to functions in kernel space - Benign drivers and modules.

Module Number of Exported Symbols Security issues

Drivers loaded during boot

i2c_piix4 0 none

serio_raw 0 none

floppy 0 none

parport_pc 2 invocation of add_dev (from parport)

parport 32 invocation of parport_pc_data_forward (from parport_pc)

psmouse 0 none

ppdev 0 none

lp 0 none

8390 11 invocation of __ticket_spin_unlock (from kernel)

ne2k_pci 0 none

Benign extensions from SourceForge

frandom 1 none

tier 0 none

rxdsk N/A none

usb_vhci_iocifc N/A none

usb_vhci_hcd N/A none

tty0tty 0 none

plemented a rootkit that attempted to perform a downcall passing

fabricated parameters to the CPU. The downcall was issued in the

rootkit’s initialization function. As in the previous examples, im-

mediately before the initialization function is invoked the architec-

ture layer is keeping track of all memory areas in use by the exten-

sion. The extension’s initialization function is invoked and issues a

downcall causing the CPU to execute instruction INT $15. Upon

executing the interrupt instruction the origin of its bytes is verified

at the architecture layer by hashing the instruction linear address to

the hash tables that maintain the extensions’ memory regions. The

hash is a hit, which shows that the downcall is being issued by an

extension, and an exception is raised.

The only rootkit Ianus was not able to contain was the

kbd_notifier keylogger [22], which operates without the need

to tamper with kernel code and data. It is a stealthy rootkit that

works by registering a malicious function with the kernel keyboard

notifier chain, which is invoked whenever a keyboard event occurs

and allows the malware to record the keys pressed by a user at the

kernel level.

4.1.3 Extensions’ Access to Kernel Functions

Another important aspect of the evaluation was to analyze Ianus’

behavior when executing kernel extensions. The common assump-

tion is that benign extensions will only access kernel exported

functions to perform their tasks. Table 2 illustrates the evaluation

done with benign drivers installed during boot and benign exten-

sions from SourceForge [23]. From the set of extensions analyzed,

three benign drivers invoke non-exported functions from other ex-

tensions and the kernel. These issues caused the CPU to raise an

exception to the OS.

Table 3 shows how real rootkits access kernel functions. In gen-

eral, rootkits need to invoke a great number of kernel non-exported

functions to operate. The only exception was the kbd_notifier

keylogger.

4.1.4 Extensions’ Access to Kernel Data Structures

Table 4 shows that, in general, benign extensions and drivers do

not directly access kernel data structures. The only exceptions were

the parport and floppy drivers, which access the task_struct

of a process. Rootkits, on the other hand, need to tamper with

some kernel data structure to succeed and the vast majority of

them tamper with the system call table. The only exception is the

kbd_notifier keylogger [22], which operates without the need to

tamper with kernel code and data.

4.2 Performance Analysis
This section analyzes Ianus’ performance impact in the whole

system using system microbenchmarks from Unixbench [24] and a

subset of the SPEC CPUINT2006 benchmark suite [25]. The exe-

cution times were normalized to the execution time of the system

without any modifications to the OS and the Bochs x86 emulator.

Using the unmodified Bochs as a basis for normalization allowed

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 28

Table 3. Extensions’ access to functions in kernel space - Rootk-

its.

Module Number of Non-exported

exported functions invoked

symbols

rkit 0 native_read_cr0(kernel)

bROOTus 0 __ticket_spin_unlock(kernel)

sys_read(kernel)

sys_getdents64(kernel)

sys_readdir(kernel)

udp4_seq_show(kernel)

tcp4_seq_show(kernel)

KBeast 0 native_read_cr0(kernel)

sys_read(kernel)

sys_write(kernel)

sys_getdents64(kernel)

sys_open(kernel)

sys_unlink(kernel)

sys_unlinkat(kernel)

sys_rename(kernel)

sys_rmdir(kernel)

sys_delete_module(kernel)

sys_kill(kernel)

kbd_notifier 0 none

LVTES 0 native_read_cr0(kernel)

sys_read(kernel)

sys_getdents64(kernel)

sys_write(kernel)

sys_open(kernel)

sys_close(kernel)

the evaluation to be focused on the actual overhead of the security

mechanisms and not on the Bochs overhead as an Intel x86 emula-

tor.

