
RERTL: Finite State Transducer Logic Recovery at
Register Transfer Level

Jason Portillo∗, Travis Meade∗, John Hacker∗, Shaojie Zhang∗, Yier Jin†
∗Computer Science department, University of Central Florida

†Electrical and Computer Engineering department, University of Florida
jasonlportillo@gmail.com, travis.meade@ucf.edu, jhacker997@knights.ucf.edu, shzhang@cs.ucf.edu, yier.jin@ece.ufl.edu

Abstract—Increasingly complex Intellectual Property (IP)
design, coupled with shorter Time-To-Market (TTM), breeds
flaws at various levels of the Integrated Circuit (IC) produc-
tion. With access to IPs at all stages of production, design
defects can easily be found and corrected, i.e., knowledge
of the Register Transfer Level (RTL) code allows for the
option of easy defect detection. However, third-party IPs are
typically delivered as hard IPs or gate-level netlists, which
complicates the defect detection process. The inaccessibility
of source RTL code and the lack of RTL recovery tools make
the task of finding high-level security flaws in logic in-
tractable. Upon this request, in this paper, we present an RTL
recovery tool suite named RERTL that leverages advanced
graph algorithms including Lengauer-Tarjan’s dominator tree
and Euler tour tree technique to assist in netlist analysis.
Supported by RERTL, logical states and their interactions
are recovered from the initial design in the format of gate-
level netlists. After the recovery of state interaction, RERTL
further converts the full design into human-readable RTL. A
series of netlist case studies were examined using RERTL cov-
ering benign logic structures, designs with accidental defects,
and designs with deliberate backdoors. The experimental
results show that all of our designs at various complexities
were recoverable within seconds.

I. Introduction

Backdoors, watermarking, Third Party Intellectual Prop-
erty (3PIP), and malicious logic insertion, or at least their
potential, creates a paranoia suffocating the integrated cir-
cuit industry. All have contributed to a wave of hyper
awareness of the need for contract fulfilling modules. In
severe cases, out-of-specification functionality can devastate
complex, computational systems that rely on 3PIPs to abide
by predefined contracts. Finding modules that violate such
contracts can be especially tricky, if such undocumented
functions rarely occurs, such as the case with Hardware
Trojans. Intentionally malicious designs have been discussed
at length in research [1]. A passive stance on the issue is
unsound, since the occurrence of such behavior in the field
might be improperly attributed to engineering or fabrication
flaws. Devices already exist that are at risk of containing such
logical defects. To protect developers, researchers have aimed
to prove high level circuit functions or generating input
patterns that theoretically cover all possible netlist function.
However, such practices typically rely on the knowledge of
certain high-level descriptions that 3PIP developers could be
reluctant to distribute. Developers are concerned about piracy

as much as consumers are concerned with reliability, and
since developers control how IP is distributed, consumers are
left with the burden of using compromised IP or developing
a full system.
Methods that are designed to formally verify netlist can

require a detailed description of functionality whose con-
struction is harder to obtain than actually creating the design
itself. Because of the large resources required in formal
analysis, it is easier for developers to extract the high-level
description of a RTL design which can be measured in thou-
sands of lines of hardware description language (HDL) code,
compared to a netlist with millions of gates. Without access
to the original design, some methods must be developed
that can assist developers in understanding the high-level
description of a netlist. Large netlists are composed of logic
and memory components. The memory is repetitive and
undergoes the same basic operations based on the logical
state. The logic takes up a large portion of netlists and
dictates the high-level function of such designs. For these
reasons RTL verification methods can only be leveraged on
gate-level netlist when users are able to translate the design’s
logic to the high-level description. This paper expands upon
the existing tools that can be used to extract high-level circuit
descriptions from low-level netlists.
However, with the ability to extract the function of a netlist

comes the ability to reproduce, modify, and redistribute IP. As
long as modifications are not malicious to the community of
3PIP, users do not need to worry too much, but IP developers
need to be aware of this issue. Material that IP providers have
been willingly sharing with others with the assumption that
gate-level or even FPGA Bitstream is too difficult to pirate,
is actually at risk of being stolen.
This paper is, to the best of our knowledge, the first to

