
CloudLeak: Large-Scale Deep Learning Models
Stealing Through Adversarial Examples

Honggang Yu∗, Kaichen Yang∗, Teng Zhang†, Yun-Yun Tsai‡,
Tsung-Yi Ho‡, Yier Jin∗§

∗University of Florida, {honggang.yu, bojanykc}@ufl.edu, yier.jin@ece.ufl.edu
†University of Central Florida, teng.zhang@ucf.edu

‡National Tsing Hua University, s107062548@m107.nthu.edu.tw, tyho@cs.nthu.edu.tw

Abstract—Cloud-based Machine Learning as a Service
(MLaaS) is gradually gaining acceptance as a reliable solution to
various real-life scenarios. These services typically utilize Deep
Neural Networks (DNNs) to perform classification and detection
tasks and are accessed through Application Programming Inter-
faces (APIs). Unfortunately, it is possible for an adversary to
steal models from cloud-based platforms, even with black-box
constraints, by repeatedly querying the public prediction API
with malicious inputs. In this paper, we introduce an effective
and efficient black-box attack methodology that extracts large-
scale DNN models from cloud-based platforms with near-perfect
performance. In comparison to existing attack methods, we
significantly reduce the number of queries required to steal the
target model by incorporating several novel algorithms, including
active learning, transfer learning, and adversarial attacks. During
our experimental evaluations, we validate our proposed model
for conducting theft attacks on various commercialized MLaaS
platforms hosted by Microsoft, Face++, IBM, Google and Clarifai.
Our results demonstrate that the proposed method can easily
reveal/steal large-scale DNN models from these cloud platforms.
The proposed attack method can also be used to accurately
evaluates the robustness of DNN based MLaaS classifiers against
theft attacks.

I. INTRODUCTION

Deep neural networks (DNNs) have become the most
common architecture in machine learning, implemented in a
variety of tasks across many disciplines [1], [2], [3], [4], [5].
However, creating a successful DNN model depends on the
availability of huge amounts of data as well as enormous
computing power, and the model training is often an arduously
slow process. This presents a large barrier to those interested in
utilizing a DNN. To meet the demands of users who may not
have sufficient resources, cloud-based deep learning services
arose as a cost-effective and flexible solution, allowing users
to complete their machine learning (ML) tasks efficiently.

Cloud-based deep learning services generally provide end
users with a prediction API for a DNN model trained to
achieve performance beyond what users could create for them-
selves. Users query the API with their inputs (e.g., images,
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audio, etc), pay for each individual query, and then receive
predictions results (e.g., labels, confidence) back from the API,
without having to understand the methods in creating those
predictions. Take the Microsoft Custom Vision Service as an
example: this service helps users create high-quality custom
deep learning classifiers by applying active learning along with
neural network architecture search technology, and predicts the
class of objects inside images supplied by the users with high
accuracy.

Typically users access the API by querying it and receive
the results. However, the DNN models and training data inside
the prediction API are routinely inaccessible to the public due
to economic and privacy concerns. The provider of the API
may spend great effort collecting data and training models,
and thus wants to keep them proprietary. The training data
may also contain private information related to individuals,
prohibiting disclosure of this data by law.

Though the DNN model and the training data behind the
prediction API are not directly exposed to the public, recent
research has demonstrated that information leakage is still
possible through query operations. For example, F. Tramèr
et al. were the first to develop a model extraction attack
[6] in 2016, which extracts an equivalent or near-equivalent
machine learning model by simply querying and obtaining
the prediction results on input feature vectors. Since then,
many following works have been proposed to improve model
extraction attacks [7], [8], [9]. In addition to the model itself,
the data used to train the model can also be leaked through
querying. R. Shokri et al. proposed a membership inference
attack to determine whether the training set contains certain
data records [10]. Membership inference attacks are further
studied in [11], which concludes that membership disclosure
exists widely, not only in overfitting models, but also in well-
generalized models.

Some defense mechanisms have been proposed to reduce
the impact of information leakage during the querying process
[12], [13], but none of them ensure effectiveness and efficiency
at the same time. The defense against information leakage via
DNN model queries thus still remains as an open problem.

Although recent DNN query and model extraction attack
have made significant progress, they remain impractical for
real-world scenarios due to the following limitations: 1) Cur-
rent model stealing attacks against commercialized platforms
mainly target small-scale machine learning models such as
linear regression, logistic regression, support vector machine
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(SVM), and neural networks. The effectiveness of these at-
tacks are not fully evaluated on complex DNN models with
more layers and more parameters. 2) Current model stealing
attacks require the number of queries to the target model
to be proportional to the number of model parameters. This
may be acceptable when the model is small and the number
of parameters is limited. However, queries of this size will
be impractical when targeting recent popular DNN models
like VGGNet, ResNet and Inception that contain millions of
parameters. The existing method for stealing large-scale deep
learning models has reliable performance but requires massive
amounts of prediction queries and incurs high costs [14].

In this paper we introduce a novel type of model stealing
attack against popular MLaaS platforms hosted by Microsoft
[15], Face++ [16], IBM [17], Google [18] and Clarifai [19].
Our hypothesis is that an adversary who targets these pay-as-
you-go, commercialized, MLaaS platforms has no prior knowl-
edge about the exact training data, architecture or parameter
of the victim model, but can observe the classification outputs
(i.e., labels or confidence scores) when providing the prediction
APIs with random inputs, i.e., query operation.

The key idea of our attack approach is to use input-
output pairs obtained by querying such black-box APIs with
malicious examples to retrain the substitute models which are
generally chosen from candidate Model Zoo (see Figure 1).
Specifically, by applying a margin-based, adversarial, and
active learning algorithm to search these malicious examples,
we improve the efficiency of queries to the victim classifiers
inside these MLaaS platforms. As a result, since the resulting
images lie approximately on the decision boundary of the
victim classifier, an attacker can greatly reduce the labeling
effort when generating the synthetic data set for retraining
the substitute model. Through detailed experimental evaluation
and testing, we demonstrate that it is possible to replicate the
functionality of victim classifiers by utilizing the well-trained
substitute model. An adversary can use our attack framework
to construct a free version of the victim model which bypasses
the monetary costs involved in collecting data and training
models.

A qualitative comparison between our work and existing
works is shown in Table I. From Table I we can see that our
method can steal large-scale deep learning models with high
accuracy, few queries, and low costs simultaneously, while
prior works fail in at least one or two of these aspects. We also
provide detailed evaluations to clarify the quantitative analysis
of our work and existing works in the paper.

In summary, we mainly make the following contributions
to address the limitations of the existing works:

• We propose a new adversarial attack method named
FeatureFool against local substitute models, that
adopts internal representation for generating a subset
of malicious samples (i.e., synthetic dataset). These
samples are used to query the victim model to effi-
ciently learn the distance between decision boundaries
of the victim model and the stolen model, significantly
reducing the number of queries required to extract the
victim model.

• We design a black-box model theft attack targeting
large-scale DNN models provided by commercial plat-

forms. Our attack accelerates the model theft process
with adversarial active learning and transfer learning
from existing well-trained models such as AlexNet,
VGG19, VGGFace, ResNet50, etc.

• We evaluate the attack framework on a group of
popular commercial platforms hosted by Microsoft,
Face++, IBM, Google and Clarifai. The experimental
results show that our model theft attack can success-
fully construct a local substitute model with perfor-
mance similar to the victim model found in commer-
cialized MLaaS platforms with much less queries than
previous attacks.

Input 

Output 

Adversary
Model

Zoo

Malicious
Examples

Candidate LibraryMLaaS

Search

Fig. 1: Illustration of our MLaaS model stealing attacks.

Method Parameter
Size Queries Accuracy Cost

F. Tramèr [6] ∼ 45K ∼ 102 K High Low
Juuti [20] ∼ 100M ∼ 111 K High -

Correia-Silva [14] ∼ 200M ∼ 66K High High
Papernot [21] ∼ 100M ∼ 7K Low -
Our Method ∼ 200M ∼ 3K High Low

TABLE I: A Comparison to prior works.

