
Chapter 10
IP Trust Validation Using Proof-Carrying
Hardware

Xiaolong Guo, Raj Gautam Dutta, and Yier Jin

10.1 Introduction

A rapidly growing third-party Intellectual Property (IP) market provides IP con-
sumers with high flexibility when designing electronic systems. It also reduces
the development time and expertise needed to compete in a market where profit-
windows are very narrow. However, one key issue that has been neglected is
the security of hardware designs built upon third-party IP cores. Historically, IP
consumers have focused on IP functionality and performance than security. The
negligence toward development of robust security policies is reflected in the IP
design flow (see Fig. 10.1), where IP core specification usually only includes
functionality and performance measurements.

The prevailing usage of third-party soft IP cores in SoC designs raises security
concerns as current IP core verification methods focus on IP functionality rather than
IP trustworthiness. Moreover, lack of regulation in the IP transaction market adds to
the predicament of the SoC designers and forces them to perform verification and
validation of IPs themselves. To help SoC designers in IP verification, various meth-
ods have been developed to leverage enhanced functional testing and/or perform
probability analysis of internal nodes for IP core trust evaluation and malicious logic
detection [1, 2]. However, these methods were easily bypassed by sophisticated
hardware Trojans [3–5]. Formal methods were also introduced for IP core trust
evaluation [1, 6–10]. Among all the proposed formal methods, proof-carrying
hardware (PCH), which originated from proof-carrying code (PCC), emerged as
one of the most prevalent methods for certifying the absence of malicious logic in
soft IP cores and reconfigurable logic [6–10]. In the PCH approach, synthesizable
register-transfer level (RTL) code of IP core and informal security properties were

X. Guo • R.G. Dutta • Y. Jin (�)
University of Central Florida, Orlando, FL 32816, USA
e-mail: guoxiaolong@knights.ucf.edu; rajgautamdutta@knights.ucf.edu; yier.jin@eecs.ucf.edu

© Springer International Publishing AG 2017
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_10

207

yier.jin@eecs.ucf.edu

mailto:guoxiaolong@knights.ucf.edu
mailto:rajgautamdutta@knights.ucf.edu
mailto:yier.jin@eecs.ucf.edu

208 X. Guo et al.

Fig. 10.1 IC design flow within the semiconductor supply chain

first represented in Gallina—the internal functional programming language of the
Coq proof assistant [11]. Then, Hoare-logic style reasoning was used to prove the
correctness of the RTL code in the Coq platform.

The rest of the chapter is organized as follows: In Sect. 10.2, we provide an
overview of existing methods for IP protection, introduce the threat model, and
provide some relevant background on two different formal verification approaches.
In Sect. 10.3, we provide detailed explanation of the PCH method for ensuring
trustworthiness of IP cores. Finally, Sect. 10.4 concludes the chapter.

10.2 Overview of Formal Verification Methods
for IP Protection

To counter the threat of untrusted third-party resources, pre-silicon trust evaluation
approaches have been proposed recently [1, 12, 13]. Most of these methods try
to trigger malicious logic by enhancing functional testing with extra test vectors.
Authors in [12] proposed a method to generate “Trojan Vectors” into the testing
patterns, hoping to activate the hardware Trojans during the functional testing.
In order to identify suspicious circuitry, unused circuit identification (UCI) [13]
method analyzed the RTL code to find lines of code that are never used. However,
these methods assume that the attacker uses rarely occurring events as Trojan
triggers. Using “less-rare” events as trigger will void these approaches. This was
demonstrated in [14], where hardware Trojans were designed to defeat UCI.

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 209

Admitting the limitations of enhanced functional testing methods, researchers
started looking into formal solutions. Although at its early stage, formal methods
have already shown their advantages over testing methods in exhaustive secu-
rity verification [8, 9, 15, 16]. A multi-stage approach, which included assertion
based verification, code coverage analysis, redundant circuit removal, equivalence
analysis, and use of sequential Automatic Test Pattern Generation (ATPG), was
adopted in [15] to identify suspicious signals for detecting hardware Trojans. This
approach was demonstrated on an RS232 circuit and the efficiency of the approach
in detecting Trojan signals ranged between 67.7 and 100 %. In [8, 9, 16], a PCH
framework was used to verify security properties on soft IP cores. Supported by
the Coq proof assistant [11], formal security properties were formalized and proved
to ensure the trustworthiness of IP cores. In the following section in this chapter,
we will explain the PCH approach for soft IP core verification in greater details.
This method uses an interactive theorem prover and model checker for verifying the
design.

10.2.1 Threat Model

The IP protection methods in this chapter are based on the threat model that
malicious logic is inserted by an adversary at the design stage of the supply chain.
We assume that the rogue agent at the third-party IP design house can access
the hardware description language (HDL) code and insert a hardware Trojan or
backdoor to manipulate critical registers of the design. Such a Trojan can be
triggered either by a counter at a predetermined time, by an input vector, or under
certain physical conditions. Upon activation it can leak sensitive information from
the chip, modify functionality, or cause a denial-of-service to the hardware. In this
chapter, Trojans which can be activated by a specific “digital” input vector are only
considered.

Meanwhile, verification tools (e.g., Coq) used in all methods are assumed to
produce correct results. The existence of proofs for the security theorems indicates
the genuineness of the design whereas its absence indicates the presence of
malicious logic. However, the framework does not provide protection of an IP
from Trojans whose behaviors are not captured by the set of security properties.
Furthermore, there is also an assumption that the attacker has intricate knowledge
of the hardware to identify critical registers and modify them in order to carry out
the attack.

10.2.2 Formal Verification Methods

Formal methods have been extensively used for verification and validation of
security properties at pre- and post-silicon stages [8, 9, 15–20]. These previous
methods leverage one of the following two techniques, model checking and
interactive/automated theorem proving, for design verification.

yier.jin@eecs.ucf.edu

210 X. Guo et al.

10.2.2.1 Theorem Prover

Theorem provers are used to prove or disprove properties of systems expressed
as logical statements [21–28]. Over the years, several theorem provers (both
interactive and automated) have been developed for proving properties of hardware
and software systems. However, using them for verification on large and complex
systems require excessive effort and time. Irrespective of these limitations, theorem
provers have currently drawn a lot of interest in verifying security properties on
hardware. Among all the formal methods, they have emerged as the most prominent
solution for verifying large-scale designs.

One leading example of an interactive theorem prover is the open source tool
called Coq proof assistant [11]. Coq is an interactive theorem prover/proof assistant,
which enables verification of software and hardware programs with respect to their
specification [25]. In Coq, programs, properties, and proofs are represented as terms
in the Gallina specification language. By using the Curry–Howard Isomorphism,
the interactive theorem prover formalizes both the program and proofs in its
dependently typed language called the Calculus of Inductive Construction (CIC).
Correctness of the proof of the program is automatically checked using the built-
in type-checker of Coq. To expedite the process of building proofs, Coq provides
a library consisting of programs called tactics. However, existing Coq tactics does
not capture properties of hardware designs and thus does not significantly reduce
the time required for certifying large-scale hardware IP cores [6–8].

