
LAZARUS:
Practical Side-channel Resilient Kernel-Space

Randomization

David Gens1, Orlando Arias2, Dean Sullivan2, Christopher Liebchen1, Yier
Jin2, and Ahmad-Reza Sadeghi1

1 CYSEC/Technische Universität Darmstadt, Germany.
{david.gens,christopher.liebchen,ahmad.sadeghi}@trust.tu-darmstadt.de

2 University of Central Florida, Orlando, FL, USA.
{oarias,dean.sullivan}@knights.ucf.edu,yier.jin@eecs.ucf.edu

Abstract. Kernel exploits are commonly used for privilege escalation
to take full control over a system, e.g., by means of code-reuse attacks.
For this reason modern kernels are hardened with kernel Address Space
Layout Randomization (KASLR), which randomizes the start address of
the kernel code section at boot time. Hence, the attacker first has to by-
pass the randomization, to conduct the attack using an adjusted payload
in a second step. Recently, researchers demonstrated that attackers can
exploit unprivileged instructions to collect timing information through
side channels in the paging subsystem of the processor. This can be ex-
ploited to reveal the randomization secret, even in the absence of any
information-disclosure vulnerabilities in the software.
In this paper we present LAZARUS, a novel technique to harden KASLR
against paging-based side-channel attacks. In particular, our scheme al-
lows for fine-grained protection of the virtual memory mappings that
implement the randomization. We demonstrate the effectiveness of our
approach by hardening a recent Linux kernel with LAZARUS, mitigat-
ing all of the previously presented side-channel attacks on KASLR. Our
extensive evaluation shows that LAZARUS incurs only 0.943% overhead
for standard benchmarks, and therefore, is highly practical.

Keywords: KASLR, Code-Reuse Attacks, Randomization, Side Channels

1 Introduction

For more than three decades memory-corruption vulnerabilities have challenged
computer security. This class of vulnerabilities enables the attacker to overwrite
memory in a way that was not intended by the developer, resulting in a mali-
cious control or data flow. In the recent past, kernel vulnerabilities became more
prevalent in exploits due to advances in hardening user-mode applications. For
example, browsers and other popular targets are isolated by executing them in a
sandboxed environment. Consequently, the attacker needs to execute a privilege-
escalation attack in addition to the initial exploit to take full control over the

system [4, 17, 18, 19]. Operating system kernels are a natural target for at-
tackers because the kernel is comprised of a large and complex code base, and
exposes a rich set of functionality, even to low privileged processes. Molinyawe et
al. [20] summarized the techniques used in the Pwn2Own exploiting contest, and
concluded that a kernel exploit is required for most privilege-escalation attacks.

In the past, kernels were hardened using different mitigation techniques to
minimize the risk of memory-corruption vulnerabilities. For instance, enforcing
the address space to be writable or executable (W⊕X), but never both, prevents
the attacker from injecting new code. Additionally, enabling new CPU features
like Supervisor Mode Access Prevention (SMAP) and Supervisor Mode Execu-
tion Protection (SMEP) prevents certain classes of user-mode-aided attacks. To
mitigate code-reuse attacks, modern kernels are further fortified with kernel Ad-
dress Space Layout Randomization (KASLR) [2]. KASLR randomizes the base
address of the code section of the kernel at boot time, which forces attackers to
customize their exploit for each targeted kernel. Specifically, the attack needs to
disclose the randomization secret first, before launching a code-reuse attack.

In general, there are two ways to bypass randomization: (1) brute-force
attacks, and (2) information-disclosure attacks. While KASLR aims to make
brute-force attacks infeasible, attackers can still leverage information-disclosure
attacks, e.g., to leak the randomization secret. The attacker can achieve this by
exploiting a memory-corruption vulnerability, or through side channels. Recent
research demonstrated that side-channel attacks are more powerful, since they
do not require any kernel vulnerabilities [6, 8, 10, 13, 23]. These attacks exploit
properties of the underlying micro architecture to infer the randomization secret
of KASLR. In particular, modern processors share resources such as caches be-
tween user mode and kernel mode, and hence, leak timing information between
privileged and unprivileged execution. The general idea of these attacks is to
probe different kernel addresses and measure the execution time of the probe.
Since the timing signature for valid and invalid kernel addresses is different,
the attacker can compute the randomization secret by comparing the extracted
signal against a reference signal.

The majority of side-channel attacks against KASLR is based on paging [8,
10, 13, 23]. Here, the attacker exploits the timing difference between an aborted
memory access to an unmapped kernel address and an aborted memory access to
a mapped kernel address. As we eloberate in the related work Section 7 the focus
of the existing work is on attacks, and only include theoretical discussions on
possible defenses. For instance, Gruss et al. [8] briefly discuss an idea similar to
our implemented defense by suggesting to completely un-map the kernel address
space when executing the user mode as it is done in iOS on ARM [16]. However,
as stated by the authors [8] they did not implement or evaluate the security
of their approach but only provided a simulation of this technique to provide
a rough estimation of the expected run-time overhead which is around 5% for
system call intensive applications.

Goal and Contributions The goal of this paper is to prevent kernel-space ran-
domization approaches from leaking side-channel information through the pag-

ing subsystem of the processor. To this end, we propose LAZARUS, as a novel
real-world defense against paging-based side-channel attacks on KASLR. Our
software-only defense is based on the observation that all of the presented at-
tacks have a common source of leakage: information about randomized kernel
addresses is stored in the paging caches of the processor while execution continues
in user mode. More specifically, the processor keeps paging entries for recently
used addresses in the cache, regardless of their associated privilege level. This re-
sults in a timing side channel, because accesses for cached entries are faster than
cache misses. Our defense separates paging entries according to their privilege
level in caches, and provides a mechanism for the kernel to achieve this efficiently
in software. LAZARUS only separates those parts of the address space which
might reveal the randomization secret while leaving entries for non-randomized
memory shared. Our benchmarks show that this significantly reduces the per-
formance overhead. We provide a prototype implementation of our side-channel
defense, and conduct an extensive evaluation of the security and performance
of our prototype for a recent kernel under the popular Debian Linux and Arch
Linux distributions.

