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Abstract—Attacks which combine software vulnerabilities and
hardware vulnerabilities are emerging security problems. Al-
though the runtime verification or remote attestation can deter-
mine the correctness of a system, existing methods suffer from
inflexible security policy setup and high performance overheads.
Meanwhile, they rarely focus on addressing the threat in the
RISC-V architecture, which provides an open Instruction Set
Architecture (ISA) of the processsor. In this paper, we propose a
comprehensive software and hardware co-verification method to
protect the entire RISC-V system in the runtime. The proposed
method adopts the Dynamic Information Flow Tracking (DIFT)
framework to implement a new Verifier and Prover security
architecture for supporting runtime software and hardware co-
verification. We realize a FPGA prototype on the Rocket-Chip,
an RISC-V open-source processor core. The framework is imple-
mented as a co-processor which do not change the architecture
of main processor core and the new security architecture can be
integrated with other RISC-V processors.

I. INTRODUCTION

Software-only attacks, like return oriented programming
(ROP), jump oriented programming (JOP) and other runtime
attacks are always prevalent. Advanced software based attacks
tend to use computer architecture vulnerabilities rather than
software-only vulnerabilities. In [1], the authors use specula-
tion vulnerabilities in modern processor core to launch a series
of attacks, like branch predictor (BP), branch target buffer
(BTB), and return stack buffer (RSB). Besides, the authors in
[2] exploit the vulnerability in out-of-order (OOO) processor
to leak sensitive information by launching side-channel based
attacks.

In the meantime, as an open-source ISA, RISC-V provides
more powerful support for low-power and high-performance
processor designs. The current RISC-V standard version sup-
ports 16-bit, 32-bit, and 64-bit instructions. RISC-V based
processor core can support many flexible architecture design
and help reduce the hardware overhead. Although many frame-
works are developed to resist the above attacks, there are few
works proposed for addressing those threats in the RISC-V
architecture by now.

Dynamic information flow tracking (DIFT) and remote
attestation (RA) are two techniques utilized for protecting the
hardware in the runtime effectively. Various DIFT designs
are introduced [3]–[7]. Commonly, the software-based DIFT
framework causes high performance overhead because of tag
storage and complex tag computations. In contrast, hardware-
based framework will speed up the process of tag computation.

But it cannot provide flexibility as software-based solutions.
The authors in [3] present a flexible hardware DIFT framework
with programmable interface. Users are able to customize their
own security policies by programming the tag operation rules.
But it needs to modify the main processor and introduces
high hardware overhead. How to make a balance between the
functionality of DIFT and performance overhead becomes a
difficult problem.

Existing RA schemes [8]–[10] provide a trusted execution
environment to ensure the secure execution on the victim
device. It is necessary to collect the device’s information
for detecting the potential vulnerabilities or attacks during
the device’s execution. Therefore, a Verifier-Prover model
is introduced to make a trusted actor (Verifier) measuring
the victim devices’ (Prover) state at runtime. Specifically,
the Verifier requests Prover’s runtime state and the Prover
returns the attestation report. This Verifier-Prover model can
be applied in low-end embedded devices. However, few RAs
are proposed to protect RISC-V architecture.

To overcome the above mentioned challenges, this paper
presents a runtime verification framework which implements
the DIFT in a remote attestation model. In the framework,
a co-processor is added to realize the flexible functionality
of DIFT. Users can customize security policy to enforce
security checking rules on the main RISC-V processor core.
Meanwhile, the whole co-processor is designed as the Verifier
while the main processor core is treated as the Prover. The
Verifier analyzes whether the current state of Prover is legal.
The co-processor can be easily attached to the system bus
without modifying the whole architecture of main processor
core. The main contributions of this paper are as follows:

• We propose a runtime co-verification framework to pro-
tect the entire computing system, which runs an untrusted
software on a vulnerable RISC-V processor.

• As the key part of the framework, a DIFT security mech-
anism is implemented as a co-processor and performs
security checking. The security checking policy can be
customized by users. To the best of our knowledge,
it is the first off-chip DIFT architecture developed for
protecting a RISC-V system.