10.2.2.2 Model Checker

Model checking [29] is an automated method for verifying and validating models
in software and hardware applications [30–42]. In this approach, a model (Ver-
ilog/VHDL code of hardware) M with an initial state s0 is expressed as a transition
system and its behavioral specification (assertion) � is represented in a temporal
logic. The underlying algorithm of this technique explores the state space of the
model to find whether the specification is satisfied. This can be formally stated as,
M ; s0 ˆ �. If a case exists where the model does not satisfy the specification, a
counterexample in the form of a trace is produced by the model checker [43, 44].
Recently, model checkers have been used for detecting malicious signals in third-
party IP cores [15, 20]. The application of model checking techniques to SoCs,
including symbolic approaches based on Reduced Order Binary Decision Diagrams
(ROBDD) and Satisfiability (SAT) solving, has had limited success due to the state-
space explosion problem [45]. For example, a model with n Boolean variables can
have as many as 2n states, a typical soft IP core with 1000 32-bit integer variables
has billions of states.

Symbolic model checking using ROBDD is one of the initial approaches used
for hardware systems verification [46–48]. Unlike explicit state model check-
ing where all states of the system are explicitly enumerated, this technique
model states (represented symbolically) of the transition system using ROBDD.

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 211

The ROBDD is a unique, canonical representation of a Boolean expression of
the system. Subsequently, the specification to be checked is represented using a
temporal logic. A model checking algorithm then checks whether the specification
is true on a set of states of the system. Despite being a popular data structure for
symbolic representation of states of the system, ROBDD requires finding an optimal
ordering of state variables which is an NP-hard problem. Without proper ordering,
the size of the ROBDD increases significantly. Moreover, it is memory intensive
for storing and manipulating Binary Decision Diagrams (BDDs) of a system with a
large state space.

Another technique called bounded-model checking (BMC) replaces BDDs in
symbolic checking with SAT solving [49–51]. In this approach, a propositional
formula is first constructed using a model of the system, the temporal logic
specification, and a bound. The formula is then provided to an SAT solver to either
obtain a satisfying assignment or to prove that no such assignment exists. Although
BMC outperforms BDD based model checking in some cases, the method cannot
be used to test properties (specification) when the bound is large or cannot be
determined.

10.3 Proof-Carrying Hardware Framework for IP Protection

Various methods have been proposed in the software domain to validate the
trustworthiness and genuineness of software programs. These methods protect
computer systems from untrusted software programs. Most of these methods lay
burden on software consumers to verify the code. However, proof-carrying code
(PCC) switches the verification burden to software providers (software vendors/de-
velopers). Figure 10.2 outlines the basic working process of the PCC framework.

Fig. 10.2 Working procedure
of the PCC framework [52]

yier.jin@eecs.ucf.edu

212 X. Guo et al.

Fig. 10.3 Working process of the PCH framework [17]

During the source code certification stage of the PCC process, the software provider
verifies the code with respect to the security property designed by the software
consumer and encodes the formal proof of the security property with the executable
code in a PCC binary file. In the proof validation stage, the software consumer
determines whether the code from the potentially untrusted software provider is
safe for execution by validating the PCC binary file using a proof checker [52].

A similar mechanism, referred to as Proof-Carrying Hardware (PCH), was used
in the hardware domain to protect third-party soft IP cores [8–10]. The PCH
framework ensures trust-worthiness of soft IP cores by verifying a set of carefully
specified security properties. The working procedure of the PCH framework is
shown in Fig. 10.3. In this approach, the IP consumer provides design specifications
and informal (written in natural language) security properties to the IP vendor. Upon
receiving the request, the IP vendor develops the RTL design using a hardware
description language (HDL). Then, semantic translation of the HDL code and
informal security properties to Gallina is carried out. Subsequently, Hoare-logic
style reasoning is used for proving the correctness of the RTL code with respect
to formally specified security properties in Coq. As Coq supports automatic proof
checking, it can help IP customers validate proof of security properties with
minimum efforts. Moreover, usage of the Coq platform by both IP vendors and
IP consumers ensures that the same deductive rules will be used for validating the
proof. After verification, the IP vendor provides the IP consumer with the HDL code
(both original and translated versions), formalized security theorems of security
properties, and proofs of these security theorems. Then, the proof checker in Coq is
used by the IP consumer to quickly validate the proof of security theorems on the

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 213

translated code. The proof checking process is fast, automated, and does not require
extensive computational resources.

10.3.1 Semantic Translation

The PCH based IP protection method requires semantic translation of circuit design
in HDL to Coq’s specification language, Gallina. Consequently, a formal-HDL is
developed in [10], which includes a set of rules to enable this translation. These
rules can help represent basic circuit units, combinational logic, sequential logic,
and module instantiations. The formal-HDL is further extended in [53] to capture
hierarchical design methodology, which is used for representing large circuits such
as SoC. A brief description of the formal-HDL is given below

• Basic Circuit Units:
In the formal-HDL, basic circuit units are the most important components

and they include signals and buses. During the translation, three digital values
are used for signals: high, low, and unknown. To represent sequential logic,
a bus type is defined as a function, which takes timing variable t and returns
a list of signal values as shown in Listing 10.1. All circuit signals are of bus
type and their values can be modified either by a blocking assignment or a
nonblocking assignment (shown in Listing 10.1). Moreover, inputs and outputs
are also defined as bus type.

Listing 10.1 Basic Circuit Units in Semantic Model
Inductive value := lo|hi|x.
Definition bus_value := list value.
Definition bus := nat -> bus_value.
Definition input := bus.
Definition output := bus.
Definition wire := bus.
Definition reg := bus.

• Signal Operations: Logic operations such as and, or, not, and xor, as well as bus
comparison operations such as checking for bus equality: bus_eq and less-than:
bus_lt are designed to handle bus in Gallina. The conditional statement of RTL
code such as if. . . else. . . checks whether signals are on or off. To incorporate this
functionality in Coq, a special function, bus_eq_0, which compares the bus value
to hi or lo is added.

yier.jin@eecs.ucf.edu

214 X. Guo et al.

Listing 10.2 Signal Operations in Semantic Model
Fixpoint bv_bit_and (a b : bus_value) {struct a} : bus_value :=
match a with
| nil => nil
| la :: a’ =>
match b with
| nil => nil
| lb :: b’ => (v_and la lb)::(bv_bit_and a’ b’)
end

end.
Definition bus_bit_and (a b : bus) : bus :=

fun t:nat => bv_bit_and (a t) (b t).
Fixpoint bv_eq_0 (a : bus_value) {struct a} : value :=
match a with
| hi :: lt => lo
| lo :: lt => bv_eq_0 lt
| nil => hi
end.

Definition bus_eq_0 (a : bus) (t : nat) : value := bv_eq_0 (a t).

• Combinational and Sequential Logic: The definition of signals, expressions, and
their semantics paves the way for converting RTL circuits into Coq represen-
tatives. Combinational and sequential logic are higher level logic descriptions
constructed on top of buses. The keyword assign of the formal-HDL is used for
blocking assignment, while update is mainly used for nonblocking assignment.
During the blocking assignment the bus value will be updated in the current clock
cycle and in the nonblocking assignment the bus value will be updated in the next
clock cycle.