To summarize, our contributions are as follows:

– Novel side-channel defense. We present the design of LAZARUS, a soft-
ware-only protection scheme to thwart side-channel attacks against KASLR
based on paging.

– Protoype Implementation. We provide a fully working and practical pro-
totype implementation of our defense for a recent Linux kernel version 4.8.

– Extensive Evaluation. We extensively evaluate our prototype against all
previously presented side-channel attacks and demonstrate that the random-
ization secret can no longer be disclosed. We re-implemented all previously
proposed attacks on KASLR for the Linux kernel. We additionally present
an extensive performance evaluation and demonstrate high practicality with
an average overhead of only 0.943% for common benchmarks.

2 Background

In this section, we first explain the details of modern processor architectures nec-
essary to understand the remainder of this paper. We then explain the different
attacks on KASLR presented by related work.

2.1 Virtual Memory

Virtual memory is a key building block to separate privileged system memory
from unprivileged user memory, and to isolate processes from each other. Virtual
memory is implemented by enforcing an indirection between the address space
of the processor and the physical memory, i.e., every memory access initiated by
the processor is mediated by a piece of hardware called the Memory Management
Unit (MMU). The MMU translates the virtual address to a physical address, and

Physical Memory

Virtual
Memory

MMU

1

23

4

TLB

CPUCore

CPU

 privileged Address

unprivileged Address

Kernel

User

Fig. 1. When virtual memory is active, all memory accesses of the processor are me-
diated by the MMU 1 : it loads the associated page-table entry 2 into the TLB
from memory, checks the required privilege level 3 , and translates the virtual mem-
ory address into the corresponding physical memory address if and only if the current
privilege level of the processor matches the required privilege level 4 .

enforces access control based on permissions defined for the requested address.
The translation information as well as the access permissions are stored in a
hierarchical data structure, which is maintained by the kernel, called the page
table. The kernel isolates processes from each other by maintaining separate page
tables for each process, and hence, different permissions. In contrast to processes,
the kernel is not isolated using a separate page table but by setting the supervisor
bit in page-table entries that translate kernel memory. In fact, each process page
table contains entries that map the kernel (typically in the top part of the virtual
address space). This increases the performance of context switches between the
kernel and user applications because replacing the active page table forces the
MMU to evict entries from its internal cache, called Translation Lookaside Buffer
(TLB). The TLB caches the most recent or prominent page table entries, which is
a sensible strategy since software usually exhibits (spatial or temporal) locality.
Hence, all subsequent virtual-memory accesses, which are translated using a
cached page-table entry, will be handled much faster.

Figure 1 shows the major components of virtual memory and their interac-
tion. In the following we describe the MMU and the TLB in detail and explain
their role in paging-based side-channel attacks.

The Central Processing Unit (CPU) contains one or more execution units
(cores), which decode, schedule, and eventually execute individual machine in-
structions, also called operations. If an operation requires a memory access, e.g.,

load and store operations, and the virtual memory subsystem of the processor
is enabled, this access is mediated by the MMU (Step 1). If the page-table en-
try for the requested virtual address is not cached in the TLB, the MMU loads
the entry into the TLB by traversing the page tables (often called a page walk)
which reside in physical memory (Step 2). The MMU then loads the respective
page-table entry into the TLBs (Step 3). It then uses the TLB entries to look
up the physical address and the required privilege level associated with a virtual
address (Step 4).

2.2 Paging-based Side-channel Attacks on KASLR

All modern operating systems leverage kernel-space randomization by means of
kernel code randomization (KASLR) [2, 11, 14]. However, kernel-space random-
ization has been shown to be vulnerable to a variety of side-channel attacks.
These attacks leverage micro-architectural implementation details of the un-
derlying hardware. More specifically, modern processors share virtual memory
resources between privileged and unprivileged execution modes through caches,
which was shown to be exploitable by an user space adversary.

In the following we briefly describe recent paging-based side-channel attacks
that aim to disclose the KASLR randomization secret. All these attacks exploit
the fact that the TLB is shared between user applications and the kernel (cf.,
Figure 1). As a consequence, the TLB will contain page-table entries of the kernel
after switching the execution from kernel to a user mode application. Henceforth,
the attacker uses special instructions (depending on the concrete side-channel
attack implementation) to access kernel addresses. Since the attacker executes
the attack with user privileges, the access will be aborted. However, the time
difference between access attempt and abort depends on whether the guessed
address is cached in the TLB or not. Further, the attacker can also measure the
difference in timing between existing (requiring a page walk) and non-existing
mappings (immediate abort). The resulting timing differences can be exploited
by the attacker as a side channel to disclose the randomization secret as shown
recently [8, 10, 13, 23].

Page Fault Handler (PFH) Hund, et al. [10] published the first side-channel at-
tack to defeat KASLR. They trigger a page fault in the kernel from a user process
by accessing an address in kernel space. Although this unprivileged access is cor-
rectly denied by the page fault handler, the TLBs are queried during processing
of the memory request. They show that the timing difference between exceptions
for unmapped and mapped pages can be exploited to disclose the random offset.

Prefetch Instruction Furthermore, even individual instructions may leak tim-
ing information and can be exploited [8]. More specifically, the execution of
the prefetch instruction of recent Intel processors exhibits a timing difference,
which depends directly on the state of the TLBs. As in the case of the other
side-channel attacks, this is used to access privileged addresses by the attacker.

Since this access originates from an unprivileged instruction it will fail, and ac-
cording to the documentation the processor will not raise an exception. Hence,
its execution time differs for cached kernel addresses. This yields another side
channel that leaks the randomization secret.

