
Microarchitectural Minefields: 4K-Aliasing Covert
Channel and Multi-Tenant Detection in IaaS Clouds

Dean Sullivan
University of Florida

deanms@ufl.edu

Orlando Arias
University of Central Florida

oarias@knights.ucf.edu

Travis Meade
University of Central Florida

travm12@knights.ucf.edu

Yier Jin
University of Florida
yier.jin@ece.ufl.edu

Abstract—We introduce a new microarchitectural timing
covert channel using the processor memory order buffer (MOB).
Specifically, we show how an adversary can infer the state of a spy
process on the Intel 64 and IA-32 architectures when predicting
dependent loads through the store buffer, called 4K-aliasing. The
4K-aliasing event is a side-effect of memory disambiguation mis-
prediction while handling write-after-read data hazards wherein
the lower 12-bits of a load address will falsely match with store
addresses resident in the MOB.

In this work, we extensively analyze 4K-aliasing and demon-
strate a new timing channel measureable across processes when
executed as hyperthreads. We then use 4K-aliasing to build a
robust covert communication channel on both the Amazon EC2
and Google Compute Engine capable of communicating at speeds
of 1.28 Mbps and 1.49 Mbps, respectively. In addition, we show
that 4K-aliasing can also be used to reliably detect multi-tenancy.

I. INTRODUCTION

Infrastructure as a Service (IaaS) clouds, such as Amazon
EC2 and Google Compute Engine (GCE), are growing in pop-
ularity as increasingly powerful computing resources become
more affordable. IaaS affordability is largely a result of many
users sharing the same cloud infrastructure in a process known
as multi-tenancy. Multi-tenancy allows disparate users with
varying needs to deploy applications on-demand and at scale,
while at the same time significantly improving utilization of
data center resources [32].

Research has demonstrated, however, that malicious users
can abuse multi-tenancy to leak information across virtual
machine (VM) instances via covert- and side-channels. Attacks
demonstrating extraction of sensitive information via side-
channels across colocated VMs are prevalent [34], [43], [27],
[26], [25], [41]. Other equally damaging attacks in the cloud
include covert channels. These attacks occur when two coop-
erating, but isolated, parties communicate with one another.
Often covert channels are used to extract information, but can
also be effective in determining multi-tenancy [14], [39], [28],
[38], [36].

Historically, IaaS timing channel attacks focus on cross-
core leakage. In contrast, there has been less research on IaaS
same-core timing attacks that exploit hardware hyperthreads,
also known as symmetric multithreads (SMT), or shared
resources. Under controlled experimental environments and
desktop platforms, innovative work has demonstrated SMT
covert- and side-channels on branch predictors [24], [16],
[2], [15], CPU functional units [37], [4], [6], the translation-
lookaside buffer [23], [20], and level one instruction [1],
[3] and data caches [42], [33], [30], [35]. Despite the large
number of such attacks, many have yet to be demonstrated
on the public cloud. The lack of research on SMT-based IaaS
timing channels follows from two assumptions: 1) SMT covert-
and side-channels are usually considered trivial to prevent by
simply disabling hyperthreading; and 2) It is relatively easier
to colocate two VMs on the same package, as opposed to the
same core.

The first assumption is prima facie true, but not without
side-effects in that it impacts both end-user total cost of
ownership (TCO) and performance. For example, benchmark-
ing floating point intensive applications with SMT enabled
typically degrades performance because of competition for
limited floating point unit resources [8], [19]. In these cases,
disabling hyperthreading may be a good option to improve
performance. However, even when SMT is disabled in the VM
the hypervisor is free to schedule it as a hyperthread on the
processor.

Dedicated instances are offered as solutions ensuring that
a user’s application is physically isolated at the hardware
level from VMs belonging to other accounts [5]. In turn, this
yields a higher TCO due to the cloud provider’s increased
operational expenses incurred for allocating the dedicated
hardware. In the past Microsoft Azure completely disabled
hyperthreading by default, but has recently moved towards of-
fering hyperthreaded VMs for general purpose workloads [22].
Similarly, the majority of Amazon EC2 and GCE instances
come with SMT enabled. This implies, along with Azure’s shift
to offering SMT VMs, that decreasing the cost of operational
expenses outweighs the need to manage specific workloads
causing performance degradation. Hyperthreading is expected
to become more popular on IaaS platforms in the near future
in order to keep them affordable.

We address the second assumption by demonstrating a
new SMT-based covert channel on both the Amazon EC2 and
GCE IaaS platform. We show that it is capable of detecting
multi-tenancy with equivalent success rate to other cross core
multi-tenant detection schemes at comparable cost. Using two

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23221
www.ndss-symposium.org

TABLE I: Comparison of side and covert channels. Approaches with N/L in a field do not list that particular metric.

Method Shared Resource Covert Channel Side Channel Col. Detect. Bitrate Error rate VM SMT

Wang & Lee [37]
SMT/FU 500 kbps N/L †

SMT/Cache 3.2 Mbps N/L †

spec. load 200 kbps N/L †

Aciiçmez et al [4] BTB N/L 21%
Hunger et al [24] BPU 100 kbps 45.2%
Xu et al [39] LL Cache 3.2 bps 9.3%
Ristenpart et al [34] L2 Cache 0.2 bps N/L
Wu et al [38] LL Cache 346 bps‡ 0.39%‡

Maurice et al [28] LL Cache 751 bps 5.7%
This work Store buffer 1.28∗ & 1.49∗∗ Mbps < 8.7%

† Authors present a discussion that isolation through a hypervisor is not sufficient to prevent the described covert channel and side channels, but provide no metrics on their
bandwidth or error rate in a cloud environment.

‡ Best case scenario metrics in a cloud environment.
∗ Amazon EC2.
∗∗ Google Computer Engine (GCE).

cooperating accounts, we demonstrate multi-tenant detection
after launching 14 instance pairs on EC2 and 12 instance
pairs on GCE using the placement strategies outlined in [36].
We further demonstrate that our SMT covert channel results
in a 15x increase in channel capacity compared to other
demonstrated IaaS covert channels once multi-tenancy has
been established.

4K-Aliasing. Our new covert communication channel lever-
ages Intel’s memory ordering buffer (MOB). The MOB is an
intermediate pipeline buffer that resides between the execution
units and L1 data cache. It manages in-flight reads and writes
that have not yet been written back to memory, henceforth
referred to as committed. Intel’s memory ordering model [9]
guarantees program consistency on all processor families that
execute instructions out of program order. However, out-of-
order (OoO) execution causes several common data hazards
such as when a later1 write passes an earlier load [write-after-
read (WAR)] or a later read passes an earlier write [read-after-
write (RAW)]. As memory reads and writes are speculatively
executed the MOB is checked prior to when an instruction is
retired. When a data hazard is detected the instructions can
be re-issued safely as the contents of the MOB have not yet
been committed, otherwise they can be written to memory as
normal.

We use a side-effect of managing the write-after-read data
hazard by the MOB called 4K-aliasing. WAR hazards occur
when the address of a speculatively executed younger write is
found to alias with an older read. The hazard is detected during
memory disambiguation prediction by comparing the lower
12-bits of every load and store in the MOB. Upon a match,
the load is re-issued with an associated performance penalty.
However, a read address separated from a write by 4 KB
will falsely match. We demonstrate that the falsely matching
4K-aliasing event incurs a deterministic performance penalty
measureable across processes.

Contributions. To the best of our knowledge we are the first
to investigate 4K-aliasing as a covert channel. We therefore
extensively evaluate the associated timing and noise character-
istics under ideal, single process conditions before moving on
to isolated processes across cores, and then VM instances on

1We use the terms later and earlier to refer to program order.

IaaS public clouds. We demonstrate a robust covert channel on
both Amazon EC2 and GCE clouds with a low bit error rate
and channel capacity of 1.28 Mbps and 1.49 Mbps respectively.
We further present a case-study on multi-tenancy detection on
EC2 after launching 14 cooperative instance pairs, and on GCE
after launching 12 cooperative instance pairs.

