Hierarchy-Preserving Formal Verification Methods
for Pre-Silicon Security Assurance

Xiaolong Guo, Raj Gautam Dutta, and Yier Jin
Department of Electrical and Computer Engineering, University of Central Florida
guoxiaolong @knights.ucf.edu, rajgautamdutta@knights.ucf.edu, yier.jin@eecs.ucf.edu

Abstract—The wide usage of hardware intellectual property
(IP) cores from untrusted vendors has raised security concerns in
the integrated circuit (IC) industry. Existing testing methods are
designed to validate the functionality of the hardware IP cores.
These methods often fall short in detecting unspecified (often
malicious) logic. Formal methods, on the other hand, can help
eliminate hardware Trojans and/or design backdoors by formally
proving security properties on soft IP cores despite the high
proof development cost. To alleviate the computation burden, we
propose a new hierarchy-preserving formal verification (HiFV)
framework for circuit trust evaluation at the pre-silicon stage.
This framework is derived from the Proof-Carrying Hardware
(PCH) and is dedicated for security property verification of
System-on-Chip (SoC) platforms, where third-party soft IPs
are integrated as sub-modules. The key novelty lies in the
improvement of the proof construction process of the previously
developed security property verification framework, so that the
framework can support building theorem proofs in a hierarchical
way. We assume a trusted third-party verification house exists,
which can use the proposed framework for security theorem
construction and proof writing. The applicability of the proposed
framework is demonstrated by formally verifying the memory
integrity property on an 8051 microprocessor whose sub-modules
were treated as untrusted third-party IPs.

I. INTRODUCTION

The improvement of manufacturing technology makes it
possible to integrate billions of transistors in one chip, but it
increases the difficulty of designing such large-scale circuits.
To alleviate the workload of the circuit designers and to
shorten the time-to-market (TTM), the hierarchical design
methodology has been widely used in the IC industry with
the leading example being system-on-chip (SoC) platforms.
System integrators use IP cores from trusted and untrusted
third-party vendors to build SoCs in a hierarchical structure.

The prevailing usage of third-party soft IP cores in SoC
designs raises security concerns as current IP core verification
methods focus on IP functionality rather than IP trustworthi-
ness. Moreover, lack of regulation in the IP transaction market
adds to the predicament of the SoC designers and forces them
to perform verification and validation of IPs themselves. To
help SoC designers in IP verification, various methods have
been developed, which leverage enhanced functional testing
and/or perform probability analysis of internal nodes for IP
core trust evaluation and malicious logic detection [1], [2].
However, these methods were easily bypassed by sophisti-
cated hardware Trojans [3]-[5]. Formal methods were also
introduced for IP core trust evaluation [1], [6]-[10]. Among all
the proposed formal methods, proof-carrying hardware (PCH),
which originated from proof-carrying code (PCC), emerged as
one of the most prevalent methods for certifying the absence
of malicious logic in soft IP cores and reconfigurable logic

[6]-[10]. In the PCH approach, synthesizable register-transfer
level (RTL) code of IP core and informal security properties
were first represented in Gallina - the internal functional
programming language of the Coq proof assistant [11]. Then,
Hoare-logic style reasoning was used to prove the correctness
of the RTL code in the Coq platform.

However, previous PCH-based formal verification is mostly
effective in evaluating trustworthiness of individual IP cores
[8]-[10]. These methods cannot be directly applied for ver-
ifying security properties on hierarchical designs such as
SoCs. It can only be used by flattening the SoC design and
treating the design as one IP core. This approach will incur
high computational effort and reduce the flexibility of proof
construction in PCH based methods. To solve this problem, we
developed a hierarchy-preserving formal verification (HiFV)
framework for ensuring trust in SoCs designed using third-
party IPs. Compared to the previous PCH frameworks [8]—
[10], the proposed scheme can be used to prove security
properties on hierarchical designs, thereby eliminating the
effort required to verify a flattened design. Also, the pro-
cess for proving security properties is improved to make
the proposed framework scalable to large designs. The proof
construction process of this paper requires dividing the security
properties into sub-properties in such a way that each sub-
property corresponds to an IP module of the SoC. The main
contributions of this paper are:

« A hierarchy-preserving formal verification (HiFV) frame-
work is developed, which is scalable to large-scale de-
signs and helps to reduce the effort required for proving
security properties;

e Our method enables proof reuse, which can significantly
reduce the workload for SoC security property verifi-
cation. Proofs for individual IP cores can be stored in
a library and accessed during the security verification
process;

o A distributed proof construction approach is developed,
which reduces the effort required for modifying the proof
when certain IP modules are added, deleted, or modified
in a SoC platform.