Listing 10.3 Signal Operations in Semantic Model
Fixpoint assign (a:assignblock)(t:nat) {struct a} :=

(* Blocking assignment *)
match a with
| expr_assign bus_one e => bus_one t = eval e t
| assign_useless => True
| assign_cons a1 a2 => (assign a1 t) /\ (assign a2 t)
end.
Fixpoint update (u:updateblock)(t:nat) {struct u} :=

(* Nonblocking assignment *)
match u with
| (upd_expr bus exp) => (bus (S t)) = (eval exp t)
| (updcons block1 block2) => (update block1 t) /\ (update block2 t)
| upd_useless => True
end.

• Module Definitions: Module definition/instantiation is critical when dealing with
hierarchical circuit structures, but it is never a problem for Verilog (and VHDL),
as long as interfacing signals and their timing are correctly defined. Concerning
the task of security property verification, however, treating a sub-module as a
functional unit by ignoring its internal structure may cause problems. Security
properties that are proven for the top level module and all its sub-modules do not

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 215

guarantee that the same properties will hold for the whole hierarchical design,
where attackers can easily insert hardware Trojans to maliciously modify the
interface without violating security properties proven for all modules separately.
As a result, the operation of module definition/instantiation should be defined in
a way that the details of sub-modules are accessible from the top level module
so that any security properties, if proven, remain valid for the whole design.
Thus, in PCH we flatten the hierarchical design such that the sub-modules and
their interfaces are transparent to the top module. module and module-inst are
key words for module definitions and instantiations. In [53], a new syntax for
representing modules is introduced in Coq, which preserves the hierarchical
structure and does not require design flattening.

The underlying formal language of the Coq proof assistant, Gallina, is based on
dependently typed lambda calculus and it defines both types and terms in the same
syntactical structure. During the translation process, syntax and semantics of the
HDL are translated to Gallina using the formal-HDL.

10.3.2 Data Protection Through Information Flow Tracking

Among all potential RT-level malicious modifications, sensitive information protec-
tion has been a research topic within the cybersecurity domain for decades. Various
approaches have been developed, relying on safe languages and software level
dynamic checks, to detect buffer overflow attacks and format string vulnerabilities.
These methods suffer from the limitation that they either have high false-alarm
rates or would cause significant performance overhead. Taking these limitations into
consideration, researchers invented new information protection schemes based on
hardware–software co-design, where the hardware infrastructure is actively involved
in dynamic information flow tracking. This new trend has proven successful in
improving detection accuracy and lowering performance overhead, at the cost of
hardware level modifications. For example, authors in [54] proposed a dynamic
information flow tracking framework with all internal storage elements equipped
with a security tag.

Authors in [55] focused on pointer tainting to prevent both control data and
non-control data attacks. Besides information flow tracking, the hardware is also
enhanced to help prohibit information leakage, such as in the InfoShield architecture
[56], which applies restrictions to operations on sensitive data. Similarly, the RIFLE
architecture is developed on top of an information flow security (IFS) instruction
set architecture (ISA), where all states defined by the base ISA are augmented by
labels [57]. More recently, a new software–hardware architecture was developed to
support more flexible security policies, either to protect sensitive data [58] or to
prevent malicious operations from untrusted third-party OS kernel extensions [59].

Two formal information flow tracking methodologies were also developed,
namely static information flow tracking [60] and dynamic information assurance

yier.jin@eecs.ucf.edu

216 X. Guo et al.

[9], which address the challenge of hardware Trojans, capable of leaking sensitive
information. These two schemes follow the concept of proof-carrying hardware IP
(PCHIP) [8] to enhance the trustworthiness of third-party IP cores.

These two formal methods are particularly geared toward secret information
protection, counteracting RTL hardware Trojan attacks in hardware soft IPs, and
preventing unintended design backdoors. These two methods differ in complexity
and the approach they take to track information in the design. Static information
flow tracking scheme is suitable for small designs, and requires less effort in
proof development, while dynamic information assurance scheme considers the
requirements of more complex and pipelined designs, and needs much more effort
in constructing the proofs of security theorems. Designers can adopt these two
methodologies based on their requirements.

The static information flow tracking scheme and the dynamic information
assurance scheme are integrated with the PCH IP protection framework and they
accept the data secrecy properties as the security property. Furthermore, because the
target data secrecy properties are independent of circuit functional specifications,
IP vendors may translate the properties from natural language to formal theorems
without specifying target circuits and can store the translated formal theorems in a
property library for similar designs. The development of a Coq property library and
the reuse of theorem-proof contents lowers the burden for IP vendors and stimulates
wider acceptance of the proposed proof-carrying based hardware IP protection
method. Property formalization and proof generation of both schemes are performed
using the Coq proof assistant platform [11].

10.3.2.1 Static Information Flow Tracking Scheme

For the static information flow tracking scheme [60], the IP vendor first designs
the circuit based on the functional specifications provided by the IP consumer, in
the form of HDL codes. Utilizing a formal semantic model and static information
flow tracking rules, the IP vendor then converts the circuit from HDL code into
formal logic. In parallel, the IP vendor uses the property formalization constraints
to translate the agreed-upon data secrecy properties from natural language to formal
theorems. The IP vendor will then try to construct proofs for the translated theorems
within the context of the target circuit. Even though the IP vendor is responsible for
both circuit design and theorem proving, given a set of well-defined theorems, it
is not possible to prove the theorems with a Trojan-infected circuit containing the
prohibited information leakage paths. Both formal theorems and their proofs are
part of the final deliverable handed to the IP consumer.

Upon receiving the hardware bundle which includes the HDL code and theorem-
proof pairs for data secrecy properties, the IP consumer regenerates the formal
logic of the original circuit based on the same formal semantic model and static
information flow tracking rules. The IP consumer also checks whether the security
theorems (in formal language) accurately represent the data secrecy properties (in

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 217

natural language). The security theorems and related proofs will then be combined
with the regenerated formal logic to pass through an automatic proof checker. If no
exceptions are raised, then we claim that the delivered IP core fulfills the agreed-
upon data secrecy properties. However, any errors during the proof checking process
warn the user that malicious circuits (or design flaws) may exist in the IP core,
making it violate the data secrecy properties.

10.3.2.2 Dynamic Information Assurance Scheme

The static scheme is effective in detecting data leakage caused by hardware Trojans
and/or design faults. It also requires less effort for constructing proofs. However,
the static scheme is limited by the fact that it can only check circuit trustworthiness
statically. To overcome this shortcoming of the static scheme and to achieve high-
level hardware Trojan detection capability, a dynamic information assurance scheme
is later developed [9].

This dynamic scheme supports various levels of circuit architectures, ranging
from low-complexity single-stage designs to large-scale deeply pipelined circuits.
Similar to the static scheme, the dynamic scheme also focuses on circuits dealing
with sensitive information, such as cryptographic designs, because it sets data
secrecy as the primary goal and tries to prevent illegal information leakage from IP
cores. Within the dynamic scheme, all signals are assigned values indicating their
sensitivity levels. These values will be updated after each clock cycle according to
their original values and the updating rules defined by the signal sensitivity transition
model. Since the sensitivities of all circuit signals are managed in a sensitivity list,
two sensitivity lists are of interests for data secrecy protection: the initial sensitivity
list and the stable sensitivity list. The initial sensitivity list reflects the circuit
status after initialization or powered-on mode when only some input signals contain
sensitive information, such as plaintext and encryption keys. The stable sensitivity
list, on the other hand, indicates the circuit status when all internal/output signals
are of fixed sensitivity levels.