II. RELATED WORK

Transfer Learning. Transfer learning aims to recognize and
apply knowledge gained from previous tasks (source domains)
to different but related tasks (target domains) [22]. For exam-
ple, many researchers have recently shown that layers trained
on a source task with large-scale labelled datasets can be
reused to predict on a target domain that has substantially
less available data [23], [24], [25], [26], [27]. Ge et al. [24]
use special descriptors to search for a training subset and
jointly fine-tune a pre-trained deep neural network for both
source and target tasks. More similar to our work, Sun et
al. [25] design a DeepID for learning a set of high-level
feature representations and transfer joint Bayesian model from
source domain to the target domain based on the DeepID.
Unlike the work in [25], we fine-tune a VGG19 model [28]
on a desired subset of training samples and use DeepID to
further extract high-level image presentation. In this paper,
we call this new model VGG DeepID. Our transfer learning
scheme additionally accelerates the model stealing process and
provides performance gains by using well-trained models such
as AlexNet, VGG19, VGG DeepID, VGGFace and ResNet50.

Adversarial Attacks in Deep Learning. Adversarial attacks
against DNNs generate adversarial examples by adding par-
ticular perturbations to the original inputs [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40]. In the
image processing area, these carefully crafted images are
often imperceptible to human eyes as the perturbations are
slight, but can easily fool a classifier into predicting incorrect
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TABLE II: MLaaS Services in Detail

Services Products and Solutions Customization Function Black-box Model
Types Monetize Confidence

Custom Vision 3 Traffic Recognition 3 Neural Nerwork 3 3Microsoft Custom Vision 3 Flower Recognition 3 Neural Network 3 3

Face++ Emotion Recognition API 7
Face Emotion

Verification 3 Neural Network 3 3

IBM Watson Visual Recognition 3 Face Recognition 3 Neural Network 3 3
Google AutoML Vision 3 Flower Recognition 3 Neural Network 3 3
Clarifai Safe for Work (NSFW) API 7 Offensive Content Moderation 3 Neural Network 3 3

labels [41], [42], [43]. Szegedy et al. [34] propose the first
algorithm to generate adversarial examples - L-BFGS to search
for malicious examples that would be correctly classified by
a human but successfully evade DNN model classifiers. Since
then, more efficient algorithms [44], [35], [36] are proposed to
trick DNN models into misclassifying inputs. Note that these
described algorithms are all white-box attacks as they require
internal information from the target model.

Prior works on black-box attacks rely on querying victim
models and using the feedback from adversarial examples to
guide the synthetic dataset crafting process [31]. In compari-
son, some others assume that the existing trained models (i.e.,
substitute/local models) have boundaries similar to the victim
models, and show that the adversarial examples generated for
substitute models can transfer well to the non-targeted/targeted
labels [31], [32], [33]. Several studies [45], [46] launch adver-
sarial attacks on deep neural networks by manipulating their
internal features to achieve better performance. We adopt a
similar method of generating adversarial examples using the
internal features of DNN models. As opposed to existing
feature-level adversarial attacks, we mainly concentrate on
the following two aspects: 1) the use of generated malicious
features to craft visually imperceptible adversarial images
against current state-of-the-art deep neural networks models.
Note that existing feature-level attack methods only use the
feature representation of guide images to generate adversarial
examples rather than generating malicious feature represen-
tation calculated using salience maps; 2) solving for model
parameters that minimize confidence scores for the target class.

Model Extraction Attacks. In these attacks [6], [47], a
malicious entity aims to accurately extract model equivalent
to a target model by querying the labels and confidence scores
of model predictions to inputs. Papernot et al. [21] demonstrate
that an attacker can use synthetic datasets to train a local
substitute model for the victim models. Moreover, several
studies [14], [20] present efficient algorithms to steal machine
learning models. Unlike these prior works, this paper proposes
a more efficient black-box attack method to steal deep learning
models with millions of parameters by applying a special type
of transfer learning scheme and specially crafted adversarial
examples.

Active Learning. Generally, Active Learning (AL) is applied
through iteratively selecting informative examples to present
to users for labeling, while maximizing the performance
of retrained deep learning classifiers [48], [49], [50], [51].
Previous uncertainty sampling methods tend to suffer from
the problem of selected examples that lie approximately on
the classification boundary being overly similar, resulting in
poor classification performance, while users consider such

examples as an ideal training set. In this paper, we address
this challenge by leveraging a set of adversarial examples
generation algorithms for increasing the diversity of useful
examples lying on the classification boundary, improving the
efficiency of query to the victim classifiers. As a result, with
black-box access, an adversary can successfully replicate the
functionality of the victim classifier by using a local substitute
classifier with fewer queries compared to previous works on
model extraction attacks.

MLaaS Platforms. Machine learning as a service (MLaaS) is
a group of cloud computing services that provide end users
machine learning products and solutions to data transforma-
tions, model training and ultimately, predictive analytics. We
show the details of five popular (MLaaS) platforms in Table II,
including the Microsoft Custom Vision, the Face++ Emotion
Recognition API, the IBM Watson Visual Recognition, the
Google AutoML Vision, and the Clarifai Not Safe for Work
(NSFW) API. As shown in Table II, we can see that these
services generally allow users to upload their well-labeled
images to customize models by using the built-in algorithms
or directly adopting the pre-trained models to create workflow
specifically to meet their needs. Finally, MLaaS will provide
APIs for users to leverage powerful tools built on top of
powerful cloud computing resources. For these services, users
can access the API provided by MLaaS and obtain correspond-
ing classification results with chosen inputs. In general, users
are incapable of accessing the details of the target model or
the parameters used for optimization (i.e., black-box), which
makes it extremely difficult for an adversary to extract a black-
box model. Based on the classification methods provided by
those services, we can categorize them into two types: Non-
neural-net based model and Neural-net based model. For the
non-neural-net based models, small scale machine learning
models (e.g. logistic regression, decision tree, and random
forest) are widely used for general classification tasks. For the
neural-net based model, MLaaS deep neural networks are used
as the basic architecture for image classification or object de-
tection tasks. Some of them also use transfer learning methods,
allowing users to train high-quality customized models using a
small labeled dataset. The providers monetize their services by
charging users for training models or querying existing models
through their APIs.

III. BACKGROUND

A. Problem Formulation

Given a black-box victim model fv that accepts
the input x ∈ Rn and produces output fv(x) =
[f1v (x), f2v (x), ..., fmv (x)] ∈ Rm, an adversary aims to use as
few queries Nquery as possible to extract a substitute model fs
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Fig. 2: Overview of the transfer framework for our proposed model theft attack. From left to right: (a) generate unlabeled
adversarial examples as synthetic dataset. (b) query victim model using the generated synthetic dataset. (c) label adversarial
examples according to the output of the victim model. (d) train the local substitute model using the synthetic dataset. (e) use the
local substitute model for predictions. The local substitute model is expected to match the performance of the victim model.

with near-identical performance (i.e., functionality) as a victim
model fv deployed on MLaaS platforms. Specifically, the
adversary can launch the attack on a paid MLaaS to construct
fs that closely matches fv even in black-box settings (i.e.
the adversary has no internal knowledge of the victim model
such as network architecture A, exact training dataset D,
weights W, etc.) The adversary’s only capability is to collect
a synthetic training dataset T = {(x, fv(x))} while providing
informative input data x ∼ PA(X) to retrain the substitute
model fs on such a dataset to replicate the functionality of
victim model fv .

B. Threat Model

The Machine learning as a service (MLaaS) provided by
cloud-based platforms offer users a prediction API based on a
DNN model pre-trained on the private dataset. The structures
and/or designs inside API are usually inaccessible to the public
due to economic and privacy concerns, i.e., black-box. In our
work, we assume an adversary targets such pay-as-you-go
commercial machine learning services which provide cloud-
based platforms to help users solve common deep learning
problems such as data pre-processing, model training and
model evaluation. The adversary will launch model theft
attacks on a paid MLaaS to construct fs that closely matches
victim model fv in black-box setting, meaning that the ad-
versary has no inner knowledge of the victim model such
as network architecture, exact training data, hyperparameter,
weights, etc. The adversary’s only capability is to query APIs
with particular inputs (i.e., malicious examples) and receive
the resulting prediction or confidence scores. The substitute
model fs extracted by an adversary can be then arbitrarily
used without incurring any query cost, i.e., the adversary gains
a free version of the victim model.