Figure 3(a) shows the performance overhead of the OS down-

calls during normal OS operation for Unixbench. These bench-

marks exercised execl calls, file reads and writes (fsbuffer,

fsdisk and fstime), pipe throughput (pipe) and pipe-based con-

text switch (context1), process creation (spawn) and system call

overhead (syscall). For these experiments Unixbench ran with

the modified and the unmodified version of the guest OS. The goal

here was to isolate the performance overhead of downcall issuing

at the OS for intense system-level activity. Figure 3(a) shows that

the overhead of downcall issuing at the OS is negligible (average

2%) for most of the system benchmarks.

Figure 3(b) shows the performance analysis for five benchmarks

from SPEC CPUINT2006. The overhead was measured for two

different situations. In the first (OS Downcalls), the system was

running the modified version of the OS containing all downcall is-

suing. Here the goal was to evaluate the overhead to the OS for

a CPU intensive benchmark. The second setting (Downcall han-

dling) had the same configuration as the first, but now the downcalls

were being processed by the handlers at the architecture layer. Fig-

ure 3(b) corroborates Figure 3(a) results in the sense that the down-

call issuing overhead at the OS is very low. Downcall processing

caused an increase of 12% on average to the execution time of the

SPEC CPUINT benchmarks at the architecture layer. The overhead

of 12% is low when we consider that certain types of applications

that require a high level of security, (e.g., a power grid or a server

at a national security agency), can trade performance for security.

The hash tables at the architecture layer required less than 5 MB of

Table 4. Extensions’ access to kernel data structures.

Module Access type Data Structure

Drivers loaded during boot

i2c_piix4 N/A none

serio_raw N/A none

floppy Read task_struct

parport_pc N/A none

parport Read task_struct

psmouse N/A none

ppdev N/A none

lp N/A none

Benign modules from sourceforge

frandom N/A none

tier N/A none

rxdsk N/A none

usb_vhci_iocifc N/A none

usb_vhci_hcd N/A none

tty0tty N/A none

Rootkits

rkit Write/Read sys_call_table

brootus Write/Read sys_call_table

ipsecs_kbeast_v1 Write/Read sys_call_table

new_read Write/Read sys_call_table

kbd_notifier N/A none

hijack_syscall Write/Read sys_call_table

lvtes Write/Read sys_call_table

main memory.

5. DISCUSSION
Similar to OS kernels, modern hardware design has increasingly

relied on third party extensions. Under the current hardware design

methodology, only the core processor/microprocessor designed in-

house goes over full functionality and security testing and is con-

sidered trustworthy. Peripheral IP (Intellectual Property) modules

and firmware extensions are often not fully tested to save cost, to

shorten time-to-market, or to increase the reusability of the de-

signed systems. However, third-parties IP cores can contain mali-

cious logic and hardware also needs to co-exist with untrustworthy

but needed extensions [26, 15, 27].

The proposed architecture can be broadened to include the hard-

ware itself in the protection mechanisms. Hardware policies can

be added to the architecture so that the hardware can be protected

holistically with the aid of OS intelligence. OS intelligence can

help define the trusted boundaries for legitimate operations of each

IP module as well as the nominal time lengths of bus occupation

in order to prevent false positives when detecting DoS (denial-

of-service) style Trojans. For example, if data encryption is per-

formed, then the key, the plaintext, and the intermediate results are

sensitive information that only the cryptographic co-processor can

access. The addresses of the sensitive information in memory are

then passed to the hardware anchor as part of the OS intelligence.

All other IP modules are prohibited from visiting the memory space

where the sensitive data is stored. Including the hardware in the se-

curity policies also addresses concerns of HW-SW integration vul-

nerabilities: modern computer systems are not prepared to counter

attacks that rely on the interaction between HW-SW pairs.

Another key innovation of the proposed HW-SW collaborative

architecture is the ability to build a system with any combination

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 29

(a) Unixbench

(b) SPEC CPU INT

Figure 3. Performance overhead.

of OS and hardware security policies chosen by a system designer

or integrator at the time the system is built. Each policy implemen-

tation contains an OS and a hardware component. At the hardware

side, the security policies are all part of the anchor functionality,

but are only effective if explicitly applied by the OS through the

anchor. Under this architecture a security policy can be explicitly

disabled by the OS due to performance or false positive concerns.