Similar to the static scheme, IP vendor will also translate the agreed-upon
data secrecy properties from natural language to property generation functions,
which can later help to generate formal theorems. Meanwhile, different from the
static scheme, IP consumers will first check the contents of the initial signal
sensitivity list and the stable signal sensitivity list, which represent the circuit’s
initial secrecy status and the stabilized status, respectively. The validity of the initial
list is checked to ensure that sensitivity levels are appropriately assigned to all
input/output/internal signals. The circuit’s stable sensitivity status contains complete
information of the distribution of sensitive information across the whole circuit, so
the stable list will then be carefully evaluated to detect any backdoors that may leak
sensitive information. After both signal sensitivity lists pass the initial checking,
IP consumers proceed to the next step of proof checking. A “PASS” output from
the automatic proof checker provides evidence that HDL codes do not contain any

yier.jin@eecs.ucf.edu

218 X. Guo et al.

malicious channels to leak information. However, a “FAIL” result is a warning that
some of the data secrecy properties are breached in the delivered IP cores.

10.3.3 Hierarchy Preserving Verification

The above mentioned PCH frameworks treat the whole circuit design as one
module and prove security properties on them [8–10, 60]. That is, the entire design
is first flattened before translating the HDL code of the design into the formal
language and proving it with respect to formal security theorems. Design flattening
increases the complexity of translating HDL code into Gallina. It also adds to the
risk of introducing errors during the code conversion process. Due to flattening,
a verification expert has to go through the entire design in order to construct
proofs of security theorems, which significantly increases the workload for design
verification. Also, any updates to the HDL code will significantly change the proof
for the same security property. Moreover, the PCH framework prevents proof reuse,
i.e., proofs constructed for one design cannot be used in another design even though
the same IP modules are used. All of these limitations prohibit a wide usage of the
PCH framework in modern SoC designs.

To overcome these limitations, the Hierarchy-preserving Formal Verification
(HiFV) framework is developed for verifying security properties on SoC designs
in [53]. The HiFV framework is an extension of the PCH framework. In the HiFV
framework, the design hierarchy of the SoC is preserved and a distributed approach
is developed for constructing proofs of security properties. In the distributed
approach, security properties are divided into sub-properties in such a way that each
sub-property corresponds to an IP module of the SoC. Proofs are then constructed
for these sub-properties and the security property for the SoC design is proven
through the integration of all proofs from sub-properties. Similar to PCH, the HiFV
framework requires semantic translation of the HDL code and informal security
properties to Gallina. For proving the trustworthiness of the HDL code of the SoC,
Hoare-logic is used. Similar to other PCH methods, the HiFV framework is carried
out in Coq.

As mentioned earlier, before building the formal model for the SoC system, the
syntax and semantics should be defined and then shared by any parties who need
to design or check the proof. In addition, interface and module are incorporated in
the formal-HDL to preserve the design hierarchy of the SoC. That is, in order to
make distributed proof construction applicable on hierarchical designs, an interface
is developed in the HiFV framework which makes the verification process flexible
and efficient for the proof writer. To define the interface, information about each
IP and its corresponding I/O are needed, such as the name, number, and data type.
By using the interface, the management of the plenty of formal modules would be
much easier in the verification house side. The structure of the interface is shown
in Fig. 10.4. Through the interface, an IP module within an SoC can access other

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 219

Fig. 10.4 Structure of the
SoC with interface

modules such as IP #1 Formal Module or IP #2 Formal Module in the figure. The
ip_ipv_one, ip_ipv_two, and SoC_ttp are the name of the corresponding interfaces.

The distributed proof construction process uses Hoare-logic, where the trust-
worthiness of the SoC formal-HDL code is determined by ensuring that the code
operates following the constraints of the pre-condition and the post-condition. The
pre-condition of the formal-HDL code is the initial configuration of the design and
the post-condition is the security theorem. Meanwhile, in order to overcome the
scalability issue, a distributed proof construction approach is developed, which is
dedicated for SoC designs with hierarchical structures. This approach makes the
HiFV framework scalable by reducing the time required for proof construction,
proof correction, and proof modification.

In the HiFV framework, the translated HDL code of the SoC, formal security
theorems, and the initial configuration of the design is represented as a Hoare Triple
(Eq. (10.1)).

.�/CoqEquivalentCode_SoC. / (10.1)

In this equation, � is the pre-condition corresponding to the initial configuration
of the design. The translated HDL code of the SoC design hierarchy in Gallina is
given by CoqEquivalentCode_SoC. In the process of translation, modules in the
SoC HDL code, which correspond to IPs from different vendors, are also translated.
The post-condition is given by which represents the formal security theorem.

The security theorem is divided into lemmas (Eq. (10.2)), which are post-
conditions for individual IP modules. In Eq. (10.2), post-condition for IPs (lemmas)
are represented as i .1 � i � n/, n D maximum number of IP modules required to
prove the security theorem and is the security theorem. These lemmas correspond
to those IP modules that are required to satisfy the security theorem.

 WD 1 ^ 2 � � � ^ n (10.2)

Similarly, the pre-condition of the SoC design .�/ and the translated HDL code
of the SoC design .CoqEquivalentCode_SoC/ are divided according to Eqs. (10.3)
and (10.4). Here, .�i/ and .CoqEquivalentCode_IPmodule_i/ .1 � i � n/
represent the pre-conditions and translated HDL code of each IP module of the

yier.jin@eecs.ucf.edu

220 X. Guo et al.

SoC, respectively.

� WD �1 ^ �2 � � � ^ �n (10.3)

CoqEquivalentCode_SoC WD CoqEquivalentCode_IPmodule_1

^ CoqEquivalentCode_IPmodule_2 : : :

^ CoqEquivalentCode_IPmodule_n

(10.4)

The HDL code of the IP core is certified to be trustworthy only if it satisfies the
pre-condition and the post-condition. When all the modules of IP cores satisfy the
post-conditions (lemmas), we can state that the security theorem is proven for the
SoC design.

.�i/CoqEquivalentCode_IPmodule_i. i/ (10.5)

The distributed approach of proof construction also enables proof reuse. After
certifying the trustworthiness of each IP core of the SoC, the proofs can be stored
in a library and accessed by the trusted third party (TTP) verification house for
verification of other SoC designs in which the same IP modules are used and similar
security properties are applied. In this way the HiFV framework further reduces the
time for verifying complex designs.

As a summary, in this approach, the previously developed PCH framework is
extended into the SoC design flow and largely simplified the process for proving
security properties through a hierarchical proof construction procedure. To reduce
the workload for circuit verification, the proof of the security properties for
individual IPs can be encapsulated and reused in proving security properties at the
SoC level. Also, in the hierarchical framework, the amount of updates that need to
be done to existing proofs when SoC designs are modified is significantly lowered.
The developed HiFV framework paves the way for large-scale circuit design security
verification.

10.3.4 Integrating Theorem Prover and Model Checker

Although the HiFV hierarchical approach improves scalability of the previous PCH
method, it still suffers from the challenge of proof construction. Meanwhile, model
checkers such as Cadence IFV cannot be used for verifying systems with large state
space because of the space explosion problem. As the number of state variables (n)
in the system increases, amount of space required for representing the system and
the time required for checking the system increases exponentially (T.n/ D 2O.n/)
(Fig. 10.5).