approach the netlist verification problem with the presented
model (i.e. netlist to partial RTL for verification). The topic
and methods discussed create many new interesting problems
for IP verification and reverse engineering for hardware
security.
This paper is structured in the following format. Section II

focuses on methods that have been proposed and analyzed in
previously published works. In Section III, we go into depth
discussing the issues with current methods and the two gen-
eral sub-problems we faced in converting and creating tools
for RTL generation. Then, Section IV discusses in detail how
the two problems are solved in addition to some alternative978-1-7281-3544-1/19/$31.00 © 2019 IEEE

equivalent schemes. After that, Section V discusses how we
analyzed our method and includes the results of the analysis.
Finally, Section VI discusses at a high-level our findings and
possible modifications and improvements.

II. Related Works
A. Hardware Trojan Detection

One security concern for IP consumers is that of an in-
tentionally afflicted design. Malicious circuitry purposefully
embedded in ICs are referred to as Hardware Trojans, and
many methods exist to assist in maintaining a Trojan free
production line. A machine learning based method for detec-
tion went so far as to use SVMs to analyze metal layouts for
significant discrepancies, to reduce the time humans would
need to spend looking for behavior altering circuitry [2]. This
method although highly effective, required getting the correct
low level layout of the original netlist. An early method for
design verification is Trojan free was side-channel analysis.
Information such as path delay has previously been used [3].
Many methods still require the knowledge of the original
netlist. Other side channel methods have been proposed that
do not rely on original netlist information [4]. Instead such
methods assume that the Trojan will be inserted in a design
post place and route to ensure path delays are increased in
such logic. Unlike former method the latter only requires the
original side-channel information, rather than the full design.
3PIP developers are more inclined to share side channel
information over high-level specifications. However, if the
3PIP developer is unavailable or malicious, such methods will
fail. Neither of these solutions are guaranteed to work or
be available when using a hard IP core delivered by a 3PIP
vendor.

In terms of looking into the gate-level netlist itself, hard-
ware Trojan detection methods have been proposed [5].
Typically these methods look for bits that are stuck at
values or determine where sensitive pieces of information
is capable of leaking. However, Trojans that do not rely on
specifically high-low trigger signals and Trojans that target
denial of service (DoS) can bypass such methods. In general,
methods that automatically determine Trojan insertion on
behalf of the user is prone to error, and methods that
use machine learning can be poisoned. More general netlist
annotation/Reverse Engineering based methods are desirable.

B. Netlist Reverse Engineering

Third party resources will not always offer high-level
descriptions. Tools exist to help annotate and analyze netlists.
A framework HAL gives users the ability to graphically see
a netlist’s topology [6], [7]. Additionally, HAL can allow for
python plugins to automatically run external algorithms on
such designs. However, such tools require users to have an
extensive knowledge or third party resources consisting of
netlist analysis algorithms. Such algorithms will be discussed
in further detail within this sub-section.

Methods that do not leverage high-level IC access use
Reverse Engineering techniques to look for any potential

problems. One method for high-level component recovery
was proposed in [8]. The method cut the netlist into seg-
ments, identified words, found modules, and looked up func-
tions. The main issue such a method can have is the lack
of identifiable circuit modules. Missing modules can be the
result of learning the exact behavior of some synthesizer, but
using a different synthesizer when constructing the netlist
can easily leave sections of the netlist unclassified. Most
likely a 3PIP user will not choose from which synthesis tool
their design originates. Methods have shown that data paths
can be reconstructed, which can be useful when a Trojan
might divert sensitive signals within an integrated circuit [9].
When and where data flows is largely missing from such
designs, since these methods do not explicitly analyze the
high-level control signals.
Fortunately, methods have been proposed to reduce the