Intel’s TSX Transactional memory extensions introduced by Intel encapsulate
a series of memory accesses to provide enhanced safety guarantees, such as roll-
backs. While potentially interesting for the implementation of concurrent soft-
ware without the need for lock-based synchronization, erroneous accesses within
a transaction are not reported to the operating system. More specifically, if the
MMU detects an access violation, the exception is masked and the transaction is
rolled back silently. However, an adversary can measure the timing difference be-
tween two failing transactions to identify privileged addresses, which are cached
in the TLBs. This enables the attacker to significantly improve over the original
page fault timing side-channel attack [13, 23]. The reason is that the page fault
handler of the OS is never invoked, significantly reducing the noise in the timing
signal.

3 LAZARUS

In this section, we give an overview of the idea and architecture of LAZARUS,
elaborate on the main challenges, and explain in detail how we tackle these
challenges.

3.1 Adversary Model and Assumptions

We derive our adversary model from the related offensive work [6, 8, 10, 13, 23].

– Writable ⊕ Executable Memory. The kernel enforces Writable ⊕ Exe-
cutable Memory (W⊕X) which prevents code-injection attacks in the kernel
space. Further, the kernel utilizes modern CPU features like SMAP and
SMEP [12] to prevent user-mode aided code-injection and code-reuse at-
tacks.

– Kernel Address Space Layout Randomization (KASLR). The base
address of the kernel is randomized at boot time [2, 14].

– Absence of Software-based Information-disclosure Vulnerability.
The kernel does not contain any vulnerabilities that can be exploited to
disclose the randomization secret.

– Malicious Kernel Extension. The attacker cannot load malicious ker-
nel extensions to gain control over the kernel, i.e., only trusted (or signed)
extensions can be loaded.

– Memory-corruption Vulnerability. This is a standard assumption for
many real-world kernel exploits. The kernel, or a kernel extension contains a
memory-corruption vulnerability. The attacker has full control over a user-
mode process from which it can exploit this vulnerability. The vulnerability

Processor

Core MMU

Cache Cache
Kernel
Level 3

Page Tables

Physical RAM

User Memory

Kernel
Thread

User
Process

1

2 3

4

Kernel
Level 2

Kernel
Level 1

User
Level 3

User
Level 2

User
Level 1

Randomized
Kernel Memory

LAZARUS

Fig. 2. The idea behind our side channel protection: An unprivileged user process (1)
can exploit the timing side channel for kernel addresses through shared cache access in
the MMU paging caches (2). Our defense mitigates this by enforcing (3) a separation
between different privilege levels for randomized addresses (4).

enables the attacker to overwrite a code pointer of the kernel to hijack the
control-flow of the kernel. However, the attacker cannot use this vulnerability
to disclose any addresses.

While modern kernels suffer from software-based information-disclosure vul-
nerabilities, information-disclosure attacks based on side channels pose a more
severe threat because they can be exploited to disclose information in the absence
of software vulnerabilities. We address the problem of side channels, and treat
software-based information-disclosure vulnerabilities as an orthogonal problem.

3.2 Overview

Usually, kernel and user mode share the same virtual address space. While legit-
imate accesses to kernel addresses require higher privilege, these addresses still
occupy some parts of the virtual memory space that is visible to user processes.
The idea behind our side-channel defense is to strictly and efficiently separate
randomized kernel memory from virtual memory in user space.

Our idea is depicted in Figure 2. Kernel execution and user space execution
usually share a common set of architectural resources, such as the execution
unit (Core), and the MMU. The attacker leverages these shared resources in the
following way: in step 1 , the attacker sets up the user process and memory
setting that will leak the randomization secret. The user process then initiates
a virtual memory access to a kernel address.

Next, the processor invokes the MMU to check the required privilege level
in step 2 . Since a user space process does not possess the required privileges
to access kernel memory, any such access will ultimately be denied. However, to
deny access the MMU has to look up the required privileges in the page tables.
These are structured hierarchically with multiple levels, and separate caches on
every level. Hence, even denied accesses constitute a timing side-channel that
directly depends on the last cached level.

We address 3 the root of this side channel: we separate the page tables for
kernel and user space. This effectively prevents side-channel information from
kernel addresses to be leaked to user space, because the MMU uses a different
page table hierarchy. Thus, while the processor is in user mode, the MMU will
not be able to refer to any information about kernel virtual addresses, as shown
in step 4 .

3.3 Challenges for Fine-grained Address Space Isolation

To enable LAZARUS to separate and isolate both execution domains a number
of challenges have to be tackled: first, we must provide a mechanism for switching
between kernel and user execution at any point in time without compromising
the randomized kernel memory (C1). More specifically, while kernel and user
space no longer share the randomized parts of privileged virtual memory, the
system still has to be able to execute code pages in both execution modes.
For this reason, we have to enable switching between kernel and user space.
This is challenging, because such a transition can happen either through explicit
invocation, such as a system call or an exception, or through hardware events,
such as interrupts. As we will show our defense handles both cases securely and
efficiently.

Second, we have to prevent the switching mechanism from leaking any side-
channel information (C2). Unmapping kernel pages is also challenging with re-
spect to side-channel information, i.e., unmapped memory pages still exhibit a
timing difference compared to mapped pages. Hence, LAZARUS has to prevent
information leakage through probing of unmapped pages.

Third, our approach has to minimize the overhead for running applications
to offer a practical defense mechanism (C3). Implementing strict separation
of address spaces efficiently is involved, since we only separate those parts of
the address space that are privileged and randomized. We have to modify only
those parts of the page table hierarchy which define translations for randomized
addresses.

In the following we explain how our defense meets these challenges.

C1: Kernel-User Transitioning Processor resources are time-shared between pro-
cesses and the operating system. Thus, the kernel eventually takes control over
these resources, either through explicit invocation, or based on a signaling event.
Examples for explicit kernel invocations are system calls and exceptions. These
are synchronous events, meaning that the user process generating the event is
suspended and waiting for the kernel code handling the event to finish.

On the one hand, after transitioning from user to kernel mode, the event
handler code is no longer mapped in virtual memory because it is located in the
kernel. Hence, we have to provide a mechanism to restore this mapping when
entering kernel execution from user space.