The remainder of the paper is organized as follows: In
Section II we overview related works and provide comparisons
with our 4K-aliasing timing channel. In Section III we estab-
lish the background and basis for 4K-aliasing. In Section IV
we characterize the 4K-aliasing channel in a single process
scenario. In Section V we present both a simple and robust 4K-
aliasing covert communication channel. Section VI provides a
case study when the 4K-aliasing covert channel is deployed on
both Amazon EC2 and GCE. Section VII describes our multi-
tenancy detection experiment and results. In Section VIII we
analyze possible mitigations. Finally, Section IX concludes and
provides directions for future work.

II. RELATED WORKS

A. Shared Resources Timing Channels

There have been several side-channels leveraging con-
tention between functional unit resources while hyperthread-
ing. Wang and Lee [37] demonstrated a covert channel due
to exception handling during control speculation on loads
using the IA-64 ISA. Aciiçmez and Seifert [4] show that
hardware threads contending for a shared multiplier can form
the basis for a side-channel capable of distinguishing mul-
tiplications from squarings in OpenSSL’s implementation of
RSA. Andrysco et al. [6] implement a timing attack capable
of rendering victim web pages through the Firefox browser
caused by floating-point unit slowdown when operating on
subnormal values.

Timing channels caused by contention for the branch
prediction or branch target buffer (BTB) also leverage hy-
perthreading. Aciiçmez et al. [2] demonstrated that RSA
encryption keys can be partially recovered by monitoring
execution latency after evicting branch target addresses in the
BTB. Recently Evtyushkin et al. [15] demonstrated that BTB
collisions could be exploited to leak kernel space addresses
to break kernel address space layout randomization. Hunger
et al. [24] demonstrate a covert channel based on the branch
predictor as opposed to the BTB.

Hund et al. [23] and Gruss et al. [20] both use contention
in the translation lookaside buffer (TLB) to defeat kernel
address space layout randomization. While not reliant upon
hyperthreading, their work leverages the core-private TLB
which is a shared resource in that it saves address translation
data across isolated security domains, namely kernel-space and
user-space addresses. Similarly, Aciiçmez [1] and Aciiçmez
and Schindler [3] both demonstrate a PRIME + PROBE style
attack using the instruction cache by filling it with dummy in-
structions, and then timing their re-execution after preemption
from an RSA process. Osvik et al. [30] use memory access
patterns in the L1 data cache to fully extract an AES key from
a victim process. The work is extended in [35] by Tromer et al.
Yarom et al. [42] demonstrate complete private key recovery
against a constant time RSA implementation using L1 data
cache bank collisions.

B. Covert Communication Channels

Xu et al. [39] demonstrate a covert channel using shared
last level caches between cooperating VMs on Amazon EC2
with a bit rate of 3.2 bps and error rate of 9.3% on average.
This improved upon a prior public cloud covert channel by
Ristenpart et al. [34], which reported a bit rate of 0.2 bps using
the shared L2 data cache. Wu et al. improve upon both schemes
using atomic operations on last level caches to induce memory
bus transactions in [38]. In house experiments by the authors
observe a channel transmission rate of around 750 bps with
an error rate of 0.09%. When deploying to an EC2 instance
under best conditions the channel presents a transmission rate
of 343.5 bps with an error rate of 0.39%. Under heavy noise
conditions the channel presents a similar transmission rate but
the error increases to 21.56%. The authors then change the
protocol for better error handling effectively lowering the data
transmission rate to about 110 bps but an improved error rate
of 0.75%. Maurice et al. [28] again target the shared last level
cache, but address the uncertainty of which cache lines the
cooperating parties should transmit upon using inclusiveness.
In doing so, they achieve a bit rate of 751 bps in a virtualized
environment.

C. Multi-Tenancy Detection and Placement

The first work to demonstrate multi-tenant detection
mapped externally available VM instance IP addresses to
their internal IP addresses, allowing them to topologically
map the data center and then colocate malicious VMs next
to target VMs [34]. Herzberg et al. [21] extended the work
of Ristenpart et al. by demonstrating new techniques for
deanonymizing internal IP addresses, revealing the network
topology, and testing for colocation. Xu et al. [40] again use
network topology as a means for multi-tenancy detection, but
do so systematically. Varadarajan et al. [36] demonstrated a
new technique for multi-tenancy detection by creating memory
bus contention using locked atomic operations. Their work also
revealed common VM placement strategies employed by IaaS
providers.

D. Comparison of Approaches

We show a high level comparison of previous approaches
in Table I. As demonstrated, our covert channel offers a
higher data transmission rate than the enumerated approaches

while still keeping a low error rate. We should give special
mention to Wang and Lee’s cache side channel, which offers
a comparable transmission rate of 3.2 Mbps. The authors
discuss how their side channel can also be used as a covert
channel. Unfortunately, they do not discuss the error rate in
their approach, nor the performance of their approach in a
cloud environment.

Furthermore our approach is noteworthy in that we present,
to the best of our knowledge, the first multi-tenant detection
scheme using hardware hyperthreading. Our demonstration in
Section VII shows a clear detection threshold, while only
requiring a relatively small number of VMs to be launched
from cooperating accounts.

III. BACKGROUND

A. Memory Order Buffer

The memory ordering buffer (MOB) has been a key
microarchitectural component since the Intel Nehalem mi-
croarchitecture [11]. The MOB enables loads and stores to
be issued speculatively and execute out-of-order, ensures that
retired loads and stores occur in order with correct values,
and enforces Intel’s memory ordering model. Memory disam-
biguation and store-to-load forwarding are two features of the
MOB that allow loads and stores to be speculatively issued
and executed out-of-order, respectively.

Stores to memory are temporarily written into a store
buffer prior to commitment enabling the processor to continue
execution without having to stall, for instance because the
store is waiting on a busy L1 data cache write port. Delaying
writes also makes more efficient use of bus bandwidth via
streaming. The store buffer comprises the virtual and physical
store address and the store data of executed stores [12]. As
long as a store has not been retired, it occupies a store buffer
entry slot. Once the store address and data are known, the store
data can be forwarded to any following load operations in a
process called store-to-load forwarding. This is an important
performance feature of modern processors because it saves
cycles by allowing the load to obtain its data directly from
the store without having to access the cache subsystem.

Both the store address and data must be known before store
data can be forwarded to a dependent load. Accordingly these
loads must wait, but younger loads that are independent of
the store should be allowed to issue and execute ahead of
the stalled load. Otherwise significant performance slowdown
and underutilization of resources will occur in the case of
a stalling, long store/load dependency chain. Intel’s solution
to optimizing available instruction level parallelism (ILP) is
to allow younger loads to be speculatively issued and later
disambiguated in a process called memory disambiguation.
When a load speculatively issues, it takes its data from the L1
data cache, even when older store addresses are unknown, and
updates its load buffer slot. Prior to commitment the prediction
is verified. If a conflict exists, the load and all succeeding
instructions in the loads dependency chain are re-executed.

B. Memory Disambiguation Prediction

Memory disambiguation prediction for loads occurs early
in the Issue stage of the processor pipeline to optimize ILP

Processor Model Microarchitecture Clock Freq Memory Order Buffer OS/Kernel Version
Intel Xeon E5-2690 Sandy Bridge 2.9 GHz SB: 36 / LB: 64 CentOS 2.6.32
Intel Core i7-3770 Ivy Bridge 3.4 GHz SB: 36 / LB: 64 Arch Linux 4.10.8
Intel Core i7-4770 Haswell 3.5 GHz SB: 42 / LB: 72 Arch Linux 4.8.13

Intel Core i7-6820HQ Skylake 2.7 GHz SB: 56 / LB: 72 Arch Linux 4.10.1

TABLE II: Experimental platform specifications. SB means store buffer and LB means load buffer.

by allowing loads to speculatively execute ahead of stores that
have not yet been resolved. The exact details of the predic-
tion algorithm are undocumented. However, the Intel Core®
microarchitecture employed a hashed index lookup using the
load’s instruction pointer [13]. Each entry in the memory
disambiguation predictor behaved as a saturating counter that
was updated at instruction retirement. Prediction was verified
by comparing the address of all dispatched store operations
against the address of all younger loads. It is unclear, however,
if the memory disambiguation prediction algorithm is still in
place on newer Intel microarchitectures.