low gate-level logic into a higher form, such as a logical
Finite State Machine (FSM) [10]–[13]. As an example, one
previous method for extracting high-level descriptions from
low-level netlists is called REFSM [10]. The method recovers
the logic of a gate-level netlist in the form of an FSM, but the
information contained within the logic appears to be solely
the FSM component. These Reverse Engineering methods
could be implemented on top of HAL’s framework. However,
such fusion of tools would required re-implementing many
existing tools into one of HAL’s plugins.
Nevertheless, FSMs are not the easiest thing to read and,

depending on the design, can be much larger than the initial
RTL. RTL, a format for representing circuit logic, already
exists and is universally accepted among IC/IP designers.
Few tools exist to analyze an FSM for potential flaws, but
many tools for analyzing RTL exist. For these reasons, a more
robust description with RTL is of higher quality in terms
of assisting in securing hardware. Works have demonstrated
that logical RTL can be represented by an FSM [14]. The RTL
at a high level contains just states, transitions, and outputs.
This previous work showed a method for conversion of the
RTL to an FSM, but the reverse problem has largely been
ignored. For this reason we present a method that extracts the
RTL from the FSM. In addition, our proposed method extracts
the signals emitted from the FSM to help determine, if certain
states might be watermark or malicious states inserted out
of specification.

III. Motivation and Attack Model
This paper focuses on hardware security by converting

low-level circuit descriptions into higher level formats. Meth-
ods in the past have converted gate-level netlist descriptions
into an FSM [10], [11], but depending on the auxiliary
information presented with the FSM or even the structure
of the FSM, determining the reliability of a netlist is still
challenging. This is why we focus on recovery of the netlist’s
logic in the form of a simplified snippet of RTL code with
extra information pertaining to the signals controlled by
the FSM. Developers that design circuits can more easily
interpret the RTL than an FSM, especially developers familiar

Output

RERTL

Previous Works

Output Signal
Detection

RTL Extraction

FSM Extraction
(ROBDD Solver)

Input

Gate-Level
Netlist

Logic as RTL

Fig. 1. Overview of a netlist reverse engineering flow and the proposed
RERTL tool.

with different designs and common errors. Many tools exist
that formally analyze RTL than FSMs. Thus RTL could allow
for quick, accurate fault detection over an FSM description,
regardless of the analysis required. Moreover our method is
capable of capturing the signals that can control the flow of
data in the netlist. For this reason we occupy much of our
paper with extracting the output from the FSM. An FSM with
the output information is conventionally called a Finite State
Transducer (FST).

Our method assumes that we have access to a gate-level
description of the circuit and basic knowledge of logical
components, such as logical signals, primary inputs, and pri-
mary outputs of the design. To discover logic-data interaction
we find fanout signals of the logical state elements which
interact with other input or data signals. After identifying
these signals we can determine more clearly how the state
machine interacts with the input. After acquiring all the
transitions and the emissions, the resulting data may be too
large to manually check. Even without state machine outputs
FSMs can be several megabytes in size. For this reason we
implemented methods to convert the generated FST into RTL.
Conditions extended by the output and states might be made
overly complex compared to the original design. Managing
the large function of state crossed with inputs to generate
particular outputs requires a careful touch to avoid sluggish
reduction methods. In the end we partially utilize previously
described methods for extracting higher-level descriptions as
seen by Figure 1. The problem of simplifying the results to a
human-readable format is especially challenging when faced
with the problems of 1) State machine output finding and 2)
RTL formulation post state machine extraction. In fact, the
main contributions of RERTL and this paper are our solutions
to these two problems.

IV. Methodology

In this section, we discuss our methods used for analyzing
gate-level netlists and generating high-level RTL. Our tool,
RERTL, can be divided into three major steps.

• First, a pre-process will be performed to find all output
signals of a logical word’s FSM.

• second, a modified REFSM tool will be leveraged to
recover the state and transition logic as well as the
outputs signals evaluated at each state.

• Finally, the transitions are analyzed, conditions are re-
duced, and the resulting RTL is produced.