Benign kernel extesions coming from the network that modify

kernel data structures without using an exported kernel function

will have their actions reported as a kernel integrity violation. This

situation can be overcome if such extensions are obtained from a

network interface that the system considers high integrity or if they

are installed in the system before the establishment time.

Attacks that do not need to write into kernel space to succeed

[28] or that compromise a hypervisor [29, 30] or that write into

kernel memory through trusted code paths in the kernel are beyond

of the scope of Ianus. Further, the target of JMP instructions, which

can be leveraged by a rootkit to bypass Ianus’ checks, are not cur-

rently checked in the prototype.

6. RELATED WORK
A great amount of research has been done regarding hypervisor-

based kernel protection and security solutions leveraging traditional

introspection. This section discusses relevant work in VM-based

introspection, kernel integrity defenses, and hardware support for

system security.

6.1 Virtual Machine Introspection
VM-based intrusion detection systems leverage introspection in

two ways: passive [5, 31] and active [9, 32, 33]. Passive intro-

spection accesses a guest OS memory to reconstruct its state and

abstractions. The OS state is recreated from low level data such as

memory page frames.

Active introspection addresses better the semantic gap problem

by allowing a more up-to-date view of a guest OS state. Xenprobes

[32] and Lares [9] place hooks inside the guest OS to intercept

some key events, and invoke a security tool residing at VM level

to treat the event. HIMA [33] is a VM-based agent to measure the

integrity of a guest OS by intercepting system calls, interrupts and

exceptions. All of these approaches (passive and active) consider

the guest OS untrustworthy and do not actively interact or leverage

it in the introspection process. This limits the amount and variety

of system-level information that can be collected. L4 microker-

nels ([34]) functioning as a hypervisor also requires a L4-aware OS

which downcalls the hypervisor and resembles the idea of down-

calls of this work. The OS modifications turn system calls, mem-

ory and hardware accesses into calls to the hypervisor. Differently

from L4 microkernel, the purpose of the OS downcalls in Ianus is

exclusively for aiding security.

Recently, researchers have been working on better ways to per-

form traditional introspection, which is an error-prone and manual

process. Chiueh et al [35] propose to inject stealthy kernel agents

to a guest OS to enable virtual appliance architectures to perform

guest-OS specific operations. Virtuoso [11] creates introspection

tools for security applications with reduced human effort. SIM [36]

enables security monitoring applications to be placed back in the

untrusted guest OS for efficiency. It still suffers from the same se-

mantic gap challenges as traditional introspection approaches be-

cause it was not designed to rely on data from the guest OS. Fu

and Lin [37] apply system-wide instruction monitoring to automat-

ically identify introspection data and redirect it to the in-guest ker-

nel memory. A limitation is that certain types of data cannot be

redirected, limiting the amount of guest OS information that can be

obtained. Other line of work [38, 39], based on process migration,

proposes to relocate a suspect process from inside the guest OS to

run side by side with an out-of-VM security tool. The challenge is

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 30

that some processes are not suitable for migration.

6.2 Kernel Integrity Defense
Many authors have previously addressed kernel protection. The

works focusing on prevention use some form of code attestation or

policy to decide whether or not a piece of code can be executed

in kernel mode. SecVisor [7] employs a hypervisor to ensure that

only user-approved code executes in kernel mode: users supply a

policy, which is checked against all code loaded into the kernel.

NICKLE [8] uses a memory shadowing scheme to prevent unautho-

rized code from executing in kernel mode. A trusted VM maintains

a shadow copy of the main memory for the guest OS and performs

kernel code authentication so that only trusted code is copied to the

shadow memory. During execution, instructions are fetched only

from the shadow memory. Code attestation techniques [6] verify a

piece of code before it gets loaded into the system

Some approaches can offer some protection against non-control

data attacks [40] that tamper with kernel data structures by directly

injecting values into kernel memory. Livewire [5] is a VM archi-

tecture with policies for protecting certain parts of the kernel code

section and the system call table. KernelGuard [41] prevents some

dynamic data rootkit attacks by monitoring writes to selected data

structures. Oliveira and Wu [42] used a performance expensive dy-

namic information flow tracking system (DIFT) and a set of shadow

memories to prevent untrusted bytes to reach kernel space.