C. Coherency Snooping

Memory ordering is correctly maintained if a memory read
(load) results in the same value that was written by the most
recent memory write (store). Ordering must be maintained
between earlier loads and later writes as well as earlier and
later loads. Chowdhury and Carmean [7] outline a method
for maintaining ordering between memory operations in a
multiprocessor by snooping the load buffer before a store
operation completes using per-core memory snoop logic. In
response to committing a store to the L1 data cache, the snoop
logic compares the store address with every load address in the
load buffer. If a match is found, then an ordering violation is
triggered for the corresponding load instruction. This results in
the load, and preceeding speculatively executed instructions in
the load dependency chain, to be aborted and re-issued. The
snoop of the load buffer in the embodiment outlined in [7]
reveals that it is implemented at cache-line granularity, e.g.,
the lower 12-bits of the virtual and physical address.

D. 4K-Aliasing

Intel’s documents assume dependency between 4 KB sep-
arated loads and stores and calls this 4K-aliasing [11]. 4K-
aliasing occurs when the lower 12-bits of the address of a
load issued after a preceding store falsely matches in the store
buffer. However, the cause of 4K-aliasing is undocumented.
Recall that memory disambiguation prediction will attempt to
issue loads early to speculatively execute ahead of independent
stores. Perhaps the memory disambiguator prevents all loads
whose lower 12-bits match a store address in the store buffer
from being issued early. This is a relatively cheap decision
considering the stall cycles caused by the incorrect prediction
on independence.

Alternatively, 4K-aliasing could be the result of coherency
snooping. In this scenario, the front-end might allow all loads
to speculatively execute. Prior to commitment of any store,
the snoop logic will find a false match in the load buffer on
the lower 12-bits of a load address in the load buffer. This
will cause the load to abort, and any instructions in the load’s
dependency chain to be re-issued. Perhaps Intel reasons that

loads to unique page frames are rare, or that virtual address
aliasing is uncommon.

In both case, however, the responsible microarchitectural
logic does not distinguish between threads or process. This
is stated explicitly in the patent describing coherency snoop-
ing [7]. We surmise that distinguishing between processes is
likely not employed during memory disambiguation prediction
based on other prediction logic at the front-end, e.g., the branch
target buffer and branch predictor.

IV. 4K-ALIASING WITHIN A SINGLE PROCESS

In this section, we aim to evaluate the timing characteristics
due to 4K-aliasing within a single process. This achieves
several goals. First, it verifies the performance penalty due
to the 4K-aliasing event. Second, it allows us to determine
the conditions under which 4K-aliasing is observable. Finally,
we aim to establish a baseline of expected behavior within a
controlled environment prior to demonstrating the 4K-aliasing
covert communication channel.

A. Initial Benchmark and Experimental Setup

We initially want to verify the performance penalty caused
by 4K-aliasing without forcing the event to occur. The Intel
optimization guide suggests that this event will likely be
observable during a memory copy routine where the source
and destination buffer addresses are separated by 4 KB. Each
time the data to be copied is read, a 4 KB aligned base address
will falsely match with the 4 KB aligned base address of
the source buffer. A deterministic performance degradation
should be observable as memory disambiguation prediction
will incorrectly predict a dependency between the copy.

Figure 1 shows the performance penalty of 4K-aliasing in
the memory copy routine when the source and destination
buffers are separated by 4 KB. We evaluate the 4K-aliasing
effect on four recent Intel microarchiture families: Sandy
Bridge, Ivy Bridge, Haswell, and Skylake. Table II shows the
configuration for the platforms tested. All systems use the Intel
64-bit ISA and 64-bit GNU libc 2.24 libraries. The results
show that the copy bandwidth drops every time an address is
aligned on 4 KB boundary. Subsequent copies to addresses that
do not align on a 4 KB boundary rapidly recover. Note that
the performance falls off after 16 KB as two array references
cannot be serviced within the same 32 KB L1 data cache.

The granularity of observable 4K-aliasing events for the
memory copy routine is too coarse to offer much insight into
the cycle latency of a falsely aliasing load. Ideally, we need to
be able to clearly distinguish the number of cycles required to
service a 4K-aliasing load versus the number of cycles required
to service all other memory load events. This will allow us

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

array size (KB)

0

2

4

6

8

10

12
b
a
n
d
w

id
th

 (
M

B
/s

e
c)

SND IVY HSW SKL

Fig. 1: Effect of 4K-aliasing in memory order buffer. SND:
Sandy Bridge, IVY: Ivy Bridge, HSW: Haswell, SKY: Skylake.

to reliably convert the 4K-aliasing event into a stable covert
communication channel.

In order to understand the observable 4K-aliasing cycle
latency in an ideal setting we need to clarify the conditions
required for this scenario. We are interested in measuring
the cycle latency of a load issued after a preceding store
that falsely aliases in the store buffer. This can occur in two
situations. A later (in program order) load executes after an
earlier (in program order) store, or when a later write passes
an earlier store. The latter is referred to as a write-after-read
(WAR) data hazard. WAR hazards are undesirable because
executing a later store ahead of a load when their memory
addresses match will cause the read to load incorrect data.
In fact, Intel’s VTune performance analysis guideline [10]
describes 4K-aliasing as a side-effect of the memory order
buffer preventing WAR hazards.

Therefore, for our analysis we opted for measuring WAR
events. Listing 1 presents the baseline benchmarking code used
to measure the overhead due to 4K-aliasing within a single
process. The benchmark parametrically sweeps load addresses
by 2 bytes with respect to a constant store address, measuring
the associated latency. It is written such that the lower 12-bits
of one load address within the load array in the inner loop
will falsely alias with the lower 12-bits of a preceding store
address in the store buffer.

The actual measurement code is contained within the inline
assembly section of Listing 1. We use AT&T syntax to write
the assembly, which is read as inst. dest, src. The
first two assembly instructions (lines 7 & 8) move the array
pointers for store_arr and load_arr to local integer
register r14 and r15 respectively. An immediate value is
stored at the array index pointed to by store_arr at line
11. Line 12 derefences load_arr and adds the value to the
value in r9. Note that we add a variable number of single
cycle add immediate instructions [17] to ensure that we do
not incorrectly alias with memory operations at lines 7 & 8.
In our experiments, we set the number of add instructions to
equal the average cycle latency required to access the L1 data

0 8 16 24 32 40 48 56 64
load offset (B)

0

8

16

24

32

40

48

56

64

st
o
re

 o
ff

se
t

(B
)

Sandy Bridge

5.6

6.4

7.2

8.0

8.8

9.6

10.4

cy
cl

e
 l
a
te

n
cy

0 8 16 24 32 40 48 56 64
load offset (B)

0

8

16

24

32

40

48

56

64

st
o
re

 o
ff

se
t

(B
)

Ivy Bridge

2
3
4
5
6
7
8
9
10

la
te

n
cy

0 8 16 24 32 40 48 56 64
load offset (B)

0

8

16

24

32

40

48

56

64

st
o
re

 o
ff

se
t

(B
)

Haswell

1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2
8.0

la
te

n
cy

0 8 16 24 32 40 48 56 64
load offset (B)

0

8

16

24

32

40

48

56

64

st
o
re

 o
ff

se
t

(B
)

Skylake

3.0

4.5

6.0

7.5

9.0

10.5

12.0

la
te

n
cy

Fig. 2: Load latency due to 4K-aliasing in memory order buffer
when the load address is parametrically swept by 2 bytes with
respect to a constant store address.

cache for the given microarchitecture family. When the load
address at line 12 aliases on the lower 12-bits with the store at
line 11, we expect the timestamp counter to report more cycles.
We use the rdtscp instruction to record cycles following the
Intel guideline [31].