A. Finding the Outputs of the FST

A major step toward RTL recovery involves determining
which signals are most likely the “output” of the FST. There
could be a large amount of signals leaving the FST, and
the combinational circuit alone proceeding the state registers
could consist of thousands of gates. Many signals which rely
on the state of the transducer might not even affect data
directly but could indirectly modify data via the combination
with other input signals. A goal of output wire detection is to
find the farthest signals that affect signals outside of the FST’s
scope but are exclusively controlled by the state registers. The
frontier should be composed of the signals that interact with
logic directly outside the FST’s output signals.

Algorithm 1 Returns a set of output signals for a given Logic
word, W , and the netlist, N , as a signal graph
1: function FindOutput(W , N)
2: N ′ is the reverse signal graph of N
3: Ns is a signal graph where registers in N are split into input/output

nodes
4: N ′

s is a signal graph where registers in N ′ are split into input/output
nodes

5: Add a root and FSTroot node to Ns

6: Add a root and FSTroot node to N ′
s

7: for r ∈ register set of N do
8: if r is from W then
9: Add Edge from FSTroot to r’s output Node in Ns

10: Add Edge from FSTroot to r’s input Node in N ′
s

11: else
12: Add Edge from root to r’s output Node in Ns

13: Add Edge from root to r’s input Node in N ′
s

14: end if
15: end for
16: Connect root to FSTroot in both Ns and N ′

s
17: DT is the Dominator Tree of Ns where the root is root
18: DT ′ is the Dominator Tree of N ′

s where the root is root
19: BFS over nodes dominated by FSTroot in DT
20: output is an empty set that will contain the output signals
21: for u ∈ BFS do
22: for x in u’s fanout do
23: Determine reachability of x via Euler Tour Technique on DT
24: if x not dominated by FSTroot in either DT /DT ′ then
25: Add u to output
26: end if
27: end for
28: end for
29: return output
30: end function

Finding signals that are exclusively controlled by the
logical registers can be thought of as finding signals that are
“dominated” [15] by the logic registers. We could “merge” the
state logical registers and find dominated signals. Thus the
problem is reduced to finding the subtree in a dominator tree.
Algorithm 1 presents a high level implementation of output
signal detection by leveraging dominator trees. We create an
alternative graph based on the netlist where two extra roots
are added, the main root and an FST root. The FST root
will dominate every output and frontier output signal leaving
the state registers. To extract the frontier we have to find all
dominated signals that are either netlist output signals or fan-

Logic Word

Logic Outputs

Q

QS ET

C LR

D

Q

QS ET

C LR

D

Comb.
Logic

Comb.
Logic

i1

i2
G1

G2

G3

G4 o2

o1

R1

R2

Fig. 2. Example gate-level netlist with circled output signals.

root FSM
root

i1
R1 Q

fanout

R2 Q
fanoutG1i2

Comb.
Logic

R2 D
fanin

G2

G4

R1 D
fanin

G3 o1

o2
Comb.
Logic

Fig. 3. Forward graph of the algorithm. The shaded nodes are dominated
by the FSM root. The double arrows show potential FSM output signals.

out directly to a non-dominated signal. To do this, we look at
the wires in BFS order starting at the FST root, and for each
edge check if the next wire is no longer dominated. However,
this algorithm can find false-positive output signals that only
feedback into the state registers. Therefore, we have to run
the entire algorithm again in parallel, except reversing the
direction of all edges and moving the location of both roots
to the outputs instead of the inputs. Doing this will allow
us to eliminate signals that are completely dominated by the
state registers in the reverse direction as seen on Lines 4, 6,
10, 13, 16, and 18 in Algorithm 1. Since dominator trees can
be found in Linear time, the run-time for this method will
take no more than O(|N | + |E|) time, where |E| in this case
is the sum of the fan-in sizes (usually no more than 6×|N |)
plus the number of state registers plus 1.