On the other hand, when the system call or exception handler finishes and
returns execution to the user space process, we have to erase those mappings
again. Otherwise, paging entries might be shared between privilege levels. Since

all system calls enter the kernel through a well-defined hardware interface, we
can activate and deactivate the corresponding entries by modifying this central
entry point.

Transitions between kernel and user space execution can also happen through
interrupts. A simple example for this type of event is the timer interrupt, which is
programmed by the kernel to trigger periodically in fixed intervals. In contrast
to system calls or exceptions, interrupts are asynchronously occurring events,
which may suspend current kernel or user space execution at any point in time.

Hence, interrupt routines have to store the current process context before
handling a pending interrupt. However, interrupts can also occur while the pro-
cessor executes kernel code. Therefore, we have to distinguish between interrupts
during user or kernel execution to only restore and erase the kernel entries upon
transitions to and from user space respectively. For this we facilitate the stored
state of the interrupted execution context that is saved by the interrupt handler
to distinguish privileged from un-privileged contexts.

This enables LAZARUS to still utilize the paging caches for interrupts oc-
curing during kernel execution.

C2: Protecting the Switching Mechanism The code performing the address space
switching has to be mapped during user execution. Otherwise, implementing a
switching mechanism in the kernel would not be possible, because the processor
could never access the corresponding code pages. For this reason, it is necessary
to prevent these mapped code pages from leaking any side-channel information.
There are two possibilities for achieving this.

First, we can map the switching code with a different offset than the rest of
the kernel code section. In this case an adversary would be able to disclose the
offset of the switching code, while the actual randomization secret would remain
protected.

Second, we can eliminate the timing channel by inserting dummy mappings
into the unmapped region. This causes the surrounding addresses to exhibit an
identical timing signature compared to the switching code.

Since an adversary would still be able to utilize the switching code to conduct
a code-reuse attack in the first case, LAZARUS inserts dummy mappings into
the user space page table hierarchy.

C3: Minimizing Performance Penalties Once paging is enabled on a processor,
all memory accesses are mediated through the virtual memory subsystem. This
means that a page walk is required for every memory access. Since traversing
the page table results in high performance penalties, the MMU caches the most
prominent address translations in the Translation Lookaside Buffers (TLBs).

LAZARUS removes kernel addresses from the page table hierarchy upon
user space execution. Hence, the respective TLB entries need to be invalidated.
As a result, subsequent accesses to kernel memory will be slower, once kernel
execution is resumed.

To minimize these perfomance penalties, we have to reduce the amount of
invalidated TLB entries to a minimum but still enforce a clear separation between

kernel and user space addresses. In particular, we only remove those virtual
mappings, which fall into the location of a randomized kernel area, such as the
kernel code segment.

4 Prototype Implementation

We implemented LAZARUS as a prototype for the Linux kernel, version 4.8 for
the 64 bit variant of the x86 architecture. However, the techniques we used are
generic and can be applied to all architectures employing multi-level page tables.
Our patch consists of around 300 changes to seven files, where most of the code
results from initialization. Hence, LAZARUS should be easily portable to other
architectures. Next, we will explain our implementation details. It consists of the
initialization setup, switching mechanism, and how we minimize performance
impact.

4.1 Initialization

We first setup a second set of page tables, which can be used when execution
switches to user space. These page tables must not include the randomized por-
tions of the address space that belong to the kernel. However, switching between
privileged and unprivileged execution requires some code in the kernel to be
mapped upon transitions from user space. We explicitly create dedicated entry
points mapped in the user page tables, which point to the required switching
routines.

Fixed Mappings Additionally, there are kernel addresses, which are mapped to
fixed locations in the top address space ranges. These fixmap entries essentially
represent an address-based interface: even if the physical address is determined at
boot time, their virtual address is fixed at compile time. Some of these addresses
are mapped readable to user space, and we have to explicitly add these entries
as well.

We setup this second set of page tables only once at boot time, before the
first user process is started. Every process then switches to this set of page tables
during user execution.

Dummy Mappings As explained in Section 3, one way of protecting the code
pages of the switching mechanism is to insert dummy mappings into the user
space page table hierarchy. In particular, we create mappings for randomly picked
virtual kernel addresses to span the entire code section. We distribute these
mappings in 2M intervals to cover all third-level page table entries, which are
used to map the code section. Hence, the entire address range which potentially
contains the randomized kernel code section will be mapped during user space
execution using our randomly created dummy entries.

4.2 System Calls

There is a single entry point in the Linux kernel for system calls, which is called
the system call handler. We add an assembly routine to execute immediately
after execution enters the system call handler. It switches from the predefined
user page tables to the kernel page tables and continues to dispatch the requested
system call. We added a second assembly routine shortly before the return of
the system call handler to remove the kernel page tables from the page table
hierarchy of the process and insert our predefined user page tables.

However, contrary to its single entry, there are multiple exit points for the
system call handler. For instance, there is a dedicated error path, and fast and
slow paths for regular execution. We instrument all of these exit points to ensure
that the kernel page tables are not used during user execution.

4.3 Interrupts

Just like the system call handler, we need to modify the interrupt handler to
restore the kernel page tables. However, unlike system calls, interrupts can oc-
cur when the processor is in privileged execution mode as well. Thus, to handle
interrupts, we need to distinguish both cases. Basically we could look up the
current privilege level easily by querying a register. However, this approach pro-
vides information about the current execution context, whereas to distinguish
the two cases we require the privilege level of the interrupted context.

Fortunately, the processor saves some hardware context information, such
as the instruction pointer, stack pointer, and the code segment register before
invoking the interrupt handler routine. This means that we can utilize the stored
privilege level associated with the previous code segment selector to test the
privilege level of the interrupted execution context. We then only restore the
kernel page tables if it was a user context.

We still have to handle one exceptional case however: the non-maskable inter-
rupt (NMI). Because NMIs are never maskable, they are handled by a dedicated
interrupt handler. Hence, we modify this dedicated NMI handler in the kernel
to include our mechanism as well.