Listing 1: Baseline 4K-aliasing latency benchmark.
1 for (uint64_t i = 0; i < ARR_SZ; i += 2) {
2 store_arr = &sarr[i];
3 start = rdtscp();
4 for (uint64_t j = 0; j < ARR_SZ; j += 2)←↩

{
5 load_arr = &larr[i];
6 asm volatile (
7 "movq %0, %%r14 \n\t"
8 "movq %1, %%r15 \n\t"
9 "add $0x1, %%r9 \n\t"

10 ...
11 "movq $0x2, (%%r14) \n\t"
12 "add (%%r15), %%r9 \n\t"
13 :
14 : "r" (store_arr), "r" (load_arr←↩

)
15 : "%r9", "%r14", "%r15"
16);
17 }
18 stop = rdtscp() - start;
19 }

B. Single Process 4K-Aliasing Results

Figure 2 depicts the measured load latencies as a heatmap.
For a given row (y-axis) the store address is held constant,
while the load is incremented by 2 bytes. Longer latency
measurements are depicted as dark squares and shorter latency
measurements as light squares. For each store address, the
lower 12-bits of a single load address falsely aliases creating a
measurable performance degradation. The latency is reported
as cycles.

The Sandy Bridge and Haswell microarchitecture families
show several high latency measurements off the 4K-aliasing

diagonal. We do not employ any scheduling constraints on the
executed benchmarks, so these are likely due to external noise
caused by kernel scheduling events. We calculated the average
penalty for the results to be 4.3 cycles across all families. This
is lower than reported by Intel [10], which reports a best-case
expected 5 cycle penalty for the Sandy Bridge, Ivy Bridge,
and Haswell microarchitectures. The measurement error for the
Skylake microarchitecture, however, is more significant which
has an expected 7 cycle penalty.

C. Refined Single Process Benchmark and Results

To eliminate this error, we ran another experiment that
introduces additional load instructions in the measurement
code. Our goal was to increase the number of 4K-aliasing
events within the window prior to the store’s retirement.
All four microarchitecture families can service at least two
load or store address calculations via their load/store address
functional units [12]. The benchmark in Listing 1 executed one
store and one load, which allows them to execute in parallel
and more quickly recovery from disambiguation misprediction.
The new load instructions added to the measurement code
quickly exhaust the load/store address generation functional
units resources, producing a longer latency. Figure 3 shows
these results. In effect, adding 5 load instructions has increased
the cycle latency in the 4K-aliasing measurement by roughly
4x. This allows 4K-aliasing latency to be clearly distinguished
from normal memory load operations that do not 4K-alias with
preceding stores.

D. Analysis of Multithreaded 4K-Aliasing

The memory-order buffer is local to a processor core such
that any covert channel based upon 4K-aliasing should oc-
cur between hyperthreads. However, in Intel Hyper-Threading
Technology [11] a single processor core splits its execution
resources between two processes. This includes the available

SLF L1D$ 1-Ld 3-Ld 5-Ld
0

2

4

6

8

10

12

14

16

18

C
y
cl

e
s

SND
IVY
HSW
SKY

Fig. 3: Cycle latency when (from left to right) a load can get
its data from i) the store buffer via store-to-load forwarding; ii)
L1 data cache; iii) L1 data cache after one 4k-aliasing event;
iv) L1 data cache after three 4K-aliasing events; and v) L1
data cache after five 4K-aliasing events.

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 0

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 4

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 1

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 5

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 2

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 6

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 3

0 100 200 300 400 500

load offset (B)

0
100
200
300
400
500

st
o
re

 o
ff

se
t

(B
) core 7

Fig. 4: Effect of 4K-aliasing when different processes are
scheduled on the same core as hyperthreads.

slots in the load and store buffer respectively. Recall, however,
that the snoop logic outlined in Section III-C operates on both
a cross-thread and external store commits. The memory snoop
logic responsible for triggering 4K-aliasing, therefore, should
be measureable for both hyperthreads and cross-core threads,
but not cross-core processes. The latter is disambiguated
because they do not share common memory. Accordingly, we
aim to establish the latency of 4K-aliasing due a multithreaded
process and later establish if cross-core 4K-aliasing is measure-
able.

We evaluate two scenarios for multithreaded processes: 1)
We launch multiple processes each of which executes two
threads. One thread executes only 4KB aligned stores and the
other thread executes only 4KB aligned loads; 2) We schedule
these threads such that they hyperthread on different cores. For
example, we schedule P1-T1-C0/P1-T2-C2 and P2-T1-C0/P2-
T2-C2 2 such that C0 and C2 are not hyperthreads. The latter
scenario addresses a necessary condition for establishing the
4K-aliasing covert communication channel, namely whether
4K-aliasing is observable across processes.

Figure 4 shows the results of running this benchmark on
an Intel Core® i7-4770 CPU with 4 physical cores capable of
supporting 2 hyperthreads per core. For this platform core 0
and core 4 are hyperthreads, so too are core 1 and core 5, core
2 and core 6, and core 3 and core 7.

The experiment used code similar to Listing 1 except that
the sweep range for load and store addresses was much wider
to collect a more inclusive series of measurements. Both the
wider search range and execution across available virtual cores
induces system noise caused by both other processes and OS
scheduling events.

The results of this experiment establish several features
of the 4K-aliasing event. First, it is indeed possible for load
addresses from one process to 4K-alias with preceding store

2Here P refers to a process, T refers to a thread launched from that process,
and C refers to the processor core the thread is executed on. So P1-T1-C0
should be read as process 1, thread 1, executes on core 0.

addresses from another unique process. Second, system noise
is clearly observable and dampens the measureable latency
caused by 4K-aliasing. The effects of noise on the measure-
ment is most apparent on core 0 and core 3, but is also apparent
on cores 6 and 7.

E. Analysis of Cross-core 4K-aliasing

The coherency snoop logic outlined in Section III-C indi-
cates that 4K-aliasing occurs across threads that share common
memory to maintain memory ordering in a multiprocessor.
We evaluated whether the 4K-aliasing timing channel could
be measured across processes executed on separate cores. In
all of our experiments, we failed to measure the 4K-aliasing
timing channel when executing two processes scheduled on
separate cores, one of which executed 4KB aligned stores and
the other 4KB aligned loads.

V. MULTI-PROCESS 4K-ALIASING

Based on our analysis in Section IV, memory disambigua-
tion prediction does not distinguish between processes when
predicting a dependency between 4 KB separated loads and
stores. Given that, we set out to show first a simple 4K-aliasing
covert communication channel. We use the simple protocol
to then address the challenges in designing a robust covert
channel, and finally characterize its error rate and channel
capacity.

A. Threat Model and Assumptions

Before outlining the 4K-aliasing covert communication, we
elaborate upon the assumptions we make and threat model
under which covert communication is applicable.

We assume that two cooperating applications are running
on the same system. We use trojan and spy to refer to these
processes as is common in the literature [14]. We also assume
a scenario in which the trojan wishes to communicate a
secret to the spy and no other communication channel exists
between the two parties. We further assume that the trojan
and spy processes are collocated on the same physical CPU
as hyperthreads. The system software, including the operating
system and runtime, are considered to be secure so that neither
the trojan nor the spy can bypass isolation and access controls.
Finally, we assume both the trojan and spy have only user-level
privileges.

B. Simple 4K-Aliasing Covert Communication Channel

A malicious user can communicate with a cooperating
party via a pre-determined protocol using the 4K-aliasing
timing channel. For example, the sender can set all of the
store buffer entries to 4 KB aligned addresses to communicate
a 1. At some later time, the receiver process can schedule itself
to the same core and read the store buffer state by performing
reads on 4 KB boundaries while measuring the load latency.
This initial protocol is shown in Listing 2.

In order to demonstrate the simple covert communication
channel, we execute two processes on the same processor
core as hyperthreads. We refer to these as the trojan and spy
processes hereafter. The trojan aims to communicate a secret
to the spy as a string of binary values. In order to do so, the

trojan fills the store buffer with addresses aligned on 4 KB
boundary. For the Intel Haswell microarchitecture, the trojan
is responsible for storing at least 42 addresses in the store
buffer. This value will change per microarchitecture but not
significantly, see Table II. The spy aims to load values that
will 4K-alias with the trojan’s store addresses such that the
measured execution time in cycles can distinguish between a
1 and 0.

The trojan repeatedly executes stores separated by 4 KB
to transmit a 1, and empties the store buffer to transmit a
0. The trojan drain the store buffer by executing a memory
ordering instruction such as mfence or executing a busy-
wait loop such that the store instructions retire normally. In
our initial experiments, we saw no difference between either
option. However, as will be discussed in Section V-D, the
speed with which the store buffer is drained is integral to
modulating the pulse width during bit transmission. This in
turn has consequences on the covert channel’s capacity via its
bit error rate.