For example, in the netlist shown in Figure 2, we have a
simple state transducer that has two output signals affecting
logic outside of its scope. Figure 3 is the constructed forward
graph which we will run Lengauer-Tarjan’s dominator tree
algorithm on. The shaded nodes are directly or indirectly
dominated by the FSM root. All wires leaving these nodes are
potential output signals of the FSM. However, as we can see
in Figure 2, the wire leaving R2 and entering G1 is contained
entirely within the state machine. We can use the reverse
graph in Figure 4 to eliminate this signal that is dominated
by the FST root in the reverse direction. Improper dominator
tree usage would have flagged the second register’s output
as an output signal. But due to the reverse graph check, we
find that only two signals, Gate 2 and register 1, are actually

rootFSM
root

i1
R1 Q

fanout

R2 Q
fanoutG1i2

Comb.
Logic

R2 D
fanin

G2

G4

R1 D
fanin

G3 o1

o2
Comb.
Logic

Fig. 4. Reverse graph of the algorithm. The shaded nodes are dominated by
the FSM root.

logical output signals.

B. RTL Code Generation

A Reduced Order Binary Decision Diagram (ROBDD)
solver is leveraged to extract the raw FST from the netlist,
and we will transform the data into a more human-readable
format described in RTL code. Given the resulting transitions
and a list of inputs, RERTL can generate high-level RTL that
is equivalent to the recovered FSM. To guarantee any FST’s
representation, we chose a general output form for our RTL
code which includes a header, a body and a reset logic. The
header defines all the wires used for input, output, and states
and how they relate to the wires in the netlist. The body
is used to define all of the reachable states as well as the
logic for each transition. The footer is used to define the
reset state and applying the transition chosen in the body.
The remainder of this section will focus on describing the
detailed process of generating RTL code in this form.
1) Output Wire Reduction: The first step of RERTL is to

analyze the outputs of each state given by REFSM. Our
method described in Section IV-A for finding output wires is
very lenient, meaning that the final set of wires is typically
a superset of the actual output wires. To reduce the set of
wires, we will remove any wires that are constant across all
states or strict negations of a wire already in the selected
wire set.
2) Generating Conditions: The next step to recover the RTL

is generating the conditions for each state transition. Given
a single input word with n bits, there can be d don’t-care
bits and n− d bits critical to the state transition in a single
transition. Furthermore, the input word can be prefixed in the
least significant bits with p don’t-care signals, where p ≤ d.
The following four cases are all the possible ways to describe
a transition given by the ROBDD solver:

• Case 1: d = 0
• Case 2: d = p
• Case 3: A brute force method could compute 2d − p in a

reasonable time
• Case 4: Brute force is not sufficient for an acceptable

time constraint

Case 1 is the trivial case where all of the bits are critical
and defined in this transition. This can be represented as a
simple equality check. In Case 2, p is important because all
don’t-care signals are a prefix of the input word and can
be compressed to represent a single continuous range. In
Case 3, these p bits can be removed and compressed in the
same way. This allows us to use brute force by checking
all possible combinations of the remaining d − p bits and
generate all ranges that satisfy this condition. In Case 4, the
computational time for brute force would be too expensive.
Moreover, the number of conditions would be too large to fit
into one IF statement. Instead, we can use bitwise AND logic
to represent the transition very concisely. As a trade-off, we
lose some of the reasoning and logic behind the transition.

The following examples represent each mentioned case and
the condition that is generated, where “X” in the input word
represents a don’t-care signal:

Case 1: 000101 → word == 6'd5
Case 2: 0001XX → word >= 6'd4 && word <= 6'd7
Case 3: 00X1XX → (word >= 6'd4 && word <= 6'd7) ||

(word >= 6'd12 && word <= 6'd15)
Case 4: X0X1XX → (word & 6'b010100) == 6'b000100

Once all of the transitions for a state are generated, we
sort the transitions by the number of conditions associated
with it. This is done to reduce complexity and take advantage
of the if-elseif-else scheme of the transition. Since they are
sorted, the most complex condition will appear last, resulting
in being replaced with a simple else statement.