C. Transfer Architecture Construction

Figure 2 shows the overview of the transfer framework
for our proposed model theft attack. Deep Neural Networks
are made up of a cascade of computational layers which
serves to learn automatic feature extraction and transformation.
In general, these representations present different levels of
abstraction in deep learning space. In deep neural networks,
each hidden layer has a set of neurons connected to the

neurons of the previous hidden layer. These neurons serve
as computational units which transform input data into rep-
resentations through particular activation functions. Many pre-
trained models for various tasks are available for researchers
to utilize directly, like AlexNet [52], VGGNet [53], VG-
GFace [54] and ResNet [55]. These models have given rise to
classification accuracy in computer visual tasks with increasing
computational complexity. Many techniques have been used
to achieve image classification goals in practical applications
of DNN. These pre-trained models can be used in transfer
learning to apply the knowledge learned from source domains,
Ds = {(xi, yi)}Ni=1, to other different but related target
domains, Dt = {(xi, yi)}Mi=1.

For the source task, we use four pre-trained networks
including AlexNet, VGG19, VGGFace and ResNet50 as our
basic architectures. In order to extract the multi-scale image
representation, we remove the fully connected FC6 layer of
the pre-trained VGG19 and add a DeepID layer formed by
combining the features in the previous max-pooling layer and
convolutional layer. Note that this extra DeepID layer is on
top of the VGG19, followed by two fully connected layers
(FC7 and FC8) which use the output of DeepID layer as input.
The weights and bias in the previous convolutional layers are
trained on the ImageNet dataset and shared by the source and
target tasks. In comparison, both DeepID layer and two fully
connected layers (FC7 and FC8) will be fine-tuned on synthetic
datasets described in the following section. The dimensions of
DeepID layer and fully connected layers FC7 will be fixed
to 480 and 4096, respectively. The dimension of FC8 will be
equal to the number of target classes it predicts. This network
takes a fixed-size 224 × 224 RGB ConvNet images as input
and boosts the performance of classification by pushing the
depth to 19 weight layers.

IV. MODEL THEFT ATTACKS

A. Adversarial Active Learning

1) Problem Analysis: By selecting an informative subset
of unlabeled data Du(x) to present for labeling by a human
expert, active learning (AL) aims to minimize the labeling
cost in supervised learning while simultaneously maximizing
performance of the classifier. The key idea of active learning
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is how an user can quantify the importance of each exam-
ple in the active pool, for example, “useful” or “unusable”.
Motivated by the existing works on active learning [48], [49],
[50], [51], we proposed a new learning methodology named
margin-based adversarial AL for gathering a set of informative
instances to train a substitute model with performance similar
to the victim model fv . We formally formulate this uncer-
tainty sampling of margin-based adversarial AL as a querying
function Qmulticlass, which chooses a set of useful examples
Dt(x) ⊆ Du(x) from the given unlabeled data Du(x), known
as an active learning pool. The key idea of such margin-based
active learning is that only a few examples from the pool of
unlabeled data are useful or informative for determining the
separating surface of the victim classifier, and all the other
examples are superfluous to the classifier.

Source example

Maximum-confidence Adversarial example

Minimum-confidence Legitimate example

( ) 0f x 

( ) 0f x 

Minimum-confidence Adversarial example

Fig. 3: Illustration of the margin-based uncertainty sampling
strategy.

Specifically, we apply a margin-based uncertainty sampling
methodology as the adaptive strategy for boosting examples
where the target classifier is the least confident, meaning that
these selected adverserial examples lie on the global margin of
target classifier. Since a multiclass classifier can be considered
as a set of binary classifiers, we first propose the margin-
based active learning algorithm for a linear binary classifier and
provide a geometric illustration of the uncertainty sampling
theory in Figure 3. Abstractly, we assume a learned affine
classifier is a function f : X → Y which returns the prediction
results (e.g., labels and confidence) within the range Y when
given random input images x ∈ D(x) (e.g., extracted from test
dataset with the same distribution as the training dataset). We
also denote the affine hyperplane as H = {x : f(x) = 0}. We
propose a new iterative attack procedure, named FeatureFool
(The details will be demonstrated in the remaining part of this
Section), to generate the adversarial examples with different
confidence. Here, the adversary’s goal is not to estimate the
robustness of victim binary classifier fv(x), but rather to craft
useful examples for the synthetic dataset which the domain
fs(x) will be retrained on. In this work, the synthetic dataset
generated by an adversary consists of two types of examples:
one is minimum-confidence legitimate example, and the other
is minimum-confidence adversarial example. In comparison to
those examples with high confidence, the examples in synthetic
dataset are more likely to provide useful information about
affine hyperplane H of the binary classifier as a whole. For
instance, as shown in Figure 3, we can see that the green
circles (minimum-confidence legitimate examples) and pink
triangles (minimum-confidence adversarial examples) are near
the affine hyperplaneH, there is high uncertainty (i.e., the least
confidence) and hence maximum performance with limited
black-box queries.

We now extend the margin-based adversarial active learn-

ing algorithm to the multiclass case. The margin-based strate-
gies in previous works are only effective in such a scenario
where an adversary can determine the distance between the
images of active learning pool and the affine hyperplane H
of the target classifier. However, measuring such a distance is
often intractable due to the high complexity of the geometrical
shape of the affine hyperplane H in the multiclass models. We
address this challenge by designing FeatureFool for exploring
the useful examples where the target multiclass model has least
confidence (LC). The proposed margin-based adversarial active
learning methodology can be formulated as follows:

QLCmulticlass : x?s ∈ arg min
x′∈Du(x)

κ (x′, y,w) (1)

where y donates the predicted label corresponding to the
first highest classification confidence, w donates the weights
of victim classifier, κ denotes the output confidence while
given random inputs x′ ∈ Du(x). This approach chooses
those informative examples from the given unlabeled dataset
Du(x) with the smallest margin (i.e., least confidence) and thus
maximizes the uncertainty of instances. We further consider
using these useful examples as synthetic dataset to retrain
convolutional layers shared by the source domains. In the
previous works, Silva et al. [14] directly make a large amount
of superfluous queries to obtain the labeled data needed to
generate the synthetic datasets and successfully train a local
model with the near-perfect performance of the victim model.
However, such large-scale queries would be expensive and
make the attack easy to be detected by the MLaaS provider. To
address these problems, we try the relevant queries by focusing
on the two crucial objectives below: (1) Adopting Feature-
Fool to craft a basic informative dataset Du(x) where each
example x ∈ Du(x) has different classification confidence;
and (2) Maximizing examples efficiency through uncertainty
sampling strategy resulting in a subset of training examples
Dt(x) ⊆ Du(x). Our experimental results show that such
adversarial examples would help considerably decrease the
number of queries to victim models.

2) Synthetic Dataset Generation: We utilize the margin-
based adversarial active learning algorithm to craft the in-
formative examples and then query the victim model fv for
labels. Finally, the resulting image-prediction pairs can be
viewed as a synthetic dataset to train the substitute model fs
for the purpose of replicating the victim model fv inside the
commercial API. We formally define the problem of finding an
informative example x′s selected by multiclass active function
QLCmulticlass as follows:

x
′

s = QLCmulticlass(x
′
) (2)

For the x′, five generation strategies are considered in this
paper (Due to vast majority of works on adversarial examples
we focus only on those representative attacks here):

Random Sample (RS): For reference, we consider an extreme
case where an attack randomly samples x from related domain
and queries a victim API fv as black-box in order to generate
the synthetic dataset T = {xi, fv(xi)}

Nquery

i=1 . In this case,
an adversary can use all available images to obtain the best
synthetic dataset and the resulting substitute model. However,
lots of query operations make it easier to be detected by MLaaS
providers.
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Fig. 4: Pipeline of the proposed FeatureFool attack method. We first input an image and extract the corresponding nth layer
feature mapping by applying the non-linear filters to the output of last hidden layer. Then we compute the class salience map
to decide which points of feature mapping should be modified. At last we search for the minimum distortion that satisfies the
optimization formula.