• We realize the proposed security architecture as a FPGA
prototype. The security policies are validated by defend-
ing a buffer overflow attack on a Rocket-chip.

The rest of the paper is organized as follows: In section



II, we introduce the threat model and mention previous works
on DIFT and runtime verification. In Section III, we provide
design details of the proposed new architecture and the secu-
rity checking rules. Section IV presents demonstrations of the
proposed framework by detecting the buffer overflow attack.
Final conclusions are drawn in Section V.

II. BACKGROUND

In this section, the attack model of this paper will be intro-
duced. We also present the background of the RISC-V standard
and the Rocket-Chip Platform, a popular implementation of
the RISC-V. The existing works of RA and DIFT will also be
discussed.

A. Attack Model

In this paper, we assume that an untrusted application/soft-
ware runs on top of the hardware platform with security vul-
nerabilities, e.g., modern processors. Hardware vulnerabilities
can be utilized by the untrusted application to infer secrets or
perform malicious modifications. For instance, if hardware-
based protection mechanisms are not implemented to prevent
insecure information flows, untrusted software programs may
perform any action including reading from all possible sources
of labelled or sensitive data, propagating labelled data to all
parts of the processor, as well as writing sensitive data through
all insensitive inputs/outputs.

B. RISC-V Instruction Set Architecture and Rocket-Chip

RISC-V is an open-source instruction set architecture pro-
posed by the UC Berkeley [11]. The design of the RISC-
V instruction set takes the small, fast, low-power reality
into consideration. Meanwhile, it does not aim at specific
micro-architectures. The RISC-V basic instruction set contains
only more than 40 with dozens of other modular extension
instructions. The RISC-V ISA provides a flexible modular
design, allowing users to flexibly select different modules to
combine to satisfy the requirements of their own customized
devices.

Rocket-Chip [12] is an open-source System-on-Chip (SoC)
generator. It includes a paramaterizable scalar processor with a
5-stage pipeline using the RISC-V instruction set. It leverages
the Chisel hardware construction language to support the
paramaterizable design. Therefore, the whole SoC can be
customized and parameterized easily.

C. Dynamic Information Flow Tracking

DIFT is a technique to detect vulnerabilities or attacks in the
computer system by propagating and tracking the tag. A RISC-
V based DIFT framework is proposed in [14] which supports
the tagged memory and enforces the efficient isolation between
data and code. This framework can be deployed on low-end
embedded devices. In [15], Raksha et.al. support more flexible
operation, by providing different configuration registers to cus-
tomize the tag propagation rules and checking rules. The whole
design is implemented in a processor core. [16] designs a DIFT
architecture based on a RISC-V open-source core, PULPino
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Figure 1: The three types of DIFT structures [5], [13]

[17]. The architecture supports software-programmable policy
preventing a series of memory corruption attacks. Authors in
[18] present a flexible metadata processing unit which can
be used as a DIFT framework to enforce information flow
tracking.

In [13], three types of DIFT architectures are investigated
– in-core design, offloading design as well as off-chip design,
as shown in Figure 1. Although the above DIFT approaches
protect the system, they all belong to the in-core design which
needs the modification of the whole processor architecture.
For in-core design (Figure 1(a)), the whole design of DIFT
framework is integrated with the structure of main processor
core. The corresponding ISA will also be modified to support
special operations, e.g., tag propagation rule configuration.
They all bring in the high cost of the deployment.

An alternative approach is to use another core to track the
information flow in a multi-core chip [19], which is a kind
of a offloading design. However, this method introduces extra
inter-communication overhead between cores. For offloading
design (Figure 1(b)), the workload of tracking data flow will be
transported to another processor core. Therefore, this scheme
can only be implemented in a Multi-Processor or Multi-Core
system. Moreover, it causes high performance overhead in
communication between different processor cores. As a result,
the offloading scheme cannot be directly applied in resource
restricted devices, e.g., low-end embedded devices.