There are also many works addressing detection. Copilot [43]

uses a PCI add-in card to access memory instead of relying on the

kernel. Lycosid [44] and VMWatcher [45] perform detection based

on a cross-view approach: hiding behavior is captured by compar-

ing two snapshots of the same state at the same time but from two

different points of view (one from the malware and the other not).

OSck [46] protects the kernel by detecting violation in its invariants

and monitoring its control flow.

The difference between this work and previous research in VM

introspection and OS protection is that here the OS, like our im-

mune system, has an active role in its protection against compro-

mise from kernel extensions. The architectural layer acts only as

a collaborative peer leveraging the key information about exten-

sions passed by the OS to monitor the interactions of extensions

and the original kernel. Having the OS in charge of monitoring

itself streamlines kernel defense when compared to related work

based on manual and error-prone introspection.

6.3 Extension Isolation
A great body of work in the literature focus on isolating or con-

fining the effects and execution of device drivers and modules.

Nooks [47] introduced the concept of shadow drivers and isolate

them in a separate address space so that they can be recovered after

a fault. HUKO [48] and Gateway [10] built on this idea by leverag-

ing hypervisor support to protect the approach that confine modules

in a separate address space from a compromised OS. Ianus’s goals

are similar to Nooks, HUKO, Gateway in the sense of protecting the

kernel from malicious or misbehaving extensions. However, Ianus

does not attempt to physically isolate the kernel from its extensions,

but provide a way for them to co-exist. This provided much more

flexibility to the system. For example, Section 4 showed that many

drivers do invoke kernel (and other module’s) non-exported func-

tions and their execution would be disrupted in HUKO or Gateway.

Ianus can be fine tuned to allow more privileges to certain modules

known to be benign. Also, the proposed architecture can be ex-

tended to include the hardware itself in the protection mechanisms.

Some lines of work advocate running drivers partially or entirely

in user space. Ganapathy et al [49] introduced the idea of micro-

drivers in which drivers execute partly in user space and partly

in the kernel. Nexus [50] and SUD [51] confine buggy or mali-

cious device drivers by running them in user-level processes. Some

works attempt to achieve driver isolation in software, such as SFI

[52], where the object code of untrusted modules are rewritten to

prevent their code from jumping to an address outside of their ad-

dress space. The proposed architecture allows extensions to be ex-

ecuted without any modifications.

6.4 Hardware Infrastructure for System Se-
curity

Besides the software approaches, researchers have also proposed

to rely on enhanced hardware infrastructure to protect system secu-

rity. Hardware architectures to prevent memory corruption bugs

and to prevent information leakage were developed for information

flow integrity within computer systems. However, vulnerabilities

were detected in these methods through which attackers can by-

pass the protection schemes. Chen et al proposed a HW-SW ar-

chitecture supporting flexible and high-level software policies for

sensitive data protection. Similar approaches were also developed

in the area of embedded systems, where limited on-chip resources

are available [53, 54, 55, 56, 57, 58, 59, 60].

The main difference of these works and the proposed architec-

ture is that these approaches work in isolation with the hardware

and the OS. As discussed in Section 5, this collaborative architec-

ture can be extended to include security policies to protect the hard-

ware itself and offer a flexible set of security policies that can be

customized during system build time. The proposed architecture

offers a system builder great flexibility for balancing security, per-

formance and false positives.

7. CONCLUSIONS
Current OS defense approaches are single-layered and operate in

isolation with the hardware, failing to recognize its key capabilities

for enforcing security policies. HW-SW cooperation is a promis-

ing approach to improve system trustworthiness because each layer

has access to a distinct set of intelligence and functionality, which

in combination can offer higher security guarantees than when op-

erating independently. This paper discussed a HW-SW architecture

for allowing an OS to safely co-exist with its extensions. This ar-

chitecture is inspired by the immune system collaborative defense

mechanisms that maintain a symbiotic relationship with its needed

but untrustworthy microbiota.

A proof-of-concept prototype for this architecture, named Ianus,

was implemented with Linux and the Bochs x86 emulator as the

collaborative architecture layer. Ianus’s was studied with several

real rootkits and benign extensions. In the experiments all mali-

cious rootkits were stopped and Ianus caused no false positives for

benign modules. Ianus’ performance was analyzed with system

and CPU benchmarks and the system overhead was low (12% on

average).