To further overcome the scalability issue and to verify a computer system, an
integrated formal verification framework (see Fig. 10.6) is introduced in [61], where

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 221

Fig. 10.5 Security
specification (�) decomposed
into lemmas

Fig. 10.6 Integrated formal
verification framework

the security properties are checked against SoC designs. In this framework, the
theorem prover is combined with a model checker for proving formal security
properties (specifications). Moreover, the hierarchical structure of the SoC is
leveraged to reduce the verification effort.

Some efforts have been made to combine theorem provers with model checkers
for verification of hardware and software systems [62, 63]. These methods try to
overcome the scalability issue of both techniques. That is, both model checkers and
theorem provers cannot scale well to formally verify large-scale circuit designs.
Some of the popular theorem provers such as higher order logic (HOL Light) and
prototype verification system have integrated model checkers. These tools have
been used for functional verification of hardware systems. For the first time, this
combined technique has been extended toward verification of security properties on
third-party IP cores and SoCs [61].

In the integrated framework, the hardware design, represented in a hardware
description language (HDL), and the assembly level instructions of a vulnerable
program, is first translated to Gallina, which is similar to other PCH methods. Then,
the security specification is stated as a formal theorem in Coq. In the following
step, this theorem is decomposed into disjoint lemmas (see Fig. 10.5) based on sub-
modules. These lemmas are then represented in the Property Specification Language
(PSL) specification language and are called sub-specifications. Subsequently, the
Cadence IFV verifies the sub-modules against the corresponding sub-specifications.
Sub-modules are functions, which have less number of state variables and are

yier.jin@eecs.ucf.edu

222 X. Guo et al.

connected to primary output of the design. These functions are always from the
bottom level of SoC and have rare dependency relationship with each other.

The HDL code of a large design consists of many such sub-modules. If the
sub-modules satisfy the sub-specifications, lemmas are considered to be proved.
Checking the truth value of the sub-specifications with a model checker eliminates
the effort required for proving the lemmas and translating the sub-modules to Coq.
Upon proving these sub-modules, Hoare-logic is then used to combine proof of
these lemmas to prove the security theorem of the entire system in Coq.

The integrated formal verification framework helps in protecting a large-scale
SoC design from malicious attacks. Given that an interactive theorem prover (e.g.,
Coq) requires lots of effort to manually verify the design and that a model checker
suffers from scalability issues, these two techniques are combined together through
the decomposition of the security property as well as the design in such a way
that the model checker can verify those sub-modules which have much less state
variables. Consequently, the amount of effort required for translating the design
from HDL to Gallina and proving the security theorem in Coq is reduced.

10.4 Conclusion

In this chapter, we explain our interactive theorem proving based PCH approach
for security property verification of hardware IP cores. We also describe application
of the framework for preventing information leakage from soft IPs. To overcome
scalability and reusability issues of original PCH method, a design hierarchy
preserving scheme was then introduced that incorporates both model checking and
interactive theorem proving for verification.

Acknowledgements This work has been partially supported by the National Science Foundation
(NSF-1319105), the Army Research Office (ARO W911NF-16-1-0124), and Cisco.

References

1. M. Banga, M. Hsiao, Trusted RTL: Trojan detection methodology in pre-silicon designs, in
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (2010),
pp. 56–59

2. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious
logic using boolean functional analysis, in Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security, CCS’13 (2013), pp. 697–708

3. D. Sullivan, J. Biggers, G. Zhu, S. Zhang, Y. Jin, FIGHT-metric: Functional identification of
gate-level hardware trustworthiness, in Design Automation Conference (DAC) (2014)

4. N. Tsoutsos, C. Konstantinou, M. Maniatakos, Advanced techniques for designing stealthy
hardware trojans, in Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE
(2014)

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 223

5. M. Rudra, N. Daniel, V. Nagoorkar, D. Hoe, Designing stealthy trojans with sequential
logic: A stream cipher case study, in Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE (2014)

6. S. Drzevitzky, U. Kastens, M. Platzner, Proof-carrying hardware: Towards runtime verification
of reconfigurable modules, in International Conference on Reconfigurable Computing and
FPGAs (2009), pp. 189–194

7. S. Drzevitzky, M. Platzner, Achieving hardware security for reconfigurable systems on
chip by a proof-carrying code approach, in 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (2011), pp. 1–8

8. E. Love, Y. Jin, Y. Makris, Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25–40 (2012)

9. Y. Jin, B. Yang, Y. Makris, Cycle-accurate information assurance by proof-carrying based
signal sensitivity tracing, in IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST) (2013), pp. 99–106

10. Y. Jin, Y. Makris, A proof-carrying based framework for trusted microprocessor IP, in
2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2013),
pp. 824–829

11. INRIA, The Coq proof assistant (2010), http://coq.inria.fr/
12. F. Wolff, C. Papachristou, S. Bhunia, R.S. Chakraborty, Towards Trojan-free trusted ICs:

problem analysis and detection scheme, in IEEE Design Automation and Test in Europe (2008),
pp. 1362–1365

13. M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, J.M. Smith, Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically, in Proceedings of
IEEE Symposium on Security and Privacy (2010), pp. 159–172

14. C. Sturton, M. Hicks, D. Wagner, S. King, Defeating UCI: building stealthy and malicious
hardware, in 2011 IEEE Symposium on Security and Privacy (SP) (2011), pp. 64–77

15. X. Zhang, M. Tehranipoor, Case study: detecting hardware trojans in third-party digital ip
cores, in 2011 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (2011), pp. 67–70

16. Y. Jin, Design-for-security vs. design-for-testability: A case study on dft chain in cryptographic
circuits, in IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014), pp. 19–24

17. X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification and
validation: a formal perspective, in Proceedings of the 52Nd Annual Design Automation
Conference, DAC’15 (2015), pp. 145:1–145:6

18. F.M. De Paula, M. Gort, A.J. Hu, S.J. Wilton, J. Yang, Backspace: formal analysis for post-
silicon debug, in Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design (IEEE Press, New York, 2008), p. 5

19. S. Drzevitzky, Proof-carrying hardware: Runtime formal verification for secure dynamic recon-
figuration, in 2010 International Conference on Field Programmable Logic and Applications
(FPL) (2010), pp. 255–258

20. J. Rajendran, V. Vedula, R. Karri, Detecting malicious modifications of data in third-party
intellectual property cores, in Proceedings of the Annual Design Automation Conference, DAC
’15 (ACM, New York, 2015), pp. 112:1–112:6

21. J. Harrison, Floating-point verification, in FM 2005: Formal Methods, International Sympo-
sium of Formal Methods Europe, Proceedings, ed. by J. Fitzgerald, I.J. Hayes, A. Tarlecki.
Lecture Notes in Computer Science, vol. 3582 (Springer, Berlin, 2005), pp. 529–532

22. S. Owre, J.M. Rushby, N. Shankar, PVS: a prototype verification system, in 11th International
Conference on Automated Deduction (CADE) (Saratoga, NY), ed. by D. Kapur. Lecture Notes
in Artificial Intelligence, vol. 607 (Springer, Berlin, 1992), pp. 748–752