4.4 Fine-grained Page Table Switching

As a software-only defense technique, one of the main goals of LAZARUS is
to offer practical performance. While separating the entire page table hierarchy
between kernel and user mode is tempting, this approach is impractical.

In particular, switching the entire page table hierarchy invalidates all of the
cached TLB entries. This means, that the caches are reset every time and can
never be utilized after a context switch. For this reason, we only replace those
parts of the page table hierarchy, which define virtual memory mappings for ran-
domized addresses. In the case of KASLR, this corresponds to the code section
of the kernel. More specifically, the kernel code section is managed by the last
of the 512 level 4 entries.

Thus, we replace only this entry during a context switch between privileged
and unprivileged execution. As a result, the caches can still be shared between
different privilege levels for non-randomized addresses. As we will discuss in
Section 5, this does not impact our security guarantees in any way.

5 Evaluation

In this section we evaluate our prototypical implementation for the Linux ker-
nel. First, we show that LAZARUS successfully prevents all of the previously
published side-channel attacks. Second, we demonstrate that our defense only
incurs negligible performance impact for standard computational workloads.

5.1 Security

Our main goal is to prevent the leakage of the randomization secret in the kernel
to an unprivileged process through paging-based side-channel attacks. For this,
we separate the page tables for privileged parts of the address space from the
unprivileged parts. We ensure that this separation is enforced for randomized
addresses to achieve practical performance.

Because all paging-based exploits rely on the timing difference between cached
and uncached entries for privileged virtual addresses, we first conduct a series
of timing experiments to measure the remaining side channel in the presence of
LAZARUS.

In a second step, we execute all previously presented side-channel attacks on
a system hardened with LAZARUS to verify the effectiveness of our approach.

Effect of LAZARUS on the timing side-channel To estimate the remaining
timing side-channel information we measure the timing difference for privileged
virtual addresses. We access each page in the kernel code section at least once
and measure the timing using the rdtscp instruction. By probing the privileged
address space in this way, we collect a timing series of execution cycles for each
kernel code page. The results are shown in Figure 3. 3

The timing side channel is clearly visible for the vanilla KASLR implemen-
tation: the start of the actual code section mapping is located around the first
visible jump from 160 cycles up to 180 cycles. Given a reference timing for a
corresponding kernel image, the attacker can easily calculate the random offset
by subtracting the address of the peak from the address in the reference timing.

In contrast to this, the timing of LAZARUS shows a straight line, with a
maximum cycle distance of two cycles. In particular, there is no correlation
between any addresses and peaks in the timing signal of the hardened kernel.
This indicates that our defense approach indeed closes the paging-induced timing
3 For brevity, we display the addresses on the x-axis as offsets to the start of the

code section (i.e., 0xffffffff80000000). We further corrected the addresses by their
random offset, so that both data series can be shown on top of each other.

C05
00

0

C52
00

0

C9F
00

0

CEC00
0

D39
00

0

D86
00

0

DD30
00

E20
00

0

E6D
00

0

EBA00
0

F07
00

0

F54
00

0

FA
10

00

FEE00
0

10
3B

00
0

10
88

00
0

10
D50

00

11
22

00
0

11
6F

00
0

11
BC00

0

12
09

00
0

12
56

00
0

12
A30

00

12
F00

00

13
3D

00
0

13
8A

00
0

13
D70

00

14
24

00
0

14
71

00
0

14
BE00

0

15
0B

00
0

15
58

00
0

15
A50

00

15
F20

00

16
3F

00
0

16
8C

00
0

16
D90

00

17
26

00
0

17
73

00
0

17
C00

00
140

150

160

170

180

190

200

210

220

230

240
KASLR LAZARUS

Address (Offset)

T
im

in
g

 (
C

yc
le

s)

Start of the kernel code section

Fig. 3. Timing side-channel measurements.

channel successfully. We note, that the average number of cycles depicted for
LAZARUS are also in line with the timings for cached page table entries reported
by related work [8, 13]. To further evaluate the security of our approach, we
additionally test it against all previous side-channel attacks.

Real-world side-channel attacks We implemented and ran all of the previous
side-channel attacks against a system hardened with LAZARUS, to experimen-
tally assess the effectiveness of our approach against real-world attacks.

Page-fault handler The first real-world side-channel attack against KASLR was
published by Hund et al. [10]. They noted that the execution time of the page
fault handler in the OS kernel depends on the state of the paging caches. More
specifically, they access kernel addresses from user space which results in a page
fault. While this would usually terminate the process causing the access viola-
tion, the POSIX standard allows for processes to handle such events via signals.
By installing a signal handler for the segmentation violation (SIGSEGV), the user
process can recover from the fault and measure the timing difference from the
initial memory access to the delivery of the signal back to user space. In this way,
the entire virtual kernel code section can be scanned and each address associ-
ated with its corresponding timing measurement, allowing a user space process
to reconstruct the start address of the kernel code section. We implemented
and successfully tested the attack against a vanilla Linux kernel with KASLR.
In particular, we found that page fault handler exhibits a timing difference of
around 30 cycles for mapped and unmapped pages, with an average time of
around 2200 cycles. While this represents a rather small difference compared to
the other attacks, this is due to the high amount of noise that is caused by the
execution path of the page fault handler code in the kernel. 4 When we applied
LAZARUS to the kernel the attack no longer succeeded.
4 This was also noted in the original exploit [10].

Prefetch Recently, the prefetch instruction featured on many Intel x86 proces-
sors was shown to enable side-channel attacks against KASLR [8]. It is intended
to provide a benign way of instrumenting the caches: the programmer (or the
compiler) can use the instruction to provide a hint to the processor to cache a
given virtual address.

Although there is no guarantee that this hint will influence the caches in
any way, the instruction can be used with arbitrary addresses in principle. This
means that a user mode program can prefetch a kernel virtual address, and
execution of the instruction will fail siltently, i.e., the page fault handler in the
kernel will not be executed, and no exception will be raised.