Acknowledgments

This research is funded by the National Science Foundation under

grant CNS-1149730.

8. REFERENCES

[1] “Symantec Internet Security Threat Report 2013

(http://www.symantec.com/security_response/

publications/threatreport.jsp).”

[2] J. Carr, Cyber Warfare. O’Reily, 2011.

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 31

[3] A. Kadav and M. M. Swift, “Understanding Modern Device

Drivers,” ASPLOS, 2012.

[4] L. Sompayrac, How the Immnune System Works.

Wiley-Blackwell, 4th ed., 2012.

[5] T. Garfinkel and M. Rosenblum, “A Virtual Machine

Introspection Based Architecture for Intrusion Detection,”

Network and Distributed System Security Symposium, 2003.

[6] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and

D. Boneh, “Terra: A Virtual Machine-Based Platform for

Trusted Computing,” ACM SOSP, 2003.

[7] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A

Tiny Hypervisor to Provide Lifetime Kernel Code Integrity

for Commodity OSes,” ACM SOSP, 2007.

[8] R. Riley, X. Jiang, and D. Xu, “Guest-Transparent

Prevention of Kernel Rootkits with VMM-based Memory

Shadowing,” RAID, 2008.

[9] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An

Architecture for Secure Active Monitoring using

Virtualization,” IEEE Symposium on Security and Privacy,

May 2008.

[10] A. Srivastava and J. Giffin, “Efficient Monitoring of

Untrusted Kernel-mode Execution,” NDSS, 2011.

[11] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,

“Virtuoso: Narrowing the Semantic Gap in Virtual Machine

Introspection,” IEEE Security and Privacy, 2011.

[12] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,

J. Rhee, and D. Xu, “DKSM: Subverting Virtual Machine

Introspection for Fun and Profit,” IEEE Symposium on

Reliable Distributed Systems (SRDS), pp. 82–91, 2010.

[13] “bochs: the Open Source IA-32 Emulation Project

(http://bochs.sourceforge.net).”

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI:

Identification of Stealthy Malicious Logic Using Boolean

Functional Analysis,” in Proceedings of the ACM SIGSAC

Conference on Computer & Communications Security, CCS

’13, pp. 697–708, 2013.

[15] S. Skorobogatov and C. Woods, “Breakthrough Silicon

Scanning Discovers Backdoor in Military Chip,” in

Cryptographic Hardware and Embedded Systems (CHES

2012), vol. 7428 of Lecture Notes in Computer Science,

pp. 23–40, Springer Berlin Heidelberg, 2012.

[16] A. Cui, J. Kataria, and S. Stolfo, “Killing the Myth of Cisco

IOS Diversity: Recent Advances in Reliable Shellcode

Design,” in USENIX Worshop on Offensive Technologies

(WOOT), 2011.

[17] “GCC Hacks in the Linux Kernel

(http://www.ibm.com/developerworks/linux/library/l-gcc-

hacks/).”

[18] H. Shacham, “The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls (on the x86),” ACM

CCS, pp. 552–561, 2007.

[19] D. P. Bovet and M. Cesati, Understanding the Linux Kernel,

Third Edition. O’Reilly, 2005.

[20] R. Love, Linux Kernel Development. Novell Press. 2005.

[21] “Syscall Hijacking

(http://memset.wordpress.com/2011/03/18/syscall-hijacking-

dynamically-obtain-syscall-table-address-kernel-2-6-x-2/)).”

[22] “How to: Building Your Own Kernel Space Keylogger.

(http://www.gadgetweb.de/programming/39-how-to-

building-your-own-kernel-space-keylogger.html).”

[23] “SourceForge.net: Open Source Software

(http://sourceforge.net).”

[24] “UnixBench (http://www.tux.org/pub/tux/benchmarks/).”

[25] “SPEC - Standard Performance Evaluation Corporation

(http://www.spec.org/cpu2006/).”

[26] E. Greenbaum, “Open Source Semiconductor Core

Licensing,” Harvard Journal of Law & Technology, vol. 25,

no. 1, pp. 131–157, 2011.

[27] A. Cui, M. Costello, and S. Stolfo, “When Firmware

Modifications Attack: A Case Study of Embedded

Exploitation,” in 20th Annual Network & Distributed System

Security Symposium (NDSS), 2013.