Projected Gradient Descent (PGD): Madry et al. proposed
the Projected Gradient Descent to effectively generate ad-
versarial examples with multi-step iterations [37]. It exploits
the first-order adversary information about the victim neural
network and computes adversarial examples by using the
following equation:

x′i = Πx+S
(
x′i−1 + α sign (∇xJ(F (x)))

)
(3)

where ∇ denotes the gradient, F (·) denotes the network output
and J(·) denotes the negative loss function. This attack can be
viewed as a multi-step attack scheme which successfully solves
the inner optimization problem. As such, errors on a legitimate
input x can accumulate and eventually lead to an adversarial
version of this given input that forces the victim network to
output incorrect results, i.e., misclassification.

Carlini and Wagner Attack (CW): Carlini et al. [36]
proposed new gradient-based attack algorithms using three
different distance metrics (L0, L2 and L∞ ). In the L2 attack,
they generate adversarial examples by solving the following
optimization problem:

minimize D(x, x+ δ) + c · g(x+ δ)

such that x+ δ ∈ [0, 1]n
(4)

where D(x) denotes the L2 distance function, g(x) denotes
the objective function which can be defined as:

g (x) = max (max {Z (x)i : i 6= t} − Z (x)t ,−κ) (5)

where Z(x) denotes the input of the softmax function. As
mentioned in [36], an attacker can easily control the confidence
which adversarial image misclassification occurs by carefully
selecting the parameter κ in Equation (5). This technique
allows the L2 attack to effectively craft those “informative”
examples which lie approximately on the decision boundary
of the victim classifier. Hence, we mainly consider using the
L2 attack mentioned in [36] to generate the synthetic datasets
for retraining the substitute model.

FeatureAdversary (FA): Sabour et al. [45] introduce a new
attack model by minimizing the Lp distance (i.e., Lp norms)
between the internal feature presentation of images pairs
(source image xs, target image xt) of victim classifier f (In
this paper, we call this attack FeatureAdversary (FA)). More
precisely, we describe their problem as follows:

minimize D (φK (x′s) , φK (xt))
such that d (x′s, xs) < η

(6)

where φk(x) denotes the feature presentation of input image
x at the kth layer of trained victim classifier f(x), xs denotes
the source image, xg denotes the guide image with expected
target label l, i.e., f(xg) = l, the parameter η is the constraint
that limits the bias of any single pixel color within budget η.

For the distance D(.), if ak and bk are two feature vectors
at kth layer of the classifier, then the distance D(ak, bk) can
be defined as D(ak, bk) = ‖ak − bk‖p, where the p-norm ‖·‖p
of the vector v = (v1, . . . , vn) can be denoted as:

‖v‖p =

(
n∑
i=1

|vi|p
)1/p

(7)

They demonstrated that, with a tiny fixed value of η, FA
attack can effectively craft adversarial examples which are gen-
erally imperceptible to humans, even in the case of targeting
different intermediate layers φk(x), where k = 1, 2, ...,m.

FeatureFool (FF): As the classification models become more
complex, normal adversarial attacks stop producing satisfied
results. Therefore, these attack methods are not suitable for
generating synthetic dataset with samples lying approximately
on the decision boundary of victim classifier fv(x) in our
scenarios. In this paper, we propose a novel adversarial at-
tack method FeatureFool to improve the query efficiency of
samples. It uses feature-based optimization algorithms for
producing natural adversarial examples to mislead the large-
scale deep learning models to output incorrect classification
results.

Our proposed adversarial attack algorithm starts from the
initial L-BFGS optimization problem: given an image x,
targeted classifier f(x) and targeted class l, the goal is to solve
the following box-constraint optimization problem:

minimize d (x′s, xs)
such that f(x′s) = l

x′s ∈ [0, 1]n
(8)
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where d(.) denotes the loss function, x′s denotes the examples
crafted by adversarial attack methods, parameter η denotes the
constraint that limits the amplitude of perturbation within a
budget η. That is, the L-BFGS attack aims to find a particular
perturbation by iteratively optimizing Equation (8), such that
the perturbed image x′s would be correctly classified by a
human but incorrectly classified to the given target class l by
a classifier f(x).

Unfortunately, the highly non-linear constraint in Equation
(8) makes it difficult to solve the optimization problem [34],
[35], [36]. To address this challenge, we search for an alter-
native constraint to find an optimization solution as quickly as
possible. Moreover, as mentioned in [45], [46], two random
images can be classified into the same class by the victim
model if their inner feature mappings are similar. This simi-
larity controls whether the generated adversarial samples can
be misclassified as the chosen malicious label l. Putting these
ideas together, we apply the triplet loss as a new penalty
method for solving the optimization problem in Equation (8)
and rewrite the optimization as follows:

minimize d (x′s, xs) + λ · lossf,l (x
′
s)

such that x′s ∈ [0, 1]n
(9)

where d(.) is the Lp norm distance which quantifies the
similarity between two images in the 3-D space, λ is the suit-
ably chosen coefficient that helps L-BFGS algorithm minimize
both of the loss terms simultaneously. In our experiment, we
empirically find that the smallest value of λ would be the best
choice to generate more deceptive solutions x′s while keeping
the lossf,l (x

′
s) > 0, which makes sure that the perturbation

budget in feature space can be maximized. For the triplet loss
lossF,l (x

′
s), we formally define it as:

lossf,l (x
′
s) = max(D(φK(x

′

s), φK(xt))−
D(φK(x

′

s), φK(xs)) +M, 0)
(10)

Here φk(.) is the internal feature representation at kth hidden
layer of target classifier, D(.) is a distance function that
measuring the similarity between two internal representations
under the constraint M , which defines the constant margin of
triplet loss. Note that the reason why we choose the triplet loss
as lossf,l (x

′
s) in our attack scheme is that, compared to other

loss functions like Lp loss (i.e., L0 loss, L2 loss and L∞ loss)
and VGG loss, the triplet loss can lead to faster convergence
of Equation (9) and better performance of adversarial attacks.

For the purpose of simplicity, we define the M as follows:

M = α− 1

n2ys − nys

∑
i,j∈ys

‖φK(xi)− φK(xj)‖2 (11)

Here α is a constant (Empirically, we set α = 0.5), nys is the
number of input samples in the class ys.

In order to solve the reformulated optimization problem
above, we apply the box-constrained L-BFGS for finding
a minimum of the loss function in Equation (9), which is
considered particularly well-suited for parameter estimation in
deep learning. The pipeline of the FeatureFool is shown in
Figure 4.

3) Evaluation Metric: We use the Average Test Error
(ATE) over test set Dtest to evaluate the effectiveness of the
proposed model theft attack. Given an input sample x ∈ Dtest,
ground-truth values f(x) and prediction values f̂(x), then the
ATE is given by:

ATE =
∑

(x,y)∈Dtest

d(f(x), f̂(x))

|Dtest| (12)

In our experiment, the ATE refers to the extraction accuracy
under the test set. A lower ATE is expected when an adversary
aims to replicate the functionality of the victim model using
the substitute model.

B. DNN Training

Our model stealing attack aims to retrain a substitute
model in the target domain with near-perfect performance of
the victim model. We adopt five synthetic dataset generation
strategies, including RS, PGD, CW, FA and FF. For the
RS strategy, we randomly sample a set of examples as the
training dataset to re-train our substitute model. Different the
RS strategy, the training procedure using adversarial examples
generated by the these approaches is described in Algorithm 1.

First, we randomly sample a small set X0 from target
domain as the initial dataset S0. We use the adversarial
examples generation algorithms to launch adversarial attacks
on the original substitute model and craft a small amount of
malicious examples on this initial dataset. These macilious
examples can easily mislead the local model to output incorrect
results with 100% success rate.

Then we construct the synthetic datasets by querying the
victim models with these malicious examples. In our imple-
mentations, the synthetic datasets differ from those used by
the victim models for training. We use the pre-trained model
in candidate Model Zoo (see Figure 1) as our transfer archi-
tecture and construct the corresponding substitute model. The
synthetic dataset is applied to fine-tune this substitute model by
only retraining the last few fully connected layers but leaving
the previous convolution layers frozen. We significantly reduce
the number of queries required to extract the victim model
using transfer learning with adversarial examples.