The rest of the paper is organized as follows: In section
II, we provide the background on proof-carrying code and its
hardware variant, proof-carrying hardware. In section III, we
introduce the threat model, explain our hierarchy-preserving
formal verification framework, and elaborate the proof con-
struction procedure. Section IV presents demonstrations of the
proposed framework in proving a sample memory integrity
property on an 8051 microprocessor. Final conclusions are
drawn in Section V.

II. PROOF-CARRYING HARDWARE

Various methods have been proposed in the software domain
to validate the trustworthiness and genuineness of software
programs. These methods protect computer systems from
untrusted software programs. Most of these methods place the
burden on software consumers to verify the code. However,
Proof-Carrying Code (PCC) switches the verification burden
to software providers (software vendors/developers) [12].

A similar mechanism, called Proof-Carrying Hardware
(PCH), was used in the hardware domain to protect third-
party soft IPs [8]-[10]. The PCH framework certifies that soft
IPs are trusted if certain carefully specified security properties
hold. In this approach, the IP consumer provides functional
specifications and security constraints to the IP vendor. Upon
receiving the request, the IP vendor develops the RTL code
using hardware description languages (HDLs). Before proving
the trustworthiness of the RTL code with respect to the
formally specified security properties in Coq, the IP vendor
needs to perform semantic translation of the HDL code and
informal security properties into Gallina. After the proof has
been constructed, the IP vendor provides the IP consumer
with the RTL code, formalized security theorems of security
properties, and proofs of security theorems. The IP consumers
also translate the design and security properties to Gallina.
Then, the proof checker in Coq is used to automatically
validate the proof of security theorems on the translated code.
Correspondingly, the PCH and its applications were introduced
in detail in [13], where the use of theorem proving methods
for providing high level protection of IP cores is demonstrated.

III. SOC VERIFICATION PROCEDURE

In this section, we outline the threat model and the assump-
tions used in designing our framework. We also introduce our
HiFV framework and explain its working procedure.

A. Threat Model and Trusted Verification House

The HiFV framework is developed to prove the presence/ab-
sence of malicious logic inserted by an adversary at the
design stage of the supply chain. We assume that there is
a rogue agent in the third-party IP design house who has
access to the HDL code and can insert a hardware Trojan or
backdoor in the design. Such a Trojan can be triggered either
by a counter at a predetermined time, by an input vector, or
under certain physical conditions. Upon activation it can leak
sensitive information from the chip, modify functionality, or
cause a denial-of-service to the hardware.

We also assume that our framework can be used by a trusted
third-party verification house to guarantee the security of soft
IPs for the set of informal security properties, obtained from
the SoC integrator. We also assume that the SoC integrator
and the trusted third-party verification house use the same
platform (such as Coq) to prove and validate the SoC design.
Using our scheme, proofs can be constructed for formal
security theorems derived from informal security properties.
The existence of proofs for the security theorems indicates
the absence of Trojans in the design whereas non-existence of
a proof indicates the presence of malicious logic. Note that the
framework may not provide protection to an IP from Trojans
that do not violate the defined security properties.

B. Hierarchy-preserving Formal Verification (HiFV)

Previously proposed PCH frameworks treat the whole cir-
cuit design as one module and prove security properties
on them [8]-[10], [14]. In PCH, the entire design is first
flattened before translating the HDL code of the design into
the formal language and proving it with respect to formal
security theorems. Design flattening increases the complexity
of translating HDL code into Gallina. It also adds to the risk
of introducing errors during the code conversion process. Due
to flattening, a verification expert has to go through the entire
design in order to construct proofs of security theorems, which
significantly increases the workload for design verification.
Also, any updates to the HDL code will significantly change
the proof for the same security property. Moreover, the PCH
framework prevents proof reuse, i.e., proofs constructed for
one design cannot be used in another design even though the
same IP modules are used. All of these limitations prohibit a
wide usage of the PCH framework in modern SoC designs.