The spy process intermittently probes the store buffer
context for 4 KB aligned addresses by executing loads aligned
on a 4 KB boundary. The cycle time is measured during each
probe block. If the spy process measures an increased cycle
time, then it reasons the trojan is transmitting a 1 bit. If the
spy process measures a decreased cycle time, then the trojan
is transmitting a 0 bit.

C. Results of Simple 4K-Aliasing Covert Channel

Figure 5 presents the results using the simple covert
channel. The x-axis represents time (in ns) with respect to
the start of the spy program. The y-axis displays cycles. The
results show that: 1) 4K-aliasing can be used as a covert
communication channel; 2) given a naive protocol, a separable
cycle latency threshold based on 4K-aliasing events can be
established, e.g. in this case the threshold can be placed at
9 cycles; 3) the simple covert channel suffers from stability
issues apparent between times 100 and 200 ns; and 4) the

0 50 100 150 200 250 300 350
time

6

8

10

12

14

16

18

20

cy
cl

e
s

Fig. 5: Timing results of 4K-aliasing communication channel
between trojan and spy.

Protocol: Simple 4K-Aliasing Covert Communication Channel

Datasend [N], Datarecv[N]: data bits to be transmitted/received by the trojan and spy
addr4k : A 4 KB aligned address
latency: Cycle length of servicing 4 KB aligned load
threshold: Experimentally set cycle length capable of distinguishing 4K-aliasing
Trojan’s operation: Spy’s operation:

while true do
for i = 0 to N−1 do

if Datasend [i] = 1 then
store← addr4k

else
flush store buffer()

end if
end for

end while

for i = 0 to MaxProbes−1 do
start = rdtscp()
load← addr4k
stop = rdtscp()
if latency > threshold then

Datarecv[i] = 1
else

Datarecv[i] = 0
end if

end for

Listing 2: Simple protocol for establishing a 4K-aliasing covert communication channel between a trojan and spy process.

achievable bit rate while using this protocol is roughly 77 Mbps
given that 27 bits were transmitted over 350 ns.

D. Characterizing a Robust 4K-Aliasing Communication
Channel

Given the previous analysis, there are several challenges
that need to be addressed in establishing a robust 4K-aliasing
covert channel. The first involves improving the bit rate and
bit error of the channel. Another challenge is how the trojan
and spy will detect one another. This is necessary as both
a precursor to the trojan knowing when to send the secret,
but also the spy acknowledging its receipt. Finally, the trojan
and spy must be able to recover from failed transmission.
The latter can occur, for instance, when the trojan or spy is
descheduled by the OS. Ideally we would like to construct
a protocol capable of acknowledging and recovering from a
failed transmission with a low bit error rate while maximizing
the channel capacity. We address these challenges in the
following.

Theoretical Bit Transmission Window. Ideally, the bit rate
for the 4K-aliasing communication channel is limited by the
time required to fill the store buffer with 4 KB aligned
addresses plus the time to issue and measure the 4K-aliasing
event. We assume that the worst-case lifetime of a single 4
KB aligned address available in the store buffer is bounded by
accessing the L1 data cache, which takes 4 clock cycles on
our Intel Core® i7-4770.

In practice, the store will retire more quickly [17]. There-
fore, each store takes roughly 1.2 ns to retire given a 3.4
GHz clock. In the best case then, a 4K-aliasing load can be
issued within 4 cycles of the store in order to allow a bit to be
transmitted every 1.2 ns resulting in a theoretically maximum
channel bit rate of 833 Mbps.

In practice, however, there are several limiting factors
preventing the channel from achieving this bit rate. To demon-
strate this, we perform an experiment that aims to measure the
number of cycles it takes for a store buffer entry to be evicted,
which bounds how quickly the spy can recover a trojan bit. In
the trojan process, we repeatedly loop over a store to a 4 KB
aligned address. In the spy process we first execute only a 4 KB
aligned load, then a single cycle instruction and a 4 KB aligned

Fig. 6: Practical store bandwidth of 4K-aliasing communica-
tion channel.

load, then two single cycle instructions and 4 KB aligned load.
We stop executing intermediate single cycle instructions when
the observed cycle latency due to 4K-aliasing is masked by
the number of single cycle instruction latencies.

The results of this experiment are shown in Figure 6. Two
features stand out from the results. First, issuing successive
4 KB aligned stores and loads in a tight loop is prone to
noise. Many of the measurements oscillate between 3 to 4
cycle when 4K-aliasing is the dominant feature. This indicates
that some measurements show aliasing, while others show
cumulative effects due to functional unit resource starvation.
Second, the effect of 4K-aliasing is indistinguishable when
four intermediate single cycle instructions are executed before
the 4 KB aligned load. At five intermediate instructions, 4K-
aliasing is no longer visible as it is dominated by the latency
of the intermediate instructions.

Another aspect of this experiment is that we repeatedly
executed 4 KB aligned stores such that the store buffer was
always maximally filled with 4 KB aligned addresses. This
implies the 4K-aliasing event should then be measureable after

(a) Distribution of 4K-aliasing latency as the interval of
probed addresses increases by 2 KB.

(b) Distribution of 4K-aliasing latency as the interval
of probed addresses increases by 1024 B.

(c) Distribution of 4K-aliasing latency as the interval of
probed addresses increases by 512 B.

(d) Distribution of 4K-aliasing latency as the interval
of probed addresses increases by 256 B.

Fig. 7: Distribution of 4K-aliasing latency.

42 × 4 cycles3, or 49.4 ns per 1.2 ns. Since we execute 4 KB
aligned loads in a tight loop, on average they should execute
and 4K-alias before any store in the trojan process is retired
achieving a more practical bit rate of 19.8 Mbps. The results
confirm this analysis in that 4K-aliasing is observable as long
as a 4 KB aligned load is issued within four cycles of a 4KB
aligned store.

Theoretical Bit Transmission Frequency. Another practical
limitation of the 4K-aliasing covert channel is the frequency at
which the measurements are taken. The frequency is a function
of the offset between each successive 4 KB aligned store/load
address. For example, both store and load addresses can be
separated by 4096 B, 2048 B, 1024 B, 512 B. As long as they
agree on the step size for successive memory operations the
trojan and spy will 4K-alias. Note, that this metric is different
than determining the theoretical bit rate per the analysis above
because any practical covert channel will have to oversample
in order to capture all of the trojan transmitted bits. The 4K-

3The number of store buffer entries available on the Haswell microarchi-
tecture family is 42.

alias protocol will have to agree on some variation of address
offset (step size) to meet the sampling criteria.

In order to determine the timing characteristics and dis-
tribution of 4K-aliasing events given a predetermined address
offset, we ran the following experiment. For each benchmark,
we measure 4K-aliasing events such that the lower 12-bits of
the store and load addresses will be aligned every other load
(when the load address is swept at intervals of 2048 B), every
fourth load (when the load address is swept at intervals of
1024 B), every eighth load (when the load address is swept at
intervals of 512 B), and every sixteenth load (when the load
address is swept at intervals of 256 B). The results are shown
in Figure 7.