Finally, we iteratively use the adversarial attack algorithms
to generate synthetic dataset Ds and then retrain the local sub-
stitute model using transfer learning on this synthetic dataset.
This helps us achieve higher accuracy and test agreement on
the test set, which leads to an increase in the similarity of
boundary between the substitute and victim models.

The key observation is that by applying the FeatureFool
algorithm in step 4 of Algorithm 1, the output fs is more
similar to fv . The main reason for this is that by adding the
perturbation component to original images, an adversary can
construct the data set Ds that lie approximately on the decision
boundary of the classifier fv . Since Ds and S′i have the same
set of images and Ds has labels from fv , the data set Ds trains
the classifier fs better than random images.

Here we give some intuitive justification based on a sim-
plified model: if the models fs and fv are linear classifiers
in Rp with two classes, then the decision boundaries are
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Algorithm 1 Training process of DNN substitute model:
for victim model fv , the adversarial examples generation
algorithms G (e.g., PGD, CW, FA and FF), the substitute
model fs, an adversarial set of examples S, a maximum
number of iterations m, a synthetic dataset Ds(x) and the
random set of images with same distribution X0, X1, X2,
· · · , Xm

Input: fv , fs, X0, X1, X2, · · · , Xm

Output: Retrained substitute model fs
1: Initialize i← 0,
2: while i < m do
3: Si ← Xi

4: S′i ← {G(fs(x), x)|x ∈ Si}
5: //Craft Adversarial Examples
6: Ds ← {(x, fv(x))|x ∈ S′i}
7: //Generate synthetic dataset
8: fs ← Transfer {(fs, Ds)}
9: //Transfer for the synthetic dataset

10: i← i+ 1
11: end while

hyperplanes in Rp. If in addition, all the points in Si lie on the
decision boundary, then as long as the number of points in Si
is larger than p, we can recover the decision boundary from
Ds = {(fv(x), x)|x ∈ Si} and the classifier fv exactly: the
hyperplane containing all p points is the decision boundary. On
the other hand, if the points in Si are randomly chosen from
Rp and do not lie on the decision boundary, then it would
requires much more points to recover the decision boundary
(the hyperplane).

V. EXPERIMENTATION

A. Experiment Setup

In this section, we discuss the experimental results of
a large-scale evaluation on five popular MLaaS platforms,
including those hosted by Microsoft, Face++, IBM, Google
and Clarifai. We create three victim models ourselves, by
uploading well-labeled training sets. These are the Microsoft
Cloud Vision Service, IBM Watson Visual Recognition, and
Google AutoML Vision, and they are trained for traffic sign
recognition, flower recognition and face recognition, respec-
tively. This simulates a user training the cloud models on
private data sets using these services. Then other users can
access the created cloud models by querying the resulting
prediction APIs in a pay-as-you-go format, quickly fetching
results without many restrictions. However, the DNN models
behind these APIs and the data used for training the DNN
models are at all points inaccessible to the public, or users
other than the creator (i.e. they are treated as black box models
during our attack). Additionally, we also consider two existing
black-box models inside Face++ Emotion Recognition API
and Clarifai Safe for Work (NSFW) API. Different from the
previous MLaaS platforms provided by Microsoft, IBM and
Google, the Face++ emotion recognition and Clarifai NSFW
models only allow users to directly query the pre-trained
models through MLaaS APIs to meet their needs. They do
not allow fine tuning on thier models for individual needs.

Traffic Sign Recognition. We upload a well-labeled training
set and train a victim model for traffic sign recognition using

Microsoft Traffic Recognition API. Traffic sign recognition
based on deep learning aims to classify different types of
traffic signs from images, which can be used by self-driving
cars to automatically recognize traffic signs. The dataset used
to train the victim model online is the GTSRB dataset [56]
with a training set containing 39000 images of 43 different
traffic signs and a corresponding testing dataset containing
8000 images.

Flower Recognition. The victim model pre-trained on Mi-
crosoft Cloud Vision Service is for flower recognition. The
flower recognition classifies images of flowers into different
categories (e.g., Daisy, Sunflower, Fire lily, etc). This task is
known to be difficult as the flower dataset is less uniform.
Flowers in the same species may have various color appear-
ances, and the target objects are influenced by several lighting
conditions. Consequently, it is a well-known classification
problem which people would like to use deep learning to solve.
The victim classification model is trained on the VGG Flowers
dataset [57], including 6146 images from 102 different flower
types and the corresponding testing dataset which contains
1020 images with 10 images for each 102 classes.

Face Emotion Recognition. For the Face++ Emotion Recog-
nition API [16], users cannot access the exact training sets
or its distribution and only observe the outputs (i.e., labels
or confidence score) to chosen inputs by querying the API.
The victim model pre-trained on Face++ Emotion Recognition
API only allows an end user to upload a photo and fetch
the response about the emotions of detected faces, i.e., black-
box. This API returns probability scores on the likelihood that
an image contains emotions such as happiness, fear, surprise,
anger, disgust, neutral and sadness. Different from previous
victim models trained by users on their datasets, the Face++
Emotion Recognition API only provides the interface which
can be queried by users, meaning that users cannot access the
exact training process. Since the official test set of Face++
Emotion Recognition API are not provided, we create a test
set which contains 1010 images in 7 categories roughly.

Offensive Content Moderation. The Clarifai Not Safe For
Work (NSFW) API recognizes whether images contains var-
ious offensive contents which can be utilized by users to
automatically filter these contents from their platforms. Typ-
ically users access the API by querying it with image inputs
and receive resulting confidence scores for two output labels
(NSFW - Not Safe For Work and SFW - Safe For Work).
However, the details of the victim model inside the Clarifai
NSFW API, such as training set and network architecture, are
generally inaccessible to users. Here, we attempt to steal the
black-box victim model provided by Clarifai. We also collect
1k images in two categories from Github as the test set to
evaluate the victim/substitute model accuracy.

These models inside the MLaaS act as the black-box victim
models of our model stealing attack. We launch the attack
against these victim models without knowing the exact training
sets and the internal information of these models. In our
attack scheme, we re-train the local substitute model with
the synthetic dataset which is generated from the examples
by querying the victim model. Here, we use five different
strategies (e.g., RS, PGD, CW, FA and FF)) to craft these
query examples for the purpose of comparison. In particular,
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Fig. 5: Adversarial Examples generated by our FeatureFool algorithm.

the adversarial examples generated by our FF are shown in
Figure 5.

We elaborate on the ablation study in two aspects: (a)
We study the influence of different datasets and/or transfer
architecture selections on the model stealing attack effective-
ness; (b) We also show the comparison between our model
stealing attack and existing attacks such as F. Tramèr attack [6],
Correia-Silva attack [14] and Papernot attack [21] against
commercialized MLaaS platforms in real world. The details
of these comparison experiments will be demonstrated in the
remaining sections.

We leverage open-source implementations of four pop-
ular pre-trained models: AlexNet, VGG19, VGGFace and
ResNet50. All experiments were carried out on a server
equipped with Intel E5-2623 v4 2.60GHz processor, 16GB
of RAM, four NVIDIA GeForce GTX 1080Ti GPUs. The
training starts from a relatively large learning rate and then
the learning rate would decrease during training to allow for
more fine-grained weight updates. The pre-trained weights are
used to initialize our model extraction attack framework. We
split the training vectors into two parts: a training dataset
and a validation dataset. Then we use the stochastic gradient
descent (SGD) method to minimize the cross-entropy loss
while training the designed framework. We also apply some
basic but powerful data augmentation techniques like flips,
rotations, and scaling.