However, the MMU still has to perform a privilege check on the provided
virtual address, hence the execution time of the prefetch instruction depends
directly on the state of the TLBs.

We implemented the prefetch attack against KASLR for Linux, and succes-
fully executed it against a vanilla system to disclose the random offset. Executing
the attack against a system hardened with LAZARUS we found the attack to
be unsuccessful.

TSX Rafal Wojtczuk originally proposed an attack to bypass KASLR using the
Transactional Synchronization Extension (TSX) present in Intel x86 CPUs [23],
and the attack gained popularity in the academic community through a paper
by Jang et al. [13]. TSX provides a hardware mechanism that aims to simplify
the implementation of multi-threaded applications through lock elision. Initially
released in Haswell processors, TSX-enabled processors are capable of dynami-
cally determining to serialize threads through lock-protected critical sections if
necessary. The processor may abort a TSX transaction if an atomic view from
the software’s perspective is not guaranteed, e.g., due to conflicting accesses
between two logical processors on one core.

TSX will suppress any faults that must be exposed to software if they occur
within a transactional region. Memory accesses that cause a page walk may abort
a transaction, and according to the specification will not be made architecturally
visible through the behavior of structures such as TLBs [12]. The timing charac-
teristics of the abort, however, can be exploited to reveal the current state of the
TLBs. By causing a page walk inside a transactional block, timing information
on the aborted transaction discloses the position of kernel pages that are mapped
into a process: first, the attacker initiates a memory access to kernel pages inside
a transactional block, which causes (1) a page walk, and (2) a segmentation fault.
Since TSX masks the segmentation fault in hardware, the kernel is never made
aware of the event and the CPU executes the abort handler provided by the
attacker-controlled application that initiated the malicious transaction. Second,
the attacker records timing information about the abort-handler execution. A
transaction abort takes about 175 cycles if the probed page is mapped, whereas
it aborts in about 200 cycles or more if unmapped [23]. By probing all possible
locations for the start of the kernel code section, this side channel exposes the
KASLR offset to the unprivileged attacker in user space.

Probing pages in this way under LAZARUS reveals no information, since we
unmap all kernel code pages from the process, rendering the timing side channel
useless as any probes to kernel addresses show as unmapped. Only the switching
code and the surrounding dummy entries are mapped. However, these show
identical timing information, and hence, are indistinguishable for an adversary.

5.2 Performance

We evaluated LAZARUS on a machine with an Intel Core i7-6820HQ CPU
clocked at 2.70GHz and 16GB of memory. The machine runs a current release
of Arch Linux with kernel version 4.8.14. For our testing, we enabled KASLR
in the Linux kernel that Arch Linux ships. We also compiled a secondary kernel
with the same configuration and LAZARUS applied.

We first examine the performance overhead with respect to the industry
standard SPEC2006 benchmark [9]. We ran both the integer and floating point
benchmarks in our test platform under the stock kernel with KASLR enabled.
We collected these results and performed the test again under the LAZARUS
kernel. Our results are shown in Figure 4.

The observed performance overhead can be attributed to measurement inac-
curacies. Our computed worst case overhead is of 0.943%. We should note that
SPEC2006 is meant to test computational workloads and performs little in terms
of context switching.

To better gauge the effects of LAZARUS on the system, we ran the system
benchmarks provided by LMBench3 [22]. LMBench3 improves on the context
switching benchmarks by eliminating some of the issues present in previous ver-
sions of the benchmark, albeit it still suffers issues with multiprocessor machines.
For this reason, we disabled SMP during our testing. Our results are presented
in Figure 5.

We can see how a system call intensive application is affected the most under
LAZARUS. This is to be expected, as the page tables belonging to the kernel
must be remapped upon entering kernel execution. In general, we show a 47%
performance overhead when running these benchmarks. We would like to re-
mind the reader, however, that these benchmarks are meant to stress test the
performance of the operating system when handling interrupts and do not reflect
normal system operation.

In order to get a more realistic estimate of LAZARUS, we ran the Phoronix
Test Suite [15], which is widely used to compare the performance of operating
systems. The Phoronix benchmarking suite features a large number of tests which
cover different aspects of a system, and are grouped according to the targeted
subsystem of the machine. Specifically, we ran the system and disk benchmarks
to test application performance. Our results are shown in Figure 6. We show
an average performance overhead of 2.1% on this benchmark, which is in line
with our results provided by the SPEC and LMBench benchmarks. The worst
performers were benchmarks that are bound to read operations. We speculate
that this is due to the amount of context switches that happen while the read