[28] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell,

“Cloaker: Hardware Supported Rootkit Concealment,” IEEE

Security and Privacy, pp. 296–310, 2008.

[29] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.

Wang, and J. R. Lorch, “SubVirt: Implementing Malware

with Virtual Machines,” IEEE Security and Privacy, May

2006.

[30] J. Rutkowska, “Subverting VistaTM Kernel For Fun And

Profit,” Black Hat Briefings, 2006.

[31] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection

Through VMM-based "Out-of-the-Box" Semantic View

Reconstruction,” ACM CCS, 2007.

[32] N. A. Quynh and K. Suzaki, “Xenprobes, A Lightweight

User-Space Probing Framework for Xen Virtual Machine,”

USENIX Annual Technical Conference, 2007.

[33] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “HIMA: A

Hypervisor-Based Integrity Measurement Agent,” ACSAC,

2009.

[34] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “seL4:

Formal Verification of an OS Kernel,” in Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles, SOSP ’09, (New York, NY, USA), pp. 207–220,

ACM, 2009.

[35] T. cker Chiueh, M. Conover, M. Lu, and B. Montague,

“Stealthy Deployment and Execution of In-Guest Kernel

Agents,” BlackHat, 2009.

[36] M. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure In-VM

Monitoring Using Hardware Virtualization,” ACM CCS,

2009.

[37] Y. Fu and Z. Lin, “Space Traveling across VM:

Automatically Bridging the Semantic Gap in Virtual

Machine Introspection via Online Kernel Data Redirection,”

IEEE Symposium on Security and Privacy, May 2012.

[38] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “"Process

Out-Grafting: An Efficient ‘Out-of-VM’ Approach for

Fine-Grained Process Execution Monitoring,” ACM CCS,

March 2011.

[39] Z. Gu, Z. Deng, D. Xu, and X. Jiang, “Process Implanting: A

New Active Introspection Framework for Virtualization,”

IEEE SRDS, 2011.

[40] S. Chen, J. Xu, and E. Sezer, “Non-Control-Hijacking

Attacks are Realistic Threats,” in USENIX Security, 2005.

[41] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating Dynamic

Data Kernel Rootkit Attacks via VMM-Based

Guest-Transparent Monitoring,” International Conference on

Availability, Reliability and Security, 2009.

[42] D. Oliveira and S. F. Wu, “Protecting Kernel Code and Data

with a Virtualization-Aware Collaborative Operating

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 32

System,” ACSAC, December 2009.

[43] N. Petroni, T. Fraser, and W. A. Arbaugh, “Copilot - a

Coprocessor-based Kernel Runtime Integrity Monitor,”

USENIX, 2004.

[44] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “VMM-based Hidden Process Detection

and Identification using Lycosid,” ACM VEE, 2008.

[45] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection

through vmm-based “out-of-the-box” semantic view

reconstruction,” ACM CCS, pp. 128–138, November 2007.

[46] O. S. Hofmann, A. Dunn, S. Kim, I. Roy, and E. Witchel,

“Ensuring Operating System Kernel Integrity with OSck,”

ASPLOS, 2011.

[47] M. Swift, B. N. Bershad, and H. M. Levy, “Improving the

Reliability of Commodity Operating Systems,” ACM SOSP,

pp. 207–222, 2003.

[48] X. Xiong, D. Tian, and P. Liu, “Practical Protection of

Kernel Integrity,” NDSS, 2011.

[49] V. Ganapathy, M. J. Renzelmann, M. M. S.

Arini Balakrishnan, and S. Jha, “The Design and

Implementation of Microdrivers,” ASPLOS, pp. 168–178,

Mar. 2008.

[50] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.

Schneider, “Device Driver Safety through a Reference

Validation Mechanism,” OSDI, pp. 241–254, 2008.

[51] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious

device drivers in Linux,” USENIX, 2010.

[52] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,

“Efficient Software-based Fault Isolation,” ACM SOSP,

pp. 203–216, 1993.

[53] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure

Program Execution via Dynamic Information Flow

Tracking,” in Proceedings of the 11th International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XI, pp. 85–96,

2004.

[54] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer,

“Defeating Memory Corruption Attacks via Pointer

Taintedness Detection,” in Dependable Systems and

Networks, 2005. DSN 2005. Proceedings. International

Conference on, pp. 378–387, June 2005.