B. MLaaS Models Extraction Attacks

1) Case Study 1: Traffic Recognition Model: We train a
model for the GTSRB dataset through Microsoft Custom Vi-
sion inference and set it up as the black-box victim model. The
experimental results of our stealing attack on this victim model
are shown in Table III. We use the designed VGG19 DeepID
as the transfer architecture of the substitute model and generate
five types of synthetic datasets for training this substitute
model. With 0.43k queries, our substitute model achieves only
10.21% (13.10×) accuracy with random examples, 10.49%
(13.16×) accuracy with PGD examples, 12.01% (15.53×)
accuracy with CW examples, 11.64% (14.94×) accuracy with
FA and 15.96% (20.48×) accuracy with FF, illustrating that too
few queries fail to extract enough information from the victim
model for model stealing attack. With 2.15k queries, our local
substitute model achieves 70.03% accuracy with RS samples,
72.20% accuracy with PGD examples, 74.94% accuracy with
CW examples, 71.30% accuracy with FA samples and 76.05%
accuracy with FF examples, which is similar to the 77.93%
accuracy achieved by the victim model trained on Microsoft
Traffic Recognition API. Our method can achieve the same
level of accuracy with fewer queries.

The total cost for stealing victim model with 76.05% test
accuracy is around $2.15 US dollars. Moreover, a local sub-
stitute model trained by adversarial examples always achieves
higher accuracy and test agreement than the model trained by
random samples, especially when the number of queries to the
victim model is small.
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Dataset
Non-Feature-based Feature-basedService Model Queries

RS
PGD CW FA FF

Price ($)

0.43k 10.21 (13.10×) 10.49 (13.16×) 12.10 (15.53×) 11.64 (14.94×) 15.96 (20.48 ×) 0.43
1.29k 45.30 (58.13×) 59.91 (76.87×) 61.25 (78.60×) 49.25 (63.20×) 66.91 (85.86×) 1.29Traffic

2.15k 70.03 (89.86×) 72.20 (92.65×) 74.94 (96.16×) 71.30 (91.49×) 76.05 (97.63×) 2.15
0.51k 26.27 (28.97×) 27.84 (30.70×) 29.41 (32.43×) 28.14 (31.03×) 31.86 (35.13×) 1.53
1.53k 64.02 (70.59×) 68.14 (75.14×) 69.22 (76.33×) 68.63 (75.68×) 72.35 (79.78×) 4.59

Microsoft

Flower

2.55k 79.22 (87.35×) 83.24 (91.79×) 89.20 (98.36×) 84.12 (92.76×) 88.14 (97.19×) 7.65

0.50k 65.10 (70.68×) 66.20 (71.88×) 71.50 (79.80×) 66.20 (71.88×) 76.20 (82.74×) 0.60
1.00k 72.30 (78.50×) 74.90 (81.32×) 85.10 (93.60×) 75.00 (81.43×) 87.10 (94.57×) 1.20Clarifai NSFW

1.50k 76.10 (82.63×) 78.50 (85.23×) 89.70 (97.39×) 80.20 (87.08×) 91.60 (99.46×) 1.80

0.68k 26.10 (36.20×) 30.19 (41.87×) 42.08 (58.36×) 37.05 (51.39×) 44.00 (61.03×) 0.34
1.36k 43.14 (59.83×) 50.19 (69.61×) 67.23 (93.25×) 60.29 (83.62×) 65.33 (90.61×) 0.68Face++ Emotion

2.00k 58.10 (80.58×) 62.00 (85.99×) 71.19 (98.74×) 64.10 (88.90×) 70.76 (98.14×) 1.00

TABLE III: Comparison of performance on victim models and their local substitute models. We report the accuracy on test sets
in two forms: absolute (x%) or relative to black-box victim model (×). Accuracy (%) of black-box victim models are: 77.93
(100×) for Microsoft traffic recognition model, 90.69 (100×) for Microsoft flower recognition model, 92.10 (100×) for Clarifai
Not Safe For Work (NSFW) model and 72.10 (100×) for Face++ emotion recognition model, respectively.

Upon quantitative analysis, we observe that: (i) Adversarial
perturbation increases the diversity of synthetic datasets, result-
ing in a more successful transfer set. As a result, adversarial
examples help extract more decision information from the
victim model than random samples and hence improve the
query effectiveness, but this advantage shrinks as the number
of queries increases. (ii) Compared to RS, PGD and FA,
the substitute models trained on the CW and FF synthetic
datasets achieve better performance on the same test dataset.
The main reason for this is that, by solving optimization
problems for generating “informative” examples, CW and FF
strategies control the misclassification confidence by adjusting
the parameter κ in Equation (5) and the parameter M in Equa-
tion (10), and thus effectively generate adversarial examples
which lie approximately on the decision boundary of victim
classifiers. Compared to CW method, the FF attempts to vary
the contribution of different feature components and generate
adversarial examples that can contribute with more boundary
information about the victim model. Thus, our FF method can
achieve the same level of accuracy with fewer queries than the
CW method.

2) Case Study 2: Flower Recognition Model: The exper-
imental results of this victim model are shown in Table III.
We use the popular 50 layer ResNet50 model trained on the
ImageNet dataset as the transfer architecture of our substitute
model. As shown in Table III, we can see the accuracy of our
self-trained victim model is 92.01% (100×). Our substitute
model achieves 31.86% (35.13×) accuracy with 0.51k queries
and 72.35% (79.78×) accuracy with 1.53k queries by using the
FF training set. With few queries (e.g., 0.51k and 1.53k), the
FF strategy leads to better performance compared to the other
strategies such as RS, PGD, CW and FA. With 2.55k queries,
substitute model trained on the FF synthetic dataset obtains
97.19× performance of the black-box victim model, which is
comparable to the performance of the substitute model trained

on the CW synthetic dataset (98.36×). In this case, compared
to CW strategy, feature-based adversarial attacks such as FA
and FF may add more perturbations to legitimate examples in
order to maximize the uncertainty of these examples away from
decision boundary of the victim classifier. Although adversarial
examples with large perturbations pollute the synthetic training
set, the substitute model trained on our FF still achieves strong
performance on all test set, which is similar to the accuracy
achieved by the substitute model trained on the CW synthetic
set. These trends also appear while stealing other black-box
models inside MLaaS platforms (We illustrate the details in the
following sections). Moreover, with 2.55k adversarial queries
to Microsoft custom vision service, it costs $7.65 US dollars
to extract a substitute model that achieves at least 91.76×
performance of the victim model.

3) Case Study 3: Emotion Recognition Model: So far our
attack framework assumes that the victim models inside APIs
are trained by users themselves. Here we consider a more
representative attack scenario where an adversary who targets
the pay-as-you-go commercialized MLaaS platform has no
knowledge about the exact training data or its distribution (we
assume that the adversary has some knowledge of the training
set but not the details, avoiding to use the irrelevant images
in the test), model architecture and training strategy, but can
observe the classification outputs. Specifically, we utilize the
proposed attack algorithm to steal the Face++ Emotion Recog-
nition API in the black-box setting. The transfer architecture
of our substitute model is the VGGFace trained on VGG-Face
dataset to recognize 2622 identities. The dataset utilized to
train the substitute model is the KDEF dataset [58], which
contains 4900 pictures of human facial expression. The set of
pictures contains 70 individuals displaying 7 different emo-
tional expressions, including happy, fear, sad, surprise, angry,
neutral and disgust. Each expression is viewed from 5 different
angles. The initial training data consists of random 224 ×
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Fig. 6: Architecture Choice for stealing Microsoft Traffic
Recognition API at various budgets (A = 0.43k, B =
1.29k, C = 2.15k)
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Fig. 7: Architecture Choice for stealing Microsoft Flower
Recognition API at various budgets (A = 0.51k, B =
1.53k, C = 2.55k)

224 pixel patches cropped from these images and it is further
augmented by rotating 90 degree or transforming to gray scale
with 50% probability of each image. The experimental results
of our attack are shown in Table III. We can see our substitute
model achieves 65.33% (90.61×) accuracy with 1.36k queries
and 70.76% (98.14×) accuracy with 2k queries by using FF
adversarial examples, which approaching the 71.17% (98.74×)
accuracy achieved by the substitute model trained on the
CW adversarial examples. The substitute model trained by
adversarial examples always achieves better performance than
the model trained by the random samples.