In addition, [5] proposes a co-processor design to imple-



ment DIFT framework. All information flow tracking logic
is implemented as an extension of the main processor core,
which is a kind of off-chip design. The off-chip design (Figure
1(c)) realizes the whole DIFT framework as a hardware
module or hardware IP. Meanwhile, this hardware module can
be attached to system bus or specified interface to receive
essential information from main processor core. The off-chip
design is easy to be implemented and deployed.

D. Runtime Protection

Formal methods have shown their importance in exhaustive
hardware security verification [20]–[23], but few of them
were designed for securing post-fabrication designs. Remote
attestation (RA) model provides a method for a remote host,
defined as a Verifier, to authenticate the configurations and
states of software and hardware on the local host, defined as
Prover. Specifically, the RA provides a runtime detection and
protection. A method is proposed in [24] to detect the violation
of control flow integrity on local host. Software attacks leading
to the deviation of the control-flow, such as code injection
and reuse, will be disclosed by the Verifier. [8] protects the
execution of program at runtime by checking whether the
output is the same to the expected values.

On the hardware side, verifiable ASICs is proposed to
verify the correctness of hardware system functionality [25].
In the work, a runtime verification is performed by realizing
an interactive encryption protocol between untrusted ICs, the
Prover, and a second trusted ICs, the Verifier. It was the first
attempt to compute proofs of correct execution through uti-
lizing verifiable computations. However, for security purpose,
their correctness checking method would result in high com-
putational cost and overhead. Furthermore, their method was
designed for checking specific property rather than the entire
set of functional properties. Another solution for hardware
runtime formal verification of security properties is presented
in [26]. The proposed runtime PCH framework integrates the
symbolic execution and the SAT solving. An FPGA based
SAT solver is developed to verify the security properties for
providing a high-level protection of the hardware system.

Meanwhile, many runtime hardware approaches were devel-
oped for information flow security, which could guarantee that
all information flows satisfy the given security policies. For
instance, GLIFT was proposed in [27] and could dynamically
detect malicious logic through tracking the information flow
in the hardware at runtime. The security hardware description
languages such as Caisson [28], Sapper [29] and SecVerilog
[30] enforce security policies by adding logic of information
flow control in the hardware. However, these information flow
control based techniques can only provide protections against
information leakage. In this paper, we apply the DIFT in
the RA model to protect both software and hardware from
a variety of attacks.

III. RUNTIME HARDWARE AND SOFTWARE
CO-VERIFICATION

In this section, we present the architecture of the proposed
runtime solution and then describe the security check rule of
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Figure 2: The co-verification framework

the DIFT implemented in the architecture. The proposed solu-
tion follows the “Verifier-Prover” architecture. Specifically, an
off-chip DIFT co-processor is inserted as the Verifier while the
main RISC-V processor is the Prover delivering instructions
to the Verifier via a dedicated interface.

A. Off-Chip DIFT Co-Processor

We adopt an off-chip design to provide the runtime ver-
ification for the computer system. The entire framework is
demonstrated in Figure 2. In the Prover’s side, the main
processor core executes the instructions from the software
level. Meanwhile, it provides all executed runtime instructions’
information to the Verifier for analyzing whether the current
instruction violates the security checking rule. The communi-
cation channel between Prover and Verifier can be a system
bus or a specified interface, e.g., debug port. Via the channel,
the related information, like instructions or processor states, is
sent to Verifier.

On the other hand, the Verifier analyzes the information,
such as the instruction fetched from the main processor core,
and then extracts the essential information. Taking RISC-
V ISA as an example, the essential information includes
register, opcode and instruction function code. According to
these essential information, the register index, memory address
can be easily acquired. In addition to instructions, there are
other information obtained through the channel, such as the
program counter. Based on all the above information from the
Prover, the DIFT mechanism in the Verifier propagates the
tag and computes it according the specified tag propagation
rule. Finally, the tag is checked according to the checking rule
and the exception is raised once the checking fails. Although
there is latency during the verification, the performance is
good enough for the runtime defense of the attack. We will
demonstrate it in the experiment part.