Figure 7a shows the results when load addresses are
measured at 2 KB intervals. Half of these measurement should,
therefore, be slow during a 4K-aliasing event and the other
half should be relatively fast. The top half of Figure 7a plots
the distribution of the data and fits it using a Gaussian kernel
density estimate. While not uniformly bimodal, the probability
of finding a high cycle measurement is nearly equal to the
probability of finding a low cycle value. However, it is limited

Protocol: Robust 4K-Aliasing Covert Communication Channel
Datasend [N], Datarecv[N]: data bits to be transmitted/received by the trojan and spy
DetectProbes: The number of probes used to detect the presence of the spy/trojan
addr4k : A 4 KB aligned address
latency: Cycle length of servicing 4 KB aligned load
Tone: Experimentally set cycle length capable of distinguishing a trojan one bit from a trojan zero bit
Ttr,detect , Tsp,detect : Cycles to detect presence of trojan and presence of spy, respectively
Cone, Czero: Cycles during which a one and zero data bit are sent, respectively
Trojan’s operation: Spy’s operation:

for i = 0 to Detect Probes−1 do
start = rdtscp()
store to load forward loop()
stop = rdtscp()
if latency > Tsp,detect then

break
else

continue
end if

end for
for i = 0 to N−1 do

if Datasend [i] = 1 then
for j = 0 to Cone do

store← addr4k
end for

else
for j = 0 to Czero do

flush store buffer()
end for

end if
end for

for i = 0 to Detect Probes−1 do
start = rdtscp()
trojan probe(load← addr4k)
stop = rdtscp()
if latency > Ttr,detect then

break
else

continue
end if

end for
while Trojan is transmitting do

start = rdtscp()
SFENCE
load← addr4k
stop = rdtscp()
if latency > Tone then

Datarecv[i] = 1
else

Datarecv[i] = 0
end if

end while

Listing 3: Robust protocol for establishing a 4K-aliasing covert communication channel between a trojan and spy process.

by a relatively noisy signal caused by toggling rapidly between
4K-aliasing/no 4K-aliasing measurements. In fact, it appears
as if the cycle latency measurements take time to transition.

Figure 7d records a 4K-aliasing event every sixteenth mea-
surement and exhibits improved stability compared to every
other plotted sample. In general, these results indicate that the
4K-aliasing covert channel can be modulated depending on
the frequency at which a 4 KB aligned store is executed, or
equivalently, when a 4 KB aligned load is executed.

Detection of Cooperating Parties. The prior analysis outlined
the characteristics of the 4K-aliasing covert communication
channel, but detection of cooperating parties remains unde-
cided. In effect, the trojan can detect the presence of the spy
by executing a tight loop of instructions that take advantage
of store-to-load forwarding, see Section III-A. When the spy
is absent, the store-to-load forwarding loop will execute with
a deterministic latency. When the spy is present, however, the
store-to-load forwarding path will be interrupted by the spy
competing for functional unit and MOB resources. We found
that a store-to-load forwarding loop in the trojan process could
detect the spy’s presence within roughly 200 cycles on average.

For the spy to detect the trojan, we incorporate a 1-wire
communication protocol, which wraps a data bit in a 1-bit
header and footer. Each trojan data bit is prepended with 0
and appended with a 1, such that the spy receives either 001
and 011 for each bit transmitted by the trojan. This technique
inherently allows the spy to distinguish the trojan’s absence;
while the trojan is sending a 0 bit, 4K-aliasing will be regularly
observable as a 001 message whereas when the trojan is idle
4K-aliasing will not be observable at all.

Recovery from Failed Transmission. We use initialization
and completion messages to recover from failed transmissions.

The initialization phase is entered upon mutual detection
so that the communication is synchronized from a known
starting point. A successful message is indicated by receipt
of an agreed upon completion message. Otherwise, either the
trojan or spy failed and the message must be resent from
initialization.

E. A Robust 4K-Aliasing Covert Channel

Equipped with methods for detection, synchronization, and
failure recovery, we are now in a position to redefine the
simple covert channel presented in Section V-B with the
protocol defined in Listing 3. We incorporate several features
in an attempt to correct for the noise characteristics shown in
Figures 6 and 7, while at the same trying not to unnecessarily
limit the capacity.

Both the trojan and the spy operate in one of two stages:
detect and transmit. There are four parameters affecting the
practical bitrate given the 4K-aliasing protocol in Listing 3: i)
Ttr,detect , ii) Tsp,detect , iii) Tone, and iv) Detect Probes. The first
is used to trigger transmission once the presence of the spy has
been detected. Effectively, the trojan can detect the presence
of the spy by executing a tight loop of instructions that take
advantage of store-to-load forwarding, see Section III-A. In
our in-house experiments. We found that it took less than
200 cycles on average to detect the spy’s presence after it
is scheduled as a hyperthread with the trojan.

Within the trojan process we iterate over the spy detection
loop for an interval of Detect Probes. This can be any length
with out loss of applicability. The only requirement is that
the trojan and spy can schedule themselves for execution.
Accordingly, we decided to set this to a multiple of the bit
length of an n-bit message. We experimentally determined that
the trojan can transmit 1-bit every 58731 cycles. Hence, we set

0 500 1000 1500 2000 2500
observations

5

10

15

20

25

30

35

cy
cl

e
s

Simple Protocol

1.0 0.5 0.0 0.5 1.0
sample size

5

10

15

20

25

30

35

cy
cl

e
s

Eye Diagram

0 500 1000 1500 2000 2500
observations

5

10

15

20

25

30

35

cy
cl

e
s

Robust Protocol

1.0 0.5 0.0 0.5 1.0
sample size

5

10

15

20

25

30

35

cy
cl

e
s

Eye Diagram

Fig. 8: Intersymbol interference improvement in 4K-aliasing
covert communication channel. The plots on the left illustrate
the signal and eye diagram for simple 4K-aliasing protocol.
The plots on the right illustrate the signal and eye diagram
after incorporating the robust communication channel for the
4K-alias covert channel.

Detect Probes in the trojan to 10× this amount. As a side-
effect of this the trojan’s bandwidth is 57 kbps using a 3.4
GHz clock.

To detect the trojan, we incorporate a 1-wire communi-
cation protocol, which wraps a data bit in a 1-bit header
and footer. The parameters Ttr,detect and Tone are both limited
by the number of bits they can decipher given a single
bit transmission from the Trojan under the 1-wire protocol.
However, we have much more freedom for sampling the trojan
transmission because the best case theoretical 4K-aliasing bit
rate is 19.8 Mbps, see Section V-D. We set the spy to sample
the trojan every 580 cycles. We set Ttr,detect to 100 × this
amount to provide a reasonable amount of time to detect the
trojan’s presence. Tone is also set to 580 cycles resulting in
an effective sampling rate of 5.91 Mbps. Given that for every
trojan data bit sent three total bits need to be received by
the spy to stably recover the transmission, our expected 4K-
aliasing covert channel bit rate is roughly 2 Mbps.

F. In-House Robust 4K-Aliasing Covert Channel Results

We ran an experiment wherein we transmitted a known
message using both the simple and robust protocols to compare
both their resilience to noise and bit rate. The results are
shown in Figure 8 and depict a side-by-side comparison of
the protocols along with the messages intersymbol interference
diagram. Intersymbol interference distorts a digital signal such
that the previous bits in the message warp subsequent signals in
the message [18]. We found through this in-house experiment
that the 1-wire communication protocol eliminated interference
in the trojan bit transmission during transitions from binary 1 to
0 and binary 0 to 1. The eye diagram for the robust protocol has
a clean opening indicating that the sampling rate is adequate.
The eye’s zero crossing meet the Nyquist criterion such that
it allows maximum robustness against sampling phase offsets.

0 500 1000 1500 2000 2500
Data Bit per 4KB Store Address Step (frequency)

0

1

2

3

4

5

6

P
e
rc

e
n
t

E
rr

o
r

(%
)

zero error rate
one error rate

Fig. 9: Percent error rate as a one and zero trojan bit trans-
mission frequency.

The 1-wire communication protocol does not come without
a cost, however, and will decrease our channel capacity. To
find the experimental channel capacity we need to know the
channel’s error rate, which we compute by performing an
experiment wherein we generate 1 million random bits and
transfer them through the 4K-aliasing covert channel. We then
compute the error rate of the received signal for zeros and
ones separately. We perform this measurement over varying
trojan signal pulse widths (e.g. trojan signal frequency). The
pulse widths are determined by the number of 4 KB aligned
stores executed per bit. We send 3 bits every sixteenth, eighth,
fourth, and second time unit. A plot of the frequency versus
error rate is shown in Figure 9.

Interestingly, executing a 4 KB aligned store every six-
teenth time unit (256 B) shows a poor error rate for trans-
mitting a one compared to executing 4 KB aligned stores
every eighth time step (512 B). This contradicts our visual
inspection of frequency distributions shown in Figure 7d versus
Figure 7c. We reason that this is because transmitting a one
bit every sixteenth time unit distorts the 1-wire communication
protocol due to the pulse width of the one signal, making it
more difficult to distinguish transmitting a zero (001) from a
one (011). We conclude from this analysis that the ideal error
rate for sending a one should occur at step sizes of 1024 B,
and step sizes of 2048 B for sending a zero. These form the
parameters Czero and Cone in Listing 3.