4) Case Study 4: Clarifai Safe for Work (NSFW) API:
The victim model pre-trained on Clarifai Not Safe For Work
(NSFW) API can recognize whether images include inappro-
priate contents on the Internet. In general, it is treated as
Not Safe For Work if the NSFW probability is greater than
0.85. Similar to previous experiments, we apply the proposed
attack algorithm to the black-box Clarifai NSFW API. The
training dataset used to train our surrogate model (ResNet50)
is randomly collected from Github opensource platform, which
contained 1.5k pictures (half of NSFW and half of SFW).
We then evaluated the accuracy of victim model by using
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Fig. 8: Architecture Choice for stealing Face++ Emotion
Recognition API (A = 0.68k, B = 1.36k, C = 2k)
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Fig. 9: Architecture Choice for stealing NSFW API (A =
0.50k, B = 1.00k, C = 1.05k)

1k random images which are different with training data (1/2
for SFW and 1/2 for NSFW). The accuracy of our victim
model is 92.10%. Experimental results show that our substitute
model achieves 87.10% (94.57×) accuracy with 1k queries
and 91.60% (99.46×) accuracy with 1.5k queries by using
FF examples which is better than using random examples,
i.e., 76.10% (82.63×) accuracy with 1k queries and 76.10%
(82.63×). In all case, the substitute model trained on FF
method achieves the best performance on the test set in
comparison to other adversarial examples generation methods
such as PGD, CW and FA.

C. Synthetic dataset and Transfer Architecture Selection

In the previous sections, we demonstrate that our attack
framework can effectively replicate the functionality of an
victim model inside the API with similar performance. This
is achieved while concurrently applying the fixed substitute
model architecture and dataset generation algorithm. In this
section, we further evaluate how the attack effectiveness varies
with different synthetic datasets Ds and transfer architectures
fs. In these experiments, we consider five strategies: RM, PGD,
CW, FA and FF. In our attack scheme, these strategies are

11



applied to generate the synthetic data set Ds for re-training
the substitute model fs chosen from the five popular network
architectures, including AlexNet, VGG19, VGG19 DeepID,
VGGFace and ResNet50.

Figures 6, 7, 8 and 9 summarize the influence of different
datasets and/or architecture selections on the attack effective-
ness. As shown in Figure 6, we find that the performance of
the substitute model re-trained on the adversarial examples
is usually better than the random exanples accross different
network architectures when we increase the number of training
examples from Budget A (0.43k) to Budget B (2.15k). The
same trend appears in Figure 7, Figure 8 and 9. Our substitute
models significantly recover the original performance of black-
box fv using the FF synthetic datasets, i.e., 97.19× for
the flower recognition at C = 2.55k, 99.46× for NSFW
at C = 1.50k and 98.14× for the emotion recognition at
C = 2.00k.

We also analyze the performance of substitute models
while using different pre-trained models as our transfer ar-
chitectures. From Figures 6, 7, 8 and 9, we observe that
performance of our substitute model can be influenced by
both the model complexity and task relevance. Therefore, in
order to extract a copy of the victim model, an adversary
can focus on the following aspects: (i) Choosing a more
complex/relevant network and the transfer architecture. In both
cases, AlexNet networks achieve the lowest accuracies after
stealing a victim model. A significantly more complex model
VGGNet (VGG19, VGG19 DeepID and VGGFace)/ResNet50
is beneficial while stealing a victim model. Further, as seen
in Figure 8, VGGFace, which is relevant to face recognition
tasks, achieves the best accuracy across all choices of substitute
model architectures while targeting the face emotion recogni-
tion API. This further indicates that, if the attacker does not
know the exact architecture of the victim model, using a more
complex and task relevant model as the transfer architecture
is almost always beneficial for the adversary. (ii) Sampling
images relevant to the classification problem (relevant queries).
This is because irrelevant queries generally lead to noisy
labels and hence impose additional difficulty for re-training
the substitute model.

D. Comparison to Existing Attacks

As shown in Figure 10, we compare with the existing state-
of-the-art attack methods proposed by previous works, includ-
ing F. Tramèr attack [6], Correia-Silva attack [14] and Papernot
attack [21]. In our implementations, we keep the architectures
of the substitute models fixed and evaluate how the attack
effectiveness varies with different synthetic dataset generation
methods (e.g., Tramer, Papernot, and Correia-Silvia). The same
trend appears while we use different transfer architectures to
copy the black-box victim model. In our implementations,
we launch these model stealing attacks on commercialized
MLaaS platforms in the real world, including those hosted
by Microsoft, Face++ and Clarifai. The substitute model
architectures are chosen from five popular pre-trained models,
including AlexNet, VGG19, VGG19 DeepID, VGGFace and
ResNet50. We use the synthetic dataset generated by our FF
algorithm to re-train these models in order to replicate the
functionality of victim API. Experimental results demonstrate
that our attack framework can steal large-scale deep learning

models with high accuracy, few queries and low costs simul-
taneously, while previous works fail in at least one or two
aspects. More detailed analysis of experimental results is given
below.

• When compared, our attack is more effective for
extracting large scale DNN model with few queries
than F. Tramèr attack [6]. From Figure 10(a) We
can see that, our substitute model, which uses the
VGG19 DeepID as the transfer architecture, is trained
on adversarial examples generated by our FF al-
gorithm and achieves 74.25% accuracy with 2.15k
queries, which is better than F. Tramèr attack’s results
(their substitute model achieves 15.97% accuracy with
2.15k queries). We find significant query efficiency
improvements, e.g., while Tramèr reaches 25.17% test
accuracy at B = 5.00k, our attack achieves this 3.9×
quicker at B = 1.29k. Similar results are shown in
Figure 10(b), Figure 10(c) and Figure 10(d). This is
because Tramèr attack uses line-search to find those
samples which are overly similar (i.e., the same class),
resulting in poor training set and eventually degrading
the performance of the substitute model.

• Different from the Correia-Silva attack [14], we vary
the architecture of the substitute model and re-train the
model on the synthetic dataset which is generated by
adversarial examples labeled by querying the victim
model. Take the Microsoft Flower Recognition as
an example (Figure 10(b)), with 1.53k queries, our
attack outperforms the Correia-Silva attack in terms
of prediction accuracy on the same test set (up to
27.84 percentage points). Experimental results also
demonstrate that our substitute model (ResNet50)
achieves higher accuracy as the number of queries
increases from 0.51k to 3.00k, which is better than the
performance of stolen model by Correia-Silva attack
(15.10% ∼ 78.92%). Since the model architecture is
not complicated, we can conclude that the success rate
of stealing black-box victim model depends not only
on the network architecture of the substitute model,
but also on the efficacy of the dataset augmentation
method.

• In order to boost the performance of the substitute
model, a Jacobian-based dataset augmentation method
is explored in the Papernot attack [21]. We reproduce
the exact setting of this attack reported in [21] and
show the experimental results in Figure 10. These
results show that adversarial examples help us improve
the query effectiveness of examples augmented by
Jacobian-based method. From Figure 10(a), we can
see most of our substitute models trained by adversar-
ial examples achieves higher performance (For exam-
ple, the VGG19 DeepID achieves 62.75% accuracy
with 1.29k queries and 74.25% accuracy with 2.15k
queries) than the model trained on the Jacobian-based
augmentation dataset. For the Flower Recognition, our
attack achieves the same accuracy as Jacobian-based
method with queries, e.g., the Jacobian-based method
reaches 81.76% test accuracy at B = 2.55k, our
attack achieves this 1.3 × quicker at B = 2.00k.
While targeting the NSFW (Figure 10(c)) and the
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Fig. 10: Comparison of the performance over victim models between our method and previous works.

Emotion Recognition (Figure 10(d)), our substitute
models always achieve the best accuracy on the test
set with different sizes of queries. The main reason of
this is that, compared to Jacobian-based method, our
FF helps extract more decision information from the
victim model and hence improve the query effective-
ness.

E. More Commercial APIs

In addition to the commercial APIs we test our attack and
show the comparison results in the previous sections, we fur-
ther extend out attack to extra two commercial platforms: IBM
Watson Visual Recognition [17], Google AutoML Version
[18]. Specifically, the target model pre-trained on IBM Watson
visual recognition is for face recognition. The dataset used to
train the model is the PubFig83 dataset [59] containing 12502
images of 83 different individuals and a relating test dataset of
830 images (10 images per class). Experimental results show
that our substitute model (VGG19 DeepID) achieves 78.43%
accuracy with 2075 queries and 83.73% accuracy with 3320
queries, approaching the 84.94% accuracy achieved by the
victim model on IBM Watson Visual Recognition API.