perl
ben

ch
bz

ip2gcc mcf

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

ref

on
metp

p
ast

ar

xa
lan

cb
mk

bw
av

es
milc

zeu
sm

p

gro
macs

cac
tus

ADM
les

lie
3d
na

md
de

alI
I

sop
lex
pov

ray

cal
cu

lix

Gem
sF

DTD
ton

tolbm

sp
hin

x3

av
era

ge

0.96

0.98

1

1.02

1.04
O

ve
rh

ea
d

Fig. 4. SPEC2006 Benchmark Results

sys
cal

l
rea

d
writ

e
sta

t
fst

at

op
en

/cl
ose

sel
ect

10
fd

sel
ect

10
0fd

sel
ect

25
0fd

sel
ect

50
0fd

sel
ect

10
tcp

sel
ect

10
0tc

p

sel
ect

25
0tc

p

sel
ect

50
0tc

p

ha
nd

ler
_ins

t

ha
nd

ler
_ov

pro
t_

fau
lt

for
k+

ex
it

for
k+

ex
ecv

e

for
k+

/b
in/

sh

av
era

ge

1

2

3

N
or

m
.O

ve
rh

ea
d

Fig. 5. LMBench3 Benchmark Results

ao
i-s

tre
ss
sql

ite

fs-
mark

db
en

ch
-12

db
en

ch
-48

db
en

ch
-12

8

db
en

ch
-1

ioz
on

e-r
ead

ioz
on

e-w
rit

e

ioz
on

e-d
t-r

ead

ioz
on

e-d
t-w

rit
e

un
pa

ck-
lin

ux

post
mark

str
eam

-co
py

str
eam

-sc
ale

str
eam

-tr
iad

str
eam

-ad
d
np

b

hm
mer

maff
t

gm
pb

en
ch

joh
n-t

he
-ri

pp
er

gm
-hw

b-c
s

gm
-o-

hw
b-c

s

gm
-la

t

him
en

o
c-r

ay

cm
prs

s-p
bz

ip2

cm
prs

s-g
zip

cm
prs

s-l
zm

a
cra

fty
dc

raw

en
co

de
-m

p3

en
co

de
-og

g

ffmpeg

mini
on

su
do

ku
t

op
en

ssl

ph
pb

en
ch

av
era

ge

0.8

1

1.2

N
or

m
.O

ve
rh

ea
d

Fig. 6. Phoronix Benchmark Suite

operation is taking place, as a buffer in kernel memory needs to be copied into
a buffer from user space or remapped there.

Lastly, we ran the pgbench benchmark on a test PostgreSQL database and
measured a performance overhead of 2.386%.

6 Discussion

6.1 Applying LAZARUS to different KASLR implementations

Relocation of kernel code is an example of how randomization approaches can
be used as a defense building block which is implemented by practically all
real-world operating systems [2, 11, 14]. While a kernel employing control-flow
integrity (CFI) [1, 3, 21] does not gain security benefit from randomizing the
code section, it might still randomize the memory layout of other kernel mem-
ory regions: for instance, it can be applied to the module section, to hide the
start address of the code of dynamically loadable kernel modules. Further, ran-
domization was recently proposed as a means to protect the page tables against
malicious modification through data-only attacks [5].

Since all of the publicly available attacks focus on disclosing the random offset
of the kernel code section, we implemented our proof of concept for KASLR as
well. Nonetheless, we note that LAZARUS is not limited to hardening kernel code
randomization, but can be applied to other randomization implementations as
well. In contrast to the case of protecting KASLR, our defense does not require
any special treatment for hiding the low-level switching code if applied to other
memory regions.

6.2 Other side-channel attacks on KASLR

As explained in Section 2, almost all previously presented side-channel attacks on
KASLR exploit the paging subsystem. LAZARUS isolates kernel virtual memory
from user processes by separating their page tables. However, Evtyushkin et
al. [6] recently presented the branch target buffer (BTB) side-channel attack,
which does not exploit the paging subsystem for virtual kernel addresses.

In particular, they demonstrated how to exploit collisions between branch
targets for user and kernel addresses. The attack works by constructing a mali-
cious chain of branch targets in user space, to fill up the BTB, and then executing
a previously chosen kernel code path. This evicts branch targets previously ex-
ecuted in kernel mode from the BTB, thus their subsequent execution will take
longer.

While the BTB attack was shown to bypass KASLR on Linux, it differs from
the paging-based side channels by making a series of assumptions: 1) the BTB
has a limited capacity of 10 bits, hence it requires KASLR implementations to
deploy a low amount of entropy in order to succeed. 2) it requires the attacker to
craft a chain of branch targets, which cause kernel addresses to be evicted from
the BTB. For this an adversary needs to reverse engineer the hashing algorithm

used to index the BTB. These hashing algorithms are different for every micro
architecture, which limits the potential set of targets. 3) the result of the attack
can be ambiguous, because any change in the execution path directly effects the
BTB contents.

There are multiple ways of mitigating the BTB side-channel attack against
KASLR. A straightforward approach is to increase the amount of entropy for
KASLR, as noted by Evtyushkin et al. [6]. A more general approach would be to
introduce a separation between privileged an unprivileged addresses in the BTB.
This could be achieved by offering a dedicated flush operation, however this re-
quires changes to the hardware. Alternatively, this flush operation can emulated
in software, if the hashing algorithm used for indexing the BTB has been reverse
engineered. We implemented this approach against the BTB attack by calling a
function which performs a series of jump instructions along with our page tables
switching routine and were unable to recover the correct randomization offset
through the BTB attack in our tests.

7 Related Work
In this section we discuss software and hardware mitigations against side-channel
attacks that were proposed, and compare them to our approach.

7.1 Hardware Mitigations
Privilege Level Isolation in the Caches Eliminating the paging side channel is
also possible by modifying the underlying hardware cache implementation. This
was first noted by Hund et al. [10]. However, modern architectures organize
caches to be optimized for performance. Additionally, changes to the hardware
are very costly, and it takes many years to widely deploy these new systems.
Hence, it is unlikely that such a change will be implemented, and even if it is,
existing production systems will remain vulnerable for a long time. Our software-
only mitigation can be deployed instantly by patching the kernel.

Disabling Detailed Timing for Unprivileged Users All previously presented pag-
ing side-channel attacks rely on detailed timing functionality, which is provided
to unprivileged users by default. For this reason, Hund et al. [10] suggested to
disable the rdtsc instruction for user mode processes. While this can be done
from software, it effectively changes the ABI of the machine. Since modern plat-
forms offer support for a large body of legacy software, implementing such a
change would introduce problems for many real-world user applications. As we
demonstrate in our extensive evaluation, LAZARUS is transparent to user-level
programs and does not disrupt the usual workflow of legacy software.

7.2 Software Mitigations
Separating Address Spaces Unmapping the kernel page tables during user-land
execution is a natural way of separating their respective address spaces, as sug-
gested in [8, 13]. However, Jang et al. [13] considered the approach impractical,

due to the expected performance degradation. Gruss et al. [8] estimated the
performance impact of reloading the entire page table hierarchy up to 5%, by
reloading the top level of the page table hierarchy (via the CR3 register) during
a context switch, but did not provide any implementation or detailed evaluation
of their estimated approach. Reloading the top level of the page tables results
in a higher performance overhead, because it requires the processor to flush all
of the cached entries. Address space separation has been implemented by Apple
for their iOS platform [16]. Because the ARM platform supports multiple sets
of page table hierarchies, the implementation is straightforward on mobile de-
vices. For the first time we provide an improved and highly practical method of
implementing address space separation on the x86 platform.