23. D. Russinoff, M. Kaufmann, E. Smith, R. Sumners, Formal verification of floating-point RTL
at AMD using the ACL2 theorem prover, in Proceedings of the 17th IMACS World Congress
on Scientific Computation, Applied Mathematics and Simulation, Paris, France (2005)

24. J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, A. Platzer, How to model and prove hybrid
systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools Technol. Transfer 18, 67–91
(2016)

yier.jin@eecs.ucf.edu

http://coq.inria.fr/

224 X. Guo et al.

25. A. Chlipala, Certified Programming with Dependent Types: A Pragmatic Introduction to the
Coq Proof Assistant (MIT Press, Cambridge, 2013)

26. U. Norell, Dependently typed programming in Agda, in Advanced Functional Programming
(Springer, Berlin, 2009), pp. 230–266

27. R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J.
Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, S.F. Smith, Implementing
Mathematics with the Nuprl Proof Development System (Prentice-Hall, Upper Saddle River,
1986)

28. L.C. Paulson, Isabelle: the next 700 theorem provers, in Logic and Computer Science, vol. 31
(Academic Press, London, 1990), pp. 361–386

29. E.M. Clarke, O. Grumberg, D. Peled, Model Checking (MIT press, Cambridge, 1999)
30. T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre, Software verification with blast, in Model

Checking Software, (Springer, Berlin, 2003), pp. 235–239
31. J. O’Leary, X. Zhao, R. Gerth, C.-J.H. Seger, Formally verifying ieee compliance of floating-

point hardware. Intel Technol. J. 3(1), 1–14 (1999)
32. M. Srivas, M. Bickford, Formal verification of a pipelined microprocessor. IEEE Softw. 7(5),

52–64 (1990)
33. T. Kropf, Introduction to Formal Hardware Verification (Springer, Berlin, 2013)
34. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood, seL4: formal
verification of an os kernel, in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
systems principles (ACM, New York, 2009), pp. 207–220

35. S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith, Modular verification of software components
in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004)

36. H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M.F. Kaashoek, N. Zeldovich, Using crash hoare
logic for certifying the fscq file system, in Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP’15 (ACM, New York, 2015), pp. 18–37

37. M. Vijayaraghavan, A. Chlipala, N. Dave, Modular deductive verification of multiprocessor
hardware designs, in Computer Aided Verification (Springer, Cham, 2015), pp. 109–127

38. A.A. Mir, S. Balakrishnan, S. Tahar, Modeling and verification of embedded systems using
cadence SMV, in 2000 Canadian Conference on Electrical and Computer Engineering, vol. 1
(IEEE, New York, 2000), pp. 179–183

39. M. Kwiatkowska, G. Norman, D. Parker, Prism: probabilistic symbolic model checker, in
Computer Performance Evaluation: Modelling Techniques and Tools (Springer, Berlin, 2002),
pp. 200–204

40. G.J. Holzmann, The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279 (1997)
41. D. Beyer, M.E. Keremoglu, Cpachecker: a tool for configurable software verification, in

Computer Aided Verification (Springer, Berlin, 2011), pp. 184–190
42. A. David, K. G. Larsen, A. Legay, M. Mikučionis, Z. Wang, Time for statistical model checking

of real-time systems, in Computer Aided Verification (Springer, Berlin, 2011), pp. 349–355
43. E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refine-

ment, in Computer Aided Verification, (Springer, Berlin 2000), pp. 154–169
44. C. Baier, J. Katoen, Principles of Model Checking (MIT Press, Cambridge, 2008)
45. A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic model checking using sat

procedures instead of BDDs, in Proceedings of the 36th annual ACM/IEEE Design Automation
Conference (ACM, New York, 1999), pp. 317–320

46. R.E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293–318 (1992)

47. R.E. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput.
100(8), 677–691 (1986)

48. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, Nusmv 2: an opensource tool for symbolic model checking, in Computer Aided
Verification (Springer, Berlin, 2002), pp. 359–364

yier.jin@eecs.ucf.edu

10 IP Trust Validation Using Proof-Carrying Hardware 225

49. E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving.
Form. Methods Syst. Des. 19(1), 7–34 (2001)

50. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking Adv.
Comput. 58, 117–148 (2003)

51. S. Qadeer, J. Rehof, Context-bounded model checking of concurrent software, in Tools and
Algorithms for the Construction and Analysis of Systems (Springer, Berlin, 2005), pp. 93–107

52. G.C. Necula, Proof-carrying code, in POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (1997), pp. 106–119

53. X. Guo, R.G. Dutta, Y. Jin, Hierarchy-preserving formal verification methods for pre-silicon
security assurance, in 16th International Workshop on Microprocessor and SOC Test and
Verification (MTV) (2015)

54. G.E. Suh, J.W. Lee, D. Zhang, S. Devadas, Secure program execution via dynamic information
flow tracking, in Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XI (2004), pp. 85–96

55. S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, R. Iyer, Defeating memory corruption attacks
via pointer taintedness detection, in Proceedings. International Conference on Dependable
Systems and Networks, 2005. DSN 2005 (2005), pp. 378–387

56. W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, J. Yang, Infoshield: a security architecture
for protecting information usage in memory, in The Twelfth International Symposium on High-
Performance Computer Architecture, 2006 (2006), pp. 222–231

57. N. Vachharajani, M. Bridges, J. Chang, R. Rangan, G. Ottoni, J. Blome, G. Reis, M. Vach-
harajani, D. August, RIFLE: an architectural framework for user-centric information-flow
security, in 37th International Symposium on Microarchitecture, 2004. MICRO-37 2004
(2004), pp. 243–254

58. Y.-Y. Chen, P. A. Jamkhedkar, R.B. Lee, A software-hardware architecture for self-protecting
data, in Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS’12 (2012), pp. 14–27

59. Y. Jin, D. Oliveira, Extended abstract: trustworthy SoC architecture with on-demand security
policies and HW-SW cooperation, in 5th Workshop on SoCs, Heterogeneous Architectures and
Workloads (SHAW-5) (2014)

60. Y. Jin, Y. Makris, Proof carrying-based information flow tracking for data secrecy protection
and hardware trust, in IEEE 30th VLSI Test Symposium (VTS) (2012), pp. 252–257

61. X. Guo, R.G. Dutta, P. Mishra, Y. Jin, Scalable soc trust verification using integrated theorem
proving and model checking, in IEEE Symposium on Hardware Oriented Security and Trust
(HOST) (2016), pp. 124–129.