Similar to the Microsoft flower recognition, we use the
same dataset to train and test the victim model on Google Au-
toML Version. The experimental results demonstrate that, for a
synthetic dataset containing 2550 images, our local substitute
model (ResNet50) achieves 60.10% accuracy with random
samples, and 88.14% accuracy with FeatureFool examples,
which is similar to the 89.22% accuracy achieved by the vicm
model trained on the Google AutoML API.

VI. DISCUSSIONS

A. Potential Defenses

We have shown in Section V that an adversary can success-
fully extract the victim models from MLaaS cloud platforms.
As our findings undermine MLaaS platforms’ privacy and
integrity, defense mechanisms should be developed and applied
to protect cloud-based MLaaS platforms from model stealing
attacks. In this section, we evaluate one latest defense named
PRADA, and further propose a novel defense mechanism that
can effectively and adaptively defend against the malicious
queries to MLaaS platforms. We discuss the details of these
countermeasures.

1) Evasion of PRADA Detection: Juuti et. al [20] propose
a new defense method, known as PRADA, to detect model
extraction attacks. It analyzes the distribution of queries to

Model (δ value)
Queries made until detection

PGD CW FA FF
M=0.8D M=0.5D M=0.1D

Traffic (δ=0.92) missed missed missed missed 150 130
Traffic (δ=0.97) 110 110 110 110 110 110

Flower (δ=0.87) 110 missed 220 missed 290 140
Flower (δ=0.90) 110 340 220 350 120 130
Flower (δ=0.94) 110 340 220 350 120 130

TABLE IV: Adversarial queries made until detection. Here, the
parameter D is the L2 norm distance measuring the similarity
between the legitimate example xs and its adversarial example
x′s in the feature space.

victim models and rely on how these queries relate to each
other for detecting model extraction attacks. In the experi-
mental stage, we reproduce the exact setting of this defense
reported in [20]. We evaluate the PRADA defense on all of the
model theft attacks using different synthetic dataset generation
strategies (e.g., PGD, CW, FA and FF) described in Section V
and summarized in Table IV. We conduct experiments with five
different victims including traffic, flower, NSFW and emotion
recognition models, and find the similar conclusion. Taking
the traffic and flower recognition models as examples, we
randomly pick natural samples from a given data set and
calculate the detection threshold value δ resulting in no false
positives for the substitute models (δ = 0.91 for the traffic
recognition model and δ = 0.80 for the flower recognition
model). From Table IV we can see that our attacks can easily
evade their defense by carefully selecting the parameters M
from 0.1D to 0.8D. This is because, by selecting the parameter
M in Equation (10), we can simulate a normal distribution of
query samples without significantly degrading the substitute
models performance. By increasing δ (e.g, from δ = 0.87
to δ = 0.94 for flower adversarial examples), the PRADA
produces a high false positives (up to 93%) while detecting our
FF attack. Moreover, results demonstrate that other types of
adversarial attacks such as PGD, CW and FA can also bypass
the PRADA defense if δ is small.

2) The Proposed Defense: In order to reduce the impact of
information leakage during the querying process, as demon-
strated by our attack, we design and evaluate potential defense
mechanisms. Unlike previous works, our goal is not to analyze
the distribution of consecutive queries but rather focus our
attention on the method for detecting adversarial examples,
which can help providers offer MLaaS to monitor whether
individual query inputs are malicious. In our defense scheme,
we analyze the differences between the feature distributions
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of malicious and benign images, and further propose a novel
defense mechanism that can effectively and adaptively de-
fend against the FeatureFool adversarial attacks on MLaaS
platforms. Specifically, we start with training the proposed
feature distribution guided network, named DefenseNet, using
a popular deep learning framework - PyTorch. The pre-trained
DefenseNet will be adapted to extract each hidden layers output
as the features of the input samples. A categorical mixture
model is used as the prior probability to characterize these
query samples distribution. Adversarial examples generated
by attackers have a different characteristic distribution from
the benign samples distribution. We also integrate an SVM
classifier into our DefenseNet to distinguish benign samples
and adversarial examples as opposed to prior works which
may alter the decision boundaries. Our defense mechanism
dramatically improves the average success rate (up to 91%) of
detecting abnormalities in the input samples used for querying
API.

B. Limitations

Though the experimental results show that the proposed
attack framework is able to effectively steal the victim models
inside the commercial APIs even in a black-box setting, there
are some limitations that we may address in the future.

Further improvement of adversarial query methods. One
main limitation is that, in order to maximize the uncertainty of
examples away from decision boundary of the victim classifier,
attackers may add more perturbations to these examples via
adversarial attacks algorithms. For example, Feature Adversary
and FeatureFool may be used to generate stronger datasets to
train the substitute model. However, in this case, adversarial
examples with large perturbations generally pollute the syn-
thetic training set and consequently lower the accuracy of the
substitute model. This problem can be addressed in the future
by designing a more sophisticated algorithm that can trade-
off between the perturbations of adversarial examples and the
performance of the substitute model.

Extension to multi-label cases. Another problem is extend-
ing the attack method to multi-label cases. In comparison
to classification tasks with a single label per image, where
attackers aim at replicating the functionality of the multi-
label model inside the API, we need to pay more attention to
the synthetic data set generation algorithms and the substitute
model architecture choices. That is, in order to launch a model
stealing attack on the victim model, attackers need to first
craft the adversarial examples with multi target labels and
then generate the synthetic dataset to train a substitute model.
Although the proposed attack framework is not evaluated
on multi-label classification models, for example, Celebrity
Recognition API [19] provided by Clarifai, the adversarial
query method introduced in this paper can help an adversary
obtain more crucial information about a victim model, such as
decision boundary, label types, etc, which pose a great threat to
the privacy of MLaaS platforms. Future work will also focus on
developing an effective model extraction attack on the cloud-
based multi-label classification model.

Extension to other domains. As adversarial examples are
widely existed on various domains such as audio and text,
the proposed attack can be easily extended to all DNN

based MLaaS platforms. Furthermore, even in the case where
appropriate pre-trained models may be harder to get from
current model zoos, attackers can pre-train their basic “teacher”
models from scratch (i.e., datasets related to target tasks) and
then fine-tune these models using the adversary-query pairs
proposed in this paper on the domains other images to steal
black-box DNN models.

C. Responsible Disclosure

We have reported our findings to cloud providers including
Clarifai, Microsoft, IBM, Google, and Face++. Among them,
we contacted Clarifai and Face++ in December 2019 and con-
tacted Microsoft, IBM, and Google in January 2020. Among
them, Face++ replied to us in January 2020 and encourage
us to apply the developed method on other Face++ APIs for
security evaluations.

VII. CONCLUSIONS

Machine learning as a service (MLaaS) provided by cloud-
based platforms, including Microsoft, Google, Face++ and
Clarifai, has been widely applied in real-world applications.
These services, however, tend to suffer from the model ex-
traction attack launched by an adversary even with black-box
access. Although previous works on model stealing attacks
have shown good performance, their effectiveness is generally
constrained by massive prediction queries and high costs. To
address these challenges, we study the practicality of model
stealing attacks against DNN models trained on commercial
MLaaS platforms. Through local experiments and online at-
tacks on commercialized MLaaS platforms we demonstrate
that our model stealing attack can sufficiently train a local
substitute model with near-equivalent performance as the target
model. Our attack method requires significantly less queries
to the target model compared to previous works of model
extraction attack due to our novel design of architecture and
training process of the local substitute model. The transfer
learning helps us to utilize existing well-trained models in
the source domain, and thus we only need to fine-tune a
few layers of these models. The adversarial examples used
for querying the target model help us to efficiently learn
the distance between decision boundaries of the target model
and the local model, thus accelerating the convergence in
training. In the future, we will mainly focus on designing
effective defense mechanisms against model stealing attacks,
and therefore enhance the robustness of DNN based MLaaS
image classifiers.
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