These results also show that the covert channel error for
sending zeroes and ones is asymmetric. Hence, the channel
can be characterized as a binary asymmetric channel with
noise. The capacity of this channel is given by the following
equation [29]:

C =
Hb(ε1)ε0

1− ε0− ε1
−

Hb(ε0)
(
1− ε1

)
1− ε0− ε1

+ log2

(
1+2

Hb(ε0)−Hb(ε1)
1−ε0−ε1

)

where ε0 is the probability of the spy receiving a 1 given a 0
was sent, ε1 is the probability of the spy receiving a 0 given

a 1 was sent, and Hb
(

p
)

is the binary entropy function for
probability p defined as:

Hb
(

p
)
=−plog2 p−

(
1− p

)
log2

(
1− p

)
The channel capacity given the experimentally determined

error rates is presented in Table III. While not ideal, the
effective channel capacity given the calculated error rates is
still above 1.6 Mbps.

256 B 512 B 1024 B 2048 B

ε0 0.007539 0.002891 0.009258 0.005664
ε1 0.0502734 0.0158984 0.0133984 0.0267188

Bit per channel 0.824027 0.926979 0.918127 0.886071
Channel capacity (Mbps) 1.62 1.83 1.81 1.75

TABLE III: Channel capacity given a binary asymmetric noisy
channel transmitting at 1.96 Mbps

VI. IAAS PUBLIC CLOUD 4K-ALIASING COVERT
CHANNEL

Given that the robust channel demonstrated in our in-house
experiments showed reasonable results, we then verify its use
on Amazon EC2 and Google Compute Engine (GCE) IaaS
public clouds. The instance configurations we experimented
upon are shown in Table IV. We used the prior research in
instance placement vulnerabilities [36] to successfully colocate
VMs from two different accounts. This required launching 10
VMs from each account and then scaling up a designated
account in step sizes of 5 VMs until they were physically
hosted on the same core.

Cloud Provider Instance Type Processor
EC2 m4.large 2.4 GHz Intel Xeon E5-2676 v3
GCE n1-standard-1 2.3 GHz Intel Xeon E5 v3

TABLE IV: Instance configurations and architecture used for
demonstrating the 4K-aliasing covert channel on the public
cloud. Note, GCE does not reveal the exact microarchitecture
for the instance type.

Similar to our in-house 4K-aliasing experimental setup, we
establish the error rate, bit rate, and channel capacity using
the robust communication channel presented in Listing 3. We
evaluate using 4K-aligned address in step sizes of 1024 B for
transmitting a 1-bit and 2048 B for transmitting a 0-bit per the
error rate analysis shown in Figure 9. The results are given in
Figure 10.

We measured a 1.28 Mbps and 1.49 Mbps channel capacity
while communicating across VM instances from different
accounts on both the Amazon EC2 and GCE clouds. The
channel capacity drops by 30% on the EC2 testbed and by 18%
on the GCE testbed compared to our in-house results. This is
expected as the virtualization layer on a hosted cloud induces
external noise. This is reflected in the increased error rate
recorded. Nevertheless, our results demonstrate the practical
use of the 4K-aliasing covert channel once the trojan and spy
instances are colocated on the same machine.

1.81

1.28

1.49

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

in_house EC2 GCE

Er
ro

r
R

at
e(

%
)

C
h

an
n

el
 C

ap
ac

it
y

(m
b

/s
)

Capacity e1 e2

Fig. 10: Error rate and channel capacity results from in-house,
EC2, and GCE 4K-aliasing covert channel experimentation.

VII. MULTI-TENANCY DETECTION

In our IaaS channel capacity experiment on the EC2 and
GCE public cloud we relied upon prior colocation detection
methods. Now we describe a new method for colocation de-
tection using our 4K-aliasing timing channel. For the purposes
of our analysis, we need to be able to distinguish between
4K-aliasing caused by background noise and induced 4K-
aliasing. We ease the experimentation by assuming cooperative
accounts, which allows us to control the number of VMs
launched and the time between launches. The analysis largely
follows the methodology presented by Varadarajan et al. [36]
and we encountered similar challenges.

Separating 4K-aliasing from Noise. To accurately detect a
cooperative multi-tenant, we must distinguish unintended 4K-
aliasing events from intentional ones. To manage such noise,
we run an experiment that measures 4K-aliasing without a
cooperative VM sending a 4K-aliasing signal and then another
with a 4K-aliasing signal being sent. We scale up the number
of VMs from 1 instance to 20 instance pairs and repeat the
measurement 5 times.

Launch Strategy. We launch pairwise sender and receiver
VMs with the prior colocation placement vulnerabilities in
mind in mind. We first launch a sender VM and then wait
1 hour before launching a receiver VM in the same zone to
ensure a best case colocated launch. In all test cases, we use
us-east-1 for our EC2 testbed and us-central1-c for
our GCE testbed. Each instance is configured as a single vCPU
which is executed as a single hardware hyperthread.

Detection Tests. When the sender VMs launch, they contin-
uously sends an oscillating 1-bit and 0-bit. The receiver polls
the 4K-aliasing event for roughly 10 seconds. To decrease the
testing time, we employ a naive methodology of launching
all sender messages at once and then sequentially launching
receiver VMs. As only one sender and receiver VM will
colocate as a hyperthread, we can accurately detect multi-
tenancy if any of the receiver VMs display the 4K-aliasing
event outside of the noise threshold.

Experimental Results. The results of our multi-tenant de-
tection scheme using 4K-aliasing are shown in Figure 11.
They reveal two features. First, the cycle latency degradation

100

200

300

400

500

9950

10000

8 16

Fr
eq

u
en

cy

Cycles

not colocated

colocated

(a) EC2

100

200

300

400

500

9950

10000

7 14

Fr
eq

u
en

cy

Cycles

not colocated

colocated

(b) GCE

Fig. 11: Frequency distribution of 4K-aliasing event recorded for non-colocated instance pairs (8/7 cycles) and colocated instance
pairs (16/14) cycles. Multi-tenancy was detected after launching 12 (EC2) and 14 (GCE) sender/receiver instance pairs.

due to 4K-aliasing between sender and receiver is clearly
distinguishable compared to background noise. Roughly be-
tween 100 and 150 4K-aliasing events are measured within
a 10 second window while all sender VMs are launched,
but not transmitting a 4K-aliased store. On the other hand,
while the sender VM is transmitting a 4K-aliased store we
record roughly 360 to 480 4K-aliasing events. Second, the
detection threshold was achieved reliably after scaling the
number of sender and receiver VMs to 14 instance pairs.
During experimentation we found that beyond 4 instance pairs
we were able to achieve multi-tenant detection. However,
detection was measureable in only 1 of the 5 test cases so
they were discounted. We considered multi-tenant detection to
be successful upon agreement for the majority of the test cases.

Limitations. Despite the positive results, they rely upon the
fact that our multi-tenant demonstration requires cooperative
account holders. This allows us to utilize prior work on
placement vulnerability strategies to optimize our chances of
launching colocated instances. Further, our results were not
collected under a heavy load and potentially at non-peak
hours. Finally, we largely used free trial accounts, which
could possibly be underutilized and therefore less affected by
disparate workloads.

VIII. MITIGATING THE 4K-ALIASING SIDE CHANNEL

Clearly, disabling hyperthreading is a straightforward
method to mitigate the 4K-aliasing timing channel. However,
this will largely result in increased end-user costs as dedicated
instances result in increased operational expenses for the cloud
provider. For security minded cloud users willing to pay extra
this is a ideal solution. On the other hand, end-users using
IaaS public clouds for general purpose workloads requiring
little uptime will end up overpaying because they underutilize
datacenter resources.

The IaaS market appears to agree with this analysis.
The majority of EC2 and GCE instance types enable hyper-
threading by default. Specialized instances can of course be
purchased, but it is unclear how many users opt for these
options. Further, Microsoft Azure, which previously disabled

hyperthreading in all instance types it offered are now mi-
grating towards SMT enabled instances [22]. In other words,
the IaaS market is likely to keep default instance types SMT
enabled.