62. S. Berezin, Model checking and theorem proving: a unified framework. Ph.D. Thesis, SRI
International (2002)

63. P. Dybjer, Q. Haiyan, M. Takeyama, Verifying haskell programs by combining testing, model
checking and interactive theorem proving. Inf. Softw. Technol. 46(15), 1011–1025 (2004)

yier.jin@eecs.ucf.edu

	Acknowledgements
	Contents
	Abbreviations (Acronyms)
	Part I Introduction
	1 Security and Trust Vulnerabilities in Third-Party IPs
	1.1 Introduction
	1.2 Design and Validation of SoCs
	1.3 Security and Trust Vulnerabilities in Third-Party IPs
	1.4 Trustworthy SoC Design Using Untrusted IPs
	1.5 Book Organization
	References

	Part II Trust Analysis
	2 Security Rule Check
	2.1 Introduction
	2.2 Security Assets and Attack Models
	2.2.1 Asset
	2.2.2 Potential Access to Assets
	2.2.3 Potential Adversary for Intentional Attacks

	2.3 DSeRC: Design Security Rule Check
	2.3.1 Vulnerabilities
	2.3.1.1 Sources of Vulnerabilities
	2.3.1.2 Vulnerabilities at Different Abstraction Levels

	2.3.2 Metrics and Rules
	2.3.3 Workflow of DSeRC Framework

	2.4 Development of DSeRC Framework
	2.4.1 Vulnerabilities, Metrics, and Rules
	2.4.2 Tool Development
	2.4.3 Development of Design Guidelines for Security
	2.4.4 Development of Countermeasure Techniques

	2.5 Conclusion
	References

	3 Digital Circuit Vulnerabilities to Hardware Trojans
	3.1 Introduction
	3.2 The Gate-Level Design Vulnerability Analysis Flow
	3.3 The Layout-Level Design Vulnerability Analysis Flow
	3.3.1 Cell and Routing Analyses
	3.3.2 Net Analysis

	3.4 Trojan Analyses
	3.5 Conclusions
	References

	4 Code Coverage Analysis for IP Trust Verification
	4.1 Introduction
	4.2 SoC Design Flow
	4.3 Hardware Trojan Structure
	4.4 Related Work
	4.5 A Case Study for IP Trust Verification
	4.5.1 Formal Verification and Coverage Analysis
	4.5.2 Techniques for Suspicious Signals Reduction
	4.5.2.1 Phase 1: Test Bench Generation and Suspicious Signal Identification
	4.5.2.2 Phase 2: Suspicious Signals Analysis

	4.6 Simulation Results
	4.6.1 Benchmark Setup
	4.6.2 Impact of Test Bench on Coverage Analysis
	4.6.3 Reducing the Suspicious Signals
	4.6.4 Trojan Coverage Analysis

	4.7 Conclusion
	References

	5 Analyzing Circuit Layout to Probing Attack
	5.1 Introduction
	5.2 Microprobing Attack Techniques
	5.2.1 Essential Steps in a Probing Attack
	5.2.2 Microprobing Through Milling
	5.2.3 Back-Side Techniques
	5.2.4 Other Related Techniques

	5.3 Protection Against Probing Attacks
	5.3.1 Active Shields
	5.3.2 Techniques to Attack and Secure Active Shields
	5.3.2.1 Routing Overhead
	5.3.2.2 Stuck on Top Metal Layer

	5.3.3 Other Antiprobing Designs
	5.3.4 Summary on Antiprobing Protections

	5.4 Layout-Based Evaluation Framework
	5.4.1 Motivation
	5.4.2 Assessment Rules
	5.4.3 State-of-the-Art Active Shield Model
	5.4.4 Impact of Milling Angle upon Effect of Bypass Attack
	5.4.5 Algorithm to Find Exposed Area
	5.4.6 Discussions on Applications of Exposed Area Algorithm

	5.5 Conclusion
	References

	6 Testing of Side-Channel Leakage of Cryptographic Intellectual Properties: Metrics and Evaluations
	6.1 Introduction
	6.2 Preliminaries on Statistical Testing and Testing of Hypothesis
	6.2.1 Sampling and Estimation
	6.2.2 Some Statistical Distributions
	6.2.3 Estimation and Test of Significance
	6.2.4 Test of Significance: Statistical Hypothesis Testing

	6.3 Formalizing SCA and the Success Rate of Side-Channel Adversary: Guessing Entropy
	6.3.1 Success Rate of a Side-Channel Adversary
	6.3.2 Guessing Entropy of an Adversary

	6.4 Leakage Detection in SCA Traces: NICV and SNR
	6.4.1 Normalized Inter-Class Variance
	6.4.2 NICV and SNR
	6.4.3 Related Work in Leakage Detection
	6.4.4 Case Study: Application on AES

	6.5 Test Vector Leakage Assessment Methodology
	6.6 Equivalence of NICV and TVLA
	6.7 TVLA on Higher Order Side-Channel Attacks
	6.7.1 Estimation of Mean
	6.7.2 Estimation of Variance

	6.8 Case Study: Private Circuit
	6.8.1 Experimental Analysis and Result
	6.8.1.1 Optimized SIMON
	6.8.1.2 2-Input LUT Based SIMON
	6.8.1.3 Synchronized 2-Input LUT Based SIMON

	6.9 Conclusion
	References

	Part III Effective Countermeasures
	7 Hardware Hardening Approaches Using Camouflaging, Encryption, and Obfuscation
	7.1 Introduction
	7.2 Terminology
	7.3 State of the Art
	7.3.1 Camouflaging
	7.3.2 Logic Encryption
	7.3.2.1 Attacks Against Logic Encryption
	7.3.2.2 Logic Encryption Algorithms

	7.3.3 State Obfuscation

	7.4 Dynamic State-Deflection-Based Obfuscation Method
	7.4.1 Overview of DSD Obfuscation
	7.4.2 Black Hole State Creation for Gate-level Obfuscation
	7.4.3 Dynamic Transition in Black Hole Cluster
	7.4.4 Experimental Results
	7.4.4.1 Experimental Setup
	7.4.4.2 Hardening Capability Against Circuit Switching Activity Analysis Attack
	7.4.4.3 Number of Unique State Register Patterns in Obfuscation Mode
	7.4.4.4 Area and Power Overhead

	7.4.5 Discussion

	7.5 Obfuscation for Three-Dimensional ICs
	7.5.1 Leveraging 3D for Security
	7.5.2 Trustworthiness of Vertical Communication
	7.5.3 Proposed Obfuscation Method for 3D ICs
	7.5.3.1 Overview of Proposed 3D Obfuscation Method
	7.5.3.2 Proposed 3D Router Design
	7.5.3.3 Assessment on 3D Obfuscation Method

	7.5.4 Discussion

	7.6 Summary
	References

	8 A Novel Mutating Runtime Architecture for Embedding Multiple Countermeasures Against Side-Channel Attacks
	8.1 Introduction
	8.2 Mutating Runtime Architecture
	8.2.1 Design Properties
	8.2.2 Online Allocation Method
	8.2.3 DynamicBinding Method
	8.2.4 FlexibleScheduling Method

	8.3 Design Flow
	8.4 Case Study: Block Cipher AES 128-Bit
	8.4.1 Partitioning of the AES Modules
	8.4.2 Implementation
	8.4.2.1 Design Requirements
	8.4.2.2 Data Path Architecture
	8.4.2.3 Virtualization Scheme
	8.4.2.4 Merging Round and Routines

	8.4.3 Side-Channel Analysis Results

	8.5 Summary
	References

	Part IV Security and Trust Validation
	9 Validation of IP Security and Trust
	9.1 Introduction
	9.2 Logic Testing for Trojan Detection
	9.2.1 Utilization Rarely Used Components for Trojan Detection
	9.2.2 ATPG-Based Test Generation for Trojan Detection

	9.3 Trojan Detection Using Equivalence Checking
	9.3.1 Gröbner Basis Theory for Equivalence Checking of Arithmetic Circuits
	9.3.2 Automated Debugging of Functional Trojans Using Remainders
	9.3.2.1 Test Generation for Trojan Detection
	9.3.2.2 Trojan Localization