Increasing KASLR Entropy Some of the presented side-channel attacks benefit
from the fact that the KASLR implementation in the Linux kernel suffers from a
relatively low entropy [6, 10]. Thus, increasing the amount of entropy represent a
way of mitigating those attacks in practice. While this approach was suggested by
Hund et al. [10] and Evtyushkin et al. [6], it does not eliminate the side channel.
Additionally, the mitigating effect is limited to attacks which exploit low entropy
randomization. In contrast, LAZARUS mitigates all previously presented paging
side-channel attacks.

Modifying the Page Fault Handler Hund et al. [10] exploited the timing difference
through invoking the page fault handler. They suggested to enforce its execution
time to an equal timing for all kernel addresses through software. However, this
approach is ineffective against attacks which do not invoke the kernel [8, 13].
Our mitigation reorganizes the cache layout in software to successfully stop the
attacks, that exploit hardware features to leak side channel information, even
for attacks that do not rely on the execution time of any software.

KAISER Concurrently to our work Gruss et al. implemented strong address-
space separation [7]. Their performance numbers are in line with our own mea-
surements, confirming that separating the address spaces of kernel and userland
constitutes a practical defense against paging-based side-channel attacks. In con-
trast to LAZARUS, their approach does not make use of dummy mappings to
hide the switching code, but separates it from the rest of the kernel code section
(as outlined in 3.3.C2).

8 Conclusion

Randomization has become a vital part of the security architecture of modern
operating systems. Side-channel attacks threaten to bypass randomization-based
defenses deployed in the kernel by disclosing the randomization secret from un-
privileged user processes. Since these attacks exploit micro-architectural imple-
mentation details of the underlying hardware, closing this side channel through
a software-only mitigation efficiently is challenging. However, all of these attacks

rely on the fact that kernel and user virtual memory reside in a shared address
space. With LAZARUS, we present a defense to mitigate previously presented
side-channel attacks purely in software. Our approach shows that side-channel
information exposed through shared hardware resources can be hidden by sepa-
rating the page table entries for randomized privileged addresses from entries for
unprivileged addresses in software. LAZARUS is a necessary and highly practical
extension to harden kernel-space randomization against side-channel attacks.

Acknowledgment

This work was supported in part by the German Science Foundation (project
S2, CRC 1119 CROSSING), the European Union’s Seventh Framework Pro-
gramme (609611, PRACTICE), and the German Federal Ministry of Education
and Research within CRISP.

Dean Sullivan, Orlando Arias, and Yier Jin are partially supported by the
Department of Energy through the Early Career Award (DE-SC0016180). Mr.
Orlando Arias is also supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. 1144246.

Bibliography

[1] Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity
principles, implementations, and applications. ACM Transactions on Infor-
mation System Security 13 (2009)

[2] Cook, K.: Kernel address space layout randomization.
http://selinuxproject.org/~jmorris/lss2013_slides/cook_kaslr.

pdf (2013)
[3] Criswell, J., Dautenhahn, N., Adve, V.: Kcofi: Complete control-flow in-

tegrity for commodity operating system kernels. In: 35th IEEE Symposium
on Security and Privacy. S&P (2014)

[4] CVEDetails: CVE-2016-4557.
http://www.cvedetails.com/cve/cve-2016-4557 (2016)

[5] Davi, L., Gens, D., Liebchen, C., Ahmad-Reza, S.: PT-Rand: Practical mit-
igation of data-only attacks against page tables. In: 24th Annual Network
and Distributed System Security Symposium. NDSS (2017)

[6] Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over aslr: Attack-
ing branch predictors to bypass aslr. In: IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO) (2016)

[7] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.:
Kaslr is dead: Long live kaslr. In: International Symposium on Engineering
Secure Software and Systems. ESSoS (2017)

[8] Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S.: Prefetch side-
channel attacks: Bypassing smap and kernel aslr. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp.
368–379. ACM (2016)

[9] Henning, J.L.: Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News 34(4), 1–17 (Sep 2006), http://doi.acm.org/10.1145/

1186736.1186737

[10] Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks
against kernel space ASLR. In: 34th IEEE Symposium on Security and
Privacy. S&P (2013)

[11] Inc., A.: Os x mountain lion core technologies overview.
http : / / movies . apple . com / media / us / osx / 2012 / docs / OSX _

MountainLion_Core_Technologies_Overview.pdf (2012)
[12] Intel: Intel 64 and IA-32 architectures software developer’s man-

ual. http://www-ssl.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html (2017)
[13] Jang, Y., Lee, S., Kim, T.: Breaking kernel address space layout randomiza-

tion with intel TSX. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 380–392. ACM (2016)

[14] Johnson, K., Miller, M.: Exploit mitigation improvements in windows 8.
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_

12_Miller_Exploit_Mitigation_Slides.pdf (2012)
[15] Larabel, M., Tippett, M.: Phoronix test suite. h ttp://www. phoronix-test-

suite. com (2011)
[16] Mandt, T.: Attacking the ios kernel: A look at "evasi0n".

http : / / www . nislab . no / content / download / 38610 / 481190 / file /

NISlecture201303.pdf (2013)
[17] MITRE: CVE-2015-1328.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1328

(2015)
[18] MITRE: CVE-2016-0728.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0728

(2016)
[19] MITRE: CVE-2016-5195.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195

(2016)
[20] Molinyawe, M., Hariri, A.A., Spelman, J.: $hell on earth: From browser to

system compromise. In: Blackhat USA. BH US (2016)
[21] PaX Team: RAP: RIP ROP (2015)
[22] Staelin, C.: lmbench: an extensible micro-benchmark suite. Software-

Practice and Experience 35(11), 1079 (2005)
[23] Wojtczuk, R.: Tsx improves timing attacks against kaslr. https://labs.

bromium.com/2014/10/27/tsx-improves-timing-attacks-against-

kaslr/ (2014)