In addition, CPU vendors are likely to continue leverag-
ing hyperthreading for its various performance benefits. The
underlying causes of the 4K-aliasing timing channel leverages
an integral component of Intel microarchitecture, which allows
significant speed-up when handling memory operations. Mem-
ory reads and writes must be allowed to issue speculatively
and execute out-of-order lest we revert CPU design to single
cycle pipelines. The memory order buffer saves CPU cycles,
improves instruction throughput, makes better use of memory
traffic bandwidth, and frees resources allowing more compu-
tation to be performed on average. Complete elimination of
the underlying mechanism causing 4K-aliasing is, therefore,
unlikely.

IX. CONCLUSION AND FUTURE WORK

We have demonstrated, for the first time, a novel 4K-
aliasing timing channel. We demonstrate through extensive
analysis a robust covert communication channel deployable
in IaaS clouds capable of transmitting at up to 1.49 Mbps.
We also show the 4K-aliasing timing channel can be used
in multi-tenancy detection while only launching a relatively
small number of cooperating VMs on both Amazon EC2
and GCE. As future work, we aim to evaluate the timing
channel as a practical side-channel and to further investigate
the applicability of same-core shared resources as timing
channels in the public cloud.

ACKNOWLEDGMENT

This work is partially supported by the Department of
Energy through the Early Career Award (DE-SC0016180).
Mr. Orlando Arias is also supported by the National Sci-
ence Foundation Graduate Research Fellowship Program under
Grant No. 1144246. Any opinions, findings, conclusions, and
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the U.S.
Department of Energy or the National Science Foundation.

REFERENCES

[1] O. Aciiçmez, “Yet another microarchitectural attack:: exploiting i-
cache,” in Proceedings of the 2007 ACM workshop on Computer
security architecture. ACM, 2007, pp. 11–18.

[2] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[3] O. Aciiçmez and W. Schindler, “A vulnerability in rsa implementations
due to instruction cache analysis and its demonstration on openssl,” in
CT-RSA, vol. 8. Springer, 2008, pp. 256–273.

[4] O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies
cheap security,” in Fault Diagnosis and Tolerance in Cryptography,
2007. FDTC 2007. Workshop on. IEEE, 2007, pp. 80–91.

[5] Amazon, Inc., “Amazon ec2 dedicated instances,” 2017.
[Online]. Available: https://aws.amazon.com/ec2/purchasing-options/
dedicated-instances/

[6] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015,
pp. 623–639.

[7] M. F. Chowdhury and D. M. Carmean, “Maintaining processor order-
ing by checking load addresses of unretired load instructions against
snooping store addresses,” Feb. 3 2004, uS Patent 6,687,809.

[8] P. Church and A. Goscinski, “Iaas clouds vs. clusters for hpc: A
performance study,” in Cloud Computing 2011: The 2nd International
Conference on Cloud Computing, GRIDS, and Virtualization. [IARIA],
2011, pp. 39–45.

[9] I. Corporation, “Intel® 64 and ia-32 architecture memory ordering white
paper,” 2007.

[10] ——, “Using intel® vtune™ amplifier xe to tune software on the 4th
generation intel® core™ processor family,” 2013.

[11] ——, “Intel® 64 and ia-32 architectures optimization reference man-
ual,” 2017.

[12] ——, “Intel® 64 and ia-32 architectures software developers manual,”
Volume 3A: System programming Guide, Part 1, vol. 3A, 2017.

[13] J. Doweck, “Inside intel® core microarchitecture,” in Hot Chips 18
Symposium (HCS), 2006 IEEE. IEEE, 2006, pp. 1–35.

[14] D. Evtyushkin and D. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 843–857.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–13.

[16] ——, “Understanding and mitigating covert channels through branch
predictors,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 13, no. 1, p. 10, 2016.

[17] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus,” Copen-
hagen University College of Engineering, 2011.

[18] G. Forney, “Maximum-likelihood sequence estimation of digital se-
quences in the presence of intersymbol interference,” IEEE Transactions
on Information theory, vol. 18, no. 3, pp. 363–378, 1972.

[19] G. Galante, L. C. E. De Bona, A. R. Mury, B. Schulze, and
R. da Rosa Righi, “An analysis of public clouds elasticity in the exe-
cution of scientific applications: a survey,” Journal of Grid Computing,
vol. 14, no. 2, pp. 193–216, 2016.

[20] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 368–379.

[21] A. Herzberg, H. Shulman, J. Ullrich, and E. Weippl, “Cloudoscopy:
Services discovery and topology mapping,” in Proceedings of the 2013
ACM workshop on Cloud computing security workshop. ACM, 2013,
pp. 113–122.

[22] Hillger, Brian, “Price reductions on l series and announcing next
generation hyper-threaded virtual machines.” [Online]. Available:
http://bit.ly/2gYVunn

[23] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space aslr,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[24] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and
M. Tiwari, “Understanding contention-based channels and using them
for defense,” in High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on. IEEE, 2015, pp. 639–
650.

[25] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth, and
B. Sunar, “Seriously, get off my cloud! cross-vm rsa key recovery in
a public cloud.” IACR Cryptology ePrint Archive, vol. 2015, p. 898,
2015.

[26] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2014, pp. 299–319.

[27] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 605–622.

[28] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-
cores cache covert channel,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 46–64.

[29] S. M. Moser, “Error probability analysis of binary asymmetric chan-
nels,” Dept. El. & Comp. Eng., Nat. Chiao Tung Univ, 2009.

[30] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers Track at the RSA Conference.
Springer, 2006, pp. 1–20.

[31] G. Paoloni and I. Corporation, “How to benchmark code execution times
on intel® ia-32 and ia-64 instruction set architectures,” 2010.

[32] D. A. Patterson, “The data center is the computer,” Communications of
the ACM, vol. 51, no. 1, pp. 105–105, 2008.

[33] C. Percival, “Cache missing for fun and profit,” 2005.
[34] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get

off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199–212.

[35] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp. 37–71,
2010.

[36] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift, “A placement
vulnerability study in multi-tenant public clouds.” in USENIX Security
Symposium, 2015, pp. 913–928.

[37] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 2006, pp. 473–482.

[38] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-
bandwidth and reliable covert channel attacks inside the cloud,”
IEEE/ACM Transactions on Networking (TON), vol. 23, no. 2, pp. 603–
614, 2015.

[39] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of l2 cache covert channels in virtualized environ-
ments,” in Proceedings of the 3rd ACM workshop on Cloud computing
security workshop. ACM, 2011, pp. 29–40.

[40] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud.” in USENIX Security Symposium, 2015, pp.
929–944.

[41] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack.” in USENIX Security Symposium, 2014,
pp. 719–732.

[42] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing attack
on openssl constant-time rsa,” Journal of Cryptographic Engineering,
vol. 7, no. 2, pp. 99–112, 2017.

[43] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/
http://bit.ly/2gYVunn

	Introduction
	Related Works
	Shared Resources Timing Channels
	Covert Communication Channels
	Multi-Tenancy Detection and Placement
	Comparison of Approaches

	Background
	Memory Order Buffer
	Memory Disambiguation Prediction
	Coherency Snooping
	4K-Aliasing

	4K-Aliasing within a Single Process
	Initial Benchmark and Experimental Setup
	Single Process 4K-Aliasing Results
	Refined Single Process Benchmark and Results
	Analysis of Multithreaded 4K-Aliasing
	Analysis of Cross-core 4K-aliasing

	Multi-Process 4k-Aliasing
	Threat Model and Assumptions
	Simple 4K-Aliasing Covert Communication Channel
	Results of Simple 4K-Aliasing Covert Channel
	Characterizing a Robust 4K-Aliasing Communication Channel
	A Robust 4K-Aliasing Covert Channel
	In-House Robust 4K-Aliasing Covert Channel Results

	IaaS Public Cloud 4K-Aliasing Covert Channel
	Multi-Tenancy Detection
	Mitigating the 4K-aliasing Side Channel
	Conclusion and Future Work
	References