[55] M. Dalton, H. Kannan, and C. Kozyrakis, “Deconstructing

Hardware Architectures for Security,” in 5th Annual

Workshop on Duplicating, Deconstructing, and Debunking

(WDDD) at ISCA, 2006.

[56] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A

Software-hardware Architecture for Self-protecting Data,” in

Proceedings of the 2012 ACM Conference on Computer and

Communications Security, CCS ’12, pp. 14–27, 2012.

[57] S. Mao and T. Wolf, “Hardware Support for Secure

Processing in Embedded Systems,” Computers, IEEE

Transactions on, vol. 59, no. 6, pp. 847–854, 2010.

[58] M. Rahmatian, H. Kooti, I. Harris, and E. Bozorgzadeh,

“Hardware-Assisted Detection of Malicious Software in

Embedded Systems,” Embedded Systems Letters, IEEE,

vol. 4, no. 4, pp. 94–97, 2012.

[59] N. Vachharajani, M. Bridges, J. Chang, R. Rangan,

G. Ottoni, J. Blome, G. Reis, M. Vachharajani, and

D. August, “RIFLE: An architectural framework for

user-centric information-flow security,” in Microarchitecture,

2004. MICRO-37 2004. 37th International Symposium on,

pp. 243–254, 2004.

[60] W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, and J. Yang,

“InfoShield: A Security Architecture for Protecting

Information Usage in Memory,” in High-Performance

Computer Architecture, 2006. The Twelfth International

Symposium on, pp. 222–231, 2006.

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 33

ABOUT THE AUTHORS:

Daniela Oliveira received her B.S. and M.S. degrees in Computer Science from the
Federal University of Minas Gerais, Brazil, in 1999 and 2001, respectively, and the
Ph.D. degree in Computer Science in 2010 from the University of California at
Davis. She is an Associate Professor in the Department of Electrical and Computer
Engineering at the University of Florida. Her main research interest is
interdisciplinary computer security, where she employs successful ideas from other
fields to make computer systems more secure. Her current research interests include
employing biology and warfare strategies to protect operating systems in
cooperation with the architecture layer. She is also interested in understanding the
nature of software vulnerabilities and social engineering attacks. She is the recipient
of the 2012 NSF CAREER Award and the 2012 United States Presidential Early
Career Award for Scientists and Engineers (PECASE).

Nicholas Wetzel received his B.S. degree in Computer Science from Bowdoin
College in 2014. He worked as an undergraduate research assistant at Daniela
Oliveira’s cyber security lab at Bowdoin for one year before she moved to the
University of Florida.

Max Bucci is currently a Computer Science major at Bowdoin College and expects
to receive his B.Sc. degree in Computer Science in 2015. He worked as an
undergraduate research assistant at Daniela Oliveira’s cyber security lab at Bowdoin
for one year before she moved to the University of Florida.

Jesus Navarro received his B.S. degree in Computer Science from Bowdoin College
in 2013. He worked as an undergraduate research assistant at Daniela Oliveira’s
cyber security lab at Bowdoin for two years before she moved to the University of
Florida. He works now as a software engineer at NVIDIA in Santa Clara, California.

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 34

Dean Sullivan received the B.S. degree in Electrical Engineering in 2013 and is
currently pursuing the Ph.D. degree in Computer Engineering from the University of
Central Florida. His current research focuses on designing security-enhanced
computer architecture that protects both software and hardware. His research
interests include computer architecture, secure HW/SW co-design, hardware security
and trust, and VLSI design.

Yier Jin received his B.S. and M.S. degrees in Electrical Engineering from Zhejiang
University, China, in 2005 and 2007, respectively, and the Ph.D. degree in Electrical
Engineering in 2012 from Yale University. Since 2012, he has been an assistant
professor in the EECS Department at the University of Central Florida. His research
focuses on the areas of trusted embedded systems, trusted hardware intellectual
property (IP) cores and hardware-software co-protection on computer systems. He is
also interested in the security analysis on Cyber-Physical Systems (CPS) and
Internet of Things (IoT) with particular emphasis on information integrity and
privacy protection.

APPLIED COMPUTING REVIEW SEP. 2014, VOL. 14, NO. 3 35