B. Tag Propagation and Checks

Based on the above architecture, we implement the DIFT
to detect the software-based attack. The DIFT framework
includes three parts: i) tag source; ii) tag propagation; and
iii) tag checking. The tag is used to store the related attributes
of instructions, e.g., the privilege level of instruction and the



source location of data (either on-chip or off-chip). The oper-
ation of tag system includes tag analysis, tag propagation and
tag checking. Along with the execution of instructions in the
main processor, the tags’ states are updated in the co-processor.
As shown in Figure 2, the tag system is implemented in the
Verifier. Compared with the in-core design which involves the
tag system in the Prover, the proposed off-core DIFT structure
does not cause the performance degradation and hardware
overhead of the main processor.

Tag Source. In the Verifier side, two Look-Up Tables (LUTs)
are maintained to record the register and memory information
of the main processor. One is mapped from the registers, and
the other is mapped from the memory. An item in the LUT
stands for a piece of unique register or memory. For each
item in the LUT, there are several bits used as the types of
tag. Every type of tag includes two states: tagged or untagged.
Each individual bit in the item is utilized to record the state of
the specific tag type. Both LUTs are stored in the Tag Storage
module. Along with the input of the instruction, the tag states
are initialized. Then the tag is read by instruction analyze
module and sent to tag propagation module. After each one-
step tag propagation, the destination’s tag state is determined
and then stored in the LUTs. All these operations are finished
by hardware, thus no instruction can directly access the storage
area.

Tag Propagation. Although the tag is propagated among
items in the LUTs, the computation for getting destination’s
tags is performed according to the propagation rule in the
tag propagation module. There are four basic propagation
rules shown in Table I. Tags involved in the propagation are
performed bit operation depending on the right column of the
table. To reduce the cost and overhead, only a specific set of
rules, selected by the user, can be applied to compute the tag
propagation in the proposed framework. Different propagation
rule influences the detection accuracy of the DIFT framework.
For instance, the tag propagation using AND-Rule is more
convergent than using OR-Rule. The tag propagation module
firstly receives the analyzed instruction with the corresponding
tags from instruction analyzed module. Then, according to
the specified propagation rule, the destination tags’ states are
inferred based on the source tags’ states.

Tag Checking. The security rule checking is performed in
the tag check module. The checking rules are a series of user
defined rules to check whether the tags’ states changes are
valid. An interrupt is raised once the violation is detected. For
instance, in the return oriented programming (ROP), the return
address is modified by attackers. The security policy is that the
return address of function cannot be replaced with a malicious
one. The check rule is to check whether the tag standing for
the program counter is tainted by the tag state value standing
for the malicious address. We show the detailed demonstration
in the case study section.

User Customization. User can specify different security
policies by combining different check rules and propagation
rules. This user operation can be completed by configuring the

Propagation Rule Operation
OR-Rule Des.tag=Op1.tag

∨
Op2.tag

AND-Rule Des.tag=Op1.tag
∧

Op2.tag
XOR-Rule Des.tag=Op1.tag

⊕
Op2.tag

COPY-Rule Des.tag=Op.tag

Table I: Common propagation rules in DIFT
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Control Status Register (CSR). The configuration is enforced
at boot time and maintained in company with the lifetime of
the system. The user customization function can only be used
to configure rules rather than the property of tags, e.g., width.

IV. CASE STUDY

In this section, we validate the effectiveness of the proposed
DIFT architecture by detecting a buffer overflow attack.

A. Experimental Setup and Buffer Overflow Attacks

In the proposed DIFT RA architecture, the Verifier is
implemented as an extended co-processor of Rocket-Chip [12]
processor core. We synthesized the Rocket-Chip with the
extension on a Xilinx Artix-7 35T FPGA board.