	9.4 Trojan Detection Using Model Checking
	References

	10 IP Trust Validation Using Proof-Carrying Hardware
	10.1 Introduction
	10.2 Overview of Formal Verification Methods for IP Protection
	10.2.1 Threat Model
	10.2.2 Formal Verification Methods
	10.2.2.1 Theorem Prover
	10.2.2.2 Model Checker

	10.3 Proof-Carrying Hardware Framework for IP Protection
	10.3.1 Semantic Translation
	10.3.2 Data Protection Through Information Flow Tracking
	10.3.2.1 Static Information Flow Tracking Scheme
	10.3.2.2 Dynamic Information Assurance Scheme

	10.3.3 Hierarchy Preserving Verification
	10.3.4 Integrating Theorem Prover and Model Checker

	10.4 Conclusion
	References

	11 Hardware Trust Verification
	11.1 Introduction
	11.2 HT Classification
	11.2.1 Bug-Based HT
	11.2.2 Parasite-Based HT

	11.3 Verification Techniques for Hardware Trust
	11.3.1 Functional Verification
	11.3.2 Formal Verification
	11.3.3 Trust Verification
	11.3.3.1 Unused Circuit Identification
	11.3.3.2 VeriTrust
	11.3.3.3 FANCI
	11.3.3.4 Discussion

	11.4 Stealthy HT Designs Defeating Trust Verification
	11.4.1 HTs Evade UCI
	11.4.1.1 Motivational Case

	11.4.2 HT Design Against UCI
	11.4.3 HTs Evade VeriTrust
	11.4.3.1 Motivational Case
	11.4.3.2 HT Design Against VeriTrust

	11.4.4 HTs Evade FANCI
	11.4.4.1 Motivational Case

	11.4.5 HT Design Against FANCI
	11.4.6 Discussion

	References

	12 Verification and Trust for Unspecified IP Functionality
	12.1 Introduction
	12.1.1 Unspecified IP Functionality
	12.1.2 Hardware Trojans

	12.2 Trojans in RTL Don't Cares
	12.2.1 Illustrative Examples
	12.2.2 Automated Identification of Dangerous Don't Cares
	12.2.3 Elliptic Curve Processor Case Study
	12.2.3.1 The Hardware Trojan
	12.2.3.2 Automated X-Analysis

	12.3 Identifying Dangerous Unspecified Functionality
	12.3.1 Background: Mutation Testing and Coverage Discounting
	12.3.2 Identification Procedure
	12.3.3 UART Communication Controller Case Study
	12.3.3.1 The Wishbone Bus Trojan
	12.3.3.2 Interrupt Output Signal Checker Bug

	12.4 Trojans in Partially Specified On-chip Bus Functionality
	12.4.1 Threat Model
	12.4.2 Trojan Communication Channel
	12.4.2.1 Topology Dependent Trojan Channel Properties
	12.4.2.2 Protocol Dependent Trojan Channel Properties

	12.4.3 AXI4-Lite Interconnect Trojan Example
	12.4.3.1 Overhead

	12.5 Conclusion
	References

	13 Verifying Security Properties in Modern SoCs Using Instruction-Level Abstractions
	13.1 Introduction
	13.1.1 Challenges in SoC Security Verification
	13.1.1.1 Need for Hardware/Firmware Co-verification
	13.1.1.2 SoC Verification Through Abstraction
	13.1.1.3 Challenges in Specifying Security Properties

	13.1.2 SoC Security Verification Using Instruction-Level Abstractions
	13.1.2.1 ILA Synthesis and Verification
	13.1.2.2 Security Verification Using the ILA
	13.1.2.3 Summarizing ILA-Based Verification

	13.2 Instruction-Level Abstractions
	13.2.1 ILA Overview
	13.2.2 ILA Definition
	13.2.2.1 Notation
	13.2.2.2 Architectural State and Inputs
	13.2.2.3 Fetching an Instruction
	13.2.2.4 Decoding an Instruction
	13.2.2.5 Executing an Instruction
	13.2.2.6 Syntax
	13.2.2.7 Putting It All Together

	13.2.3 ILA Synthesis
	13.2.3.1 Notation and Problem Statement
	13.2.3.2 Template Language
	13.2.3.3 An Illustrative Example
	13.2.3.4 Synthesis Algorithm

	13.2.4 ILA Verification
	13.2.4.1 Verifying Abstraction Correctness
	13.2.4.2 Discussion of Verification Issues
	13.2.4.3 Verification Correctness

	13.2.5 Practical Case Study
	13.2.5.1 Methodology
	13.2.5.2 Example SoC Structure
	13.2.5.3 Summary of Synthesis Results
	13.2.5.4 Typical ILAs
	13.2.5.5 Summary of Verification Results

	13.3 Security Verification Using ILAs
	13.3.1 System and Threat Model Overview
	13.3.1.1 System-On-Chip Model
	13.3.1.2 Threat Model
	13.3.1.3 Security Objectives
	13.3.1.4 Modelling the Attacker

	13.3.2 Specifying Information Flow Properties
	13.3.3 Firmware Execution Model
	13.3.3.1 Execution State
	13.3.3.2 A Review of Symbolic Execution

	13.3.4 Verifying Information Flow Properties
	13.3.5 Evaluation
	13.3.5.1 Methodology
	13.3.5.2 Security Objectives
	13.3.5.3 Summary of Verification Results

	13.4 Discussion and Related Work
	13.4.1 SoC Security Verification
	13.4.2 Related Work
	13.4.2.1 Synthesizing Abstractions
	13.4.2.2 SoC Verification
	13.4.2.3 Symbolic Execution and Taint Analysis

	13.5 Conclusion
	References

	14 Test Generation for Detection of Malicious Parametric Variations
	14.1 Introduction
	14.2 Power Virus for Gate-Level IPs
	14.2.1 Pseudo-Boolean Satisfiability Approach
	14.2.2 Largest Fanout First Approach
	14.2.3 Cost-Benefit Analysis Approach
	14.2.4 Power Virus for Sequential Circuits

	14.3 Power Virus for Processor IPs
	14.3.1 Stress Benchmarks
	14.3.2 Power Virus Generation for Single-Core IPs
	14.3.2.1 Exploration Space of Program Characteristics
	14.3.2.2 Code Generation

	14.3.3 Power Virus for Multi-Core IPs
	14.3.3.1 Space Exploration of Program Characteristics
	14.3.3.2 Multi-Threaded Power Virus Generation

	14.4 Temperature Virus
	14.4.1 Temperature Virus for Gate-Level IPs
	14.4.2 Temperature Virus for Processor IPs

	14.5 Conclusion
	References

	Part V Conclusion
	15 The Future of Trustworthy SoC Design
	15.1 Summary
	15.1.1 Trust Vulnerability Analysis
	15.1.2 Effective Countermeasures
	15.1.3 Security and Trust Validation

	15.2 Future Directions
	15.2.1 Security and Trust Verification for Encrypted IPs
	15.2.2 Security and Trust Verification for Obfuscated IPs
	15.2.3 Security and Trust Verification for Hard IPs
	15.2.4 Security and Trust Verification During SoC Design Flow
	15.2.5 Unintentional Vulnerabilities
	15.2.6 Multi-Security Objectives Design
	15.2.7 Metrics and Benchmarks

	References

	Index