V. Benchmarks and Results
We looked into a number of ISCAS benchmarks [16]–

[18] and designs from the Trust-Hub [19], [20]. Many of the
designs used have explicit state machines while other have
implicit (or no) state machines. We treat the design with
implicit or no state machine as one state circuit. In most
cases we selected the most obvious submodule for recovery.
In one case in particular, the S13207, two different logical
submodules were tested independently.

All of our designs were run on a computer with 16GB of
memory and an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz.
The first two parts of RERTL, output finding and the modified
REFSM, were implemented in C++, while the third part was
implemented in Java.

Verification was performed manually on many of the small
designs. The larger designs were checked by comparing
RERTL’s FST to the conditions generated by REFSM. The RTL
of the smaller Trojan infected designs was compared with the
original design to validate the correct recovery. RERTL has
the ability to change the order of the input bits to allow for
easy verification. The output associated with the states was
checked in the designs that had original RTL for comparison.

Table I shows the results of RERTL ran on various gate-
level netlists. The first column shows the name of the design.
The second column shows how many gates are in the
design. The third and fourth column describes the size of
the FSM in terms of the number of states and the number of
transitions. The amount of time taken to finish for the whole

tool compared with the time taken on REFSM is shown in
columns 5 and 6, respectively. The RERTL run time shown
is the time taken to find the output signals, extract the
transitions, and convert into FST. The second to last column
of the table is used to show the size difference between the
recovered RTL and FSM as a ratio of the RTL size in bytes
over FSM size in bytes. The last column shows that the design
recovered by RERTL emulates an FSM identical to the one
found by REFSM.
The first example we will cover demonstrates RERTL’s

ability to identify and recover a Trojan injected into an
AES circuit. Listing 1 shows the original RTL of a Trojan
triggering based on a specific passcode received through
input. Listing 2 shows the RTL recovered by RERTL. There
is only one trivial difference between the two, the recovered
version’s output is a negated version of the Tj_Trig signal.

Listing 1
Original AES T1000 Trojan Trigger RTL Trigger

always @(r s t , s t a t e)
begin

i f (r s t == 1) begin
T j_T r i g <= 0 ;

end e l se i f (s t a t e == 128 ’
h00112233_44556677_8899aabb_c cddee f f)
begin

T j_T r i g <= 1 ;
end

end

Listing 2
Recovered AES T1000 Trojan Trigger RTL

assign i n pu t s = { s t a t e [1 2 7] , . . . , s t a t e [0] } ;
assign en = { T j _T r i g_Ba r } ;
always@ (∗)
begin

case (c u r r _ s t a t e)
1 ’ d0 :

begin
en <= 1 ’ b1 ;
i f ((i n pu t s == 128 ’ h112233445566778899

a a b b c c dd e e f f))
n e x t _ s t a t e <= 1 ’ d1 ;

e l se
n e x t _ s t a t e <= 1 ’ d0 ;

end
1 ’ d1 :

begin
en <= 1 ’ b0 ;
n e x t _ s t a t e <= 1 ’ d1 ;

end
endcase

end
always@ (posedge c lk , posedge r s t)
begin

i f (r s t)
c u r r _ s t a t e <= 1 ’ d0 ;

e l se
c u r r _ s t a t e <= n e x t _ s t a t e ;

end

VI. Conclusion
In this paper, we have discussed a motivation for having

high-level netlist descriptions for analyzing IP. RTL was

TABLE I
The results of RERTL on various netlists

Netlist Gates States in FSM Transitions in FSM RERTL Time REFSM Time RTL/FSM Size Ratio
b1 24 8 25 1.28s 0.03s 1.31
b2 144 7 10 1.28s 0.04s 3.53
b4 632 3 3 1.23s 0.04s 6.38
b5 821 68 71 1.26s 0.04s 4.17
b7 380 43 43 1.25s 0.04s 3.05
b9 146 262401 459009 27.18s 3.11s 1.53
b10 174 611 3711 1.75s 0.08s 0.81
b13 310 17042 19182 2.95s 0.22s 1.44
S510 179 47 76 1.24s 0.03s 2.92
S641 107 1325 179185 8.56s 1.19s 0.75
S1423 490 4 12 1.24s 0.04s 1.91
S1488 550 48 168 1.31s 0.04s 1.50
S1494 558 48 168 1.29s 0.04s 1.87
S9234 2027 6 36 1.25s 0.04s 0.51