Listing 1 Buffer Overflow Attacks Example
void valueCopy(unsigned long *dst,

unsigned long *src, int length){
int i;
for(i = 0; i < length; i++)
dst[i] = src[i];

}
void vulnerableFunction(unsigned long *src, int length) {

unsigned long buf[20];
valueCopy(buf, src, length);

}
void main() {
unsigned long src[60];
for(int i = 0; i < 60; i++)
src[i] = i;

vulnerableFunction(src, 60);}

The basic structure of software attacks is shown in Figure
3. The stack buffer is an area for temporary data storage. The
attackers can use the data in buffer to overwrite the return
address. Then, the control flow of program will be redirected
to malicious programs. We take the following code as an
example in List 1 to show the steps of buffer overflow attacks.
The function valueCopy will modify the return address of
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function vulnerableFunction by overwriting the buffer in it.
As a result, the function vulnerableFunction will return to an
attacker-controlled program.

B. FPGA Prototype

We implement the Verifier as a co-processor in the Rocket-
Chip to verify the instruction executing in the main processor
core at runtime. The overview of the prototype is shown in
Figure 4. The Rocket-Chip processor core passes the com-
mitted instruction and related information to the co-processor.
The co-processor uses 1 bit tag to track instruction and verify
whether the return address is overwritten by the malicious data.
The tags are stored in the TagLUT module and all the LUTs
are one-to-one mapped from the registers and memories in the
Rocket-Chip core.

From the Rocket-Chip core to the co-processor, the in-
struction information tuple includes the RISC-V instruction
information i.e., function code, register, instruction type, pro-
gram counter, and memory address. A four-stage pipeline is
deployed in the co-processor. The instruction information tuple
is delivered and stored into the instruction queue, which is
InstQueue module in Figure 4. Then the tuple and the LUTs
with the tags, from the TagLUT module, are analyzed in
InstAnalyzedMod.

After that, the analyzed outputs from the InstanalyzedMod
are utilized to compute the tags’ states in the destinations and
update the entire tag system in the TagLUT. In this experiment,
the propagation rule is set as the OR-Rule enforcing a strict
protection on the return address. Data from the outside of
the legal address interval is tagged as “1”. Once the return
address is overwritten by the illegal data, the tag state of the
program counter will be updated to “1” accordingly. Therefore,
the program counter’s tag is monitored during the execution.
The exception will be raised if the program counter’s tag state
is updated as “1”.

addi sp,sp,-112
sw ra,108(sp)
sw s0,104(sp)
addi s0,sp,112

…

…
lw ra,108(sp)
lw s0,104(sp)
addi sp,sp,112
ret

vulnerableFunction

①Push Stack

④Pop Stack

loop_start:
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…
loop_end
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② Call
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Figure 5: The process of buffer-overflow detection

C. Results and Analysis

From the viewpoint of the tag system, the detailed process of
the above buffer-overflow demonstration is illustrated in Figure
5. First, the return address of the vulnerableFunction is stored
into the software stack. Then, the function valueCopy is called
and the return address is overwritten, accordingly. The function
valueCopy then returns to vulnerableFunction. In the fourth
step, the return address in software stack is popped and the
return address is sent to the program counter. After the return
instruction is executed, the related information is sent to the
co-processor for further processing. The corresponding tags in
the co-processor are tainted by the tag state “1” following the
above procedure. Finally, the program counter’s tag state is
also updated and checked. As a result, the exception notifies
the whole processor core to halt the whole system.



Component BRAM LUT
Base Rocket-Chip System 35 14843

Co-processor Design 4 290
Co-processor Overhead 11.4% 1.9%

Table II: Complexity of the prototype FGPA implementation
of the co-processor design

As the the pipeline in the Rocket-Chip processor core is
not modified, there is no latency on instruction execution. The
hardware overhead of the prototype FPGA implementation is
shown in Table II. The hardware overhead introduced by our
framework is the LUT logic and the block RAMs (BRAMs).
The hardware overhead of the BRAM and LUTs are 11.4%
and 1.9% , respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a hardware and software runtime
co-verification to protect the threats of software-based attacks
from the RISC-V architecture. The DIFT security mechanism
is implemented in a RA structure and integrated as a co-
processor. Our proposed framework does not modify the
architecture of the main processor and address the attack
by few hardware overhead. In future, the protection will be
extended from the processor to the entire SoC system. The
secure communication between peripheral device and third-
party IP will be considered. More sophisticated DIFT security
policies will be delivered.
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