S13207 FSM 1 2573 64 127 1.30s 0.05s 2.08
S13207 FSM 2 2573 32 33 1.25s 0.05s 4.11

S15850 3448 4 12 1.26s 0.05s 1.25
AES T100 Counter 11175 1048576 2097151 114s 12.9s 1.37
AES T400 Trigger 11686 2 262 1.26s 0.06s 0.00679
AES T1000 Trigger 11269 2 272 1.43s 0.06s 0.0193

chosen as the method for representation over an FSM due to
its intuitive description design. We have presented a novel
method, RERTL, for RTL extraction. The proposed method
was demonstrated on a set of netlists. The experimental
results show that all of the benchmark designs at various
complexities were recoverable within seconds. The future
work is to improve the transition compression so that even
larger complexity FSMs can be recovered. Additionally, the
cases for transition compression can be extended, such that
more common logic patterns, e.g., add, multiply, increment,
etc., can be identified and reduced.

Acknowledgement
The work is partially supported by the National Science

Foundation (NSF-1812071). Jason Portillo and John Hacker
are supported by the REU Supplement of this project.

References
[1] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection

techniques,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2015, pp. 2021–2024.

[2] C. Bao, D. Forte, and A. Srivastava, “On application of one-class svm
to reverse engineering-based hardware trojan detection,” in Fifteenth
International Symposium on Quality Electronic Design. IEEE, 2014, pp.
47–54.

[3] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in 2008 IEEE International workshop on hardware-oriented
security and trust. IEEE, 2008, pp. 51–57.

[4] A. Amelian and S. E. Borujeni, “A side-channel analysis for hardware
trojan detection based on path delay measurement,” Journal of Circuits,
Systems and Computers, vol. 27, no. 09, p. 1850138, 2018.

[5] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehra-
nipoor, “Hardware trojan detection through information flow security
verification,” in 2017 IEEE International Test Conference (ITC). IEEE,
2017, pp. 1–10.

[6] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Hoffmann, S. Hoppach,
M. Wilhelm, T. Weidlich, R. Tessier, and C. Paar, “HAL- the missing
piece of the puzzle for hardware reverse engineering, trojan detection
and insertion,” IEEE Transactions on Dependable and Secure Computing,
2018.

[7] EmSec Chair for Embedded Security, “HAL - The Hardware Analyzer,”
https://github.com/emsec/hal, 2019.

[8] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2013, pp. 1277–1280.

[9] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in 2013 IEEE international symposium on
hardware-oriented security and trust (HOST). IEEE, 2013, pp. 67–74.

[10] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 655–660.

[11] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293–330, 2018.

[12] T. Meade, J. Portillo, S. Zhang, and Y. Jin, “Neta: when ip fails,
secrets leak,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference. ACM, 2019, pp. 90–95.

[13] T. Meade, S. Zhang, and Y. Jin, “Ip protection through gate-level netlist
security enhancement,” Integration, vol. 58, pp. 563–570, 2017.

[14] C.-N. Liu and J.-Y. Jou, “A fsm extractor for hdl description at rtl level,”
in Proc. of Asia-Pacific Conference on Hardware Description Languages,
1998, pp. 33–38.

[15] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 1, no. 1, pp. 121–141, 1979.

[16] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in Proceedings
of IEEE Int’l Symposium Circuits and Systems (ISCAS 85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[17] F. Corno, M. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and
first atpg results,” Design Test of Computers, IEEE, vol. 17, no. 3, pp.
44–53, Jul 2000.

[18] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Circuits and Systems, 1989., IEEE
International Symposium on, May 1989, pp. 1929–1934 vol.3.

[19] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st inter-
national conference on computer design (ICCD). IEEE, 2013, pp. 471–474.

[20] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
2017.