To overcome these limitations, we developed the Hierarchy-
preserving Formal Verification (HiFV) framework for veri-
fying security properties on SoC designs. The HiFV frame-
work is an extension of the PCH framework. In the HiFV
framework, the design hierarchy of the SoC is preserved and
a distributed approach is developed for constructing proofs
of security properties. In the distributed approach, security
properties are divided into sub-properties in such a way that
each sub-property corresponds to an IP module of the SoC.
Proofs are then constructed for these sub-properties and the
security property for the SoC design is proven through the
integration of all proofs from sub-properties. Similar to PCH,
the HiFV framework requires semantic translation of the HDL
code and informal security properties to Gallina. For proving
the trustworthiness of the HDL code of the SoC, Hoare-logic
style reasoning is used. The whole HiFV framework is carried
out in Coq. The advantage of this method is four-fold:

o The HiFV framework is scalable to large-scale and com-

plex designs such as SoCs;

o The distributed approach of proof construction reduces
the effort required to modify the proof when the HDL
code of the IP cores in the SoC changes;

o The distributed approach allows the collaboration of
multiple verification experts to prove security properties
on SoCs;

e The HiFV framework allows for proof reuse, thereby
enabling verification experts to use existing proofs of IP
modules to prove security properties on different SoCs
where the same IPs are used.

C. Working Procedure of the HiFV Framework

SoCs are made of several IP cores, which are provided
by either trusted or untrusted third-party vendors. However,
integration of IP cores from different vendors makes the SoC
vulnerable to malicious attacks. The HiFV framework of this
paper can be used by a trusted third-party verification house
to determine the trustworthiness of SoCs.

Three entities are involved in the SoC verification process.

o IP Vendors (IPV): IP vendors design and sell soft, firm,

or hard IP cores. Such a vendor specializes in designing

IP cores for specific device families. In our framework,
we consider untrusted IPVs who provide soft IP cores to
IP consumers.

e IP Consumer (IPC): IP consumers in this framework
are SoC integrators. To design the SoC, they integrate IPs
from multiple IP vendors. In our framework, we assume
that SoC integrators develop the set of informal security
properties and validate the proofs of these properties
(given by the trusted third-party verification house) using
an automated proof checker (such as Coq).

o Trusted Third Party (TTP): The TTP in our framework
is the verification house [15]. Upon receiving the HDL
code of the design and the set of informal security
properties from the SoC designer, the TTP uses the HiFV
framework to prove the security properties (in Coq) on
the design. Subsequently, they provide the SoC integrator
with the translated code of the HDL, the formal security
theorems, and their proofs.

The working procedure of the proposed framework is shown

in Figure 1 which can be divided into five phases.

Phase I: Functional Specifications. In the first phase, the
IPC (SoC designer) provides functional specifications to the
IPVs. Based on the request, vendors provide HDL codes of
the IPs to the SoC integrator.

Phase II: Security Properties and SoC Design. In the
second phase, the IPC provides the informal set of security
properties and the HDL code of the SoC to the TTP (verifi-
cation house).

Phase III: Translation of HDL Code and Security Prop-
erties to Gallina. In this phase, the TTP translates the syntax
and semantics of the HDL code of the SoC into Gallina. This
is referred to as Coq equivalent code in Figure 1. Translating
the security properties, expressed in natural languages, to
Gallina give the desired formal security theorems. These
translations make the security verification of SoCs possible
on the Coq proof assistant.

Phased IV: Proof Generation. In this phase, the TTP
use the distributed proof construction approach to prove the
formal security theorems, which are defined at the top module
of the SoC design hierarchy. Before proving this theorem,
the TTP divide the theorem into lemmas. This division is
made by analyzing how the behaviors of sub-modules would
be restricted by the security theorems. We assume that the
verification expert has a complete understanding of the SoC
design hierarchy as well as all sub-modules. For each of these
sub-modules, lemmas are developed. A verification expert first
constructs proofs for these lemmas and then integrates these
proofs to obtain the proof of the security theorem on the
entire SoC design. In each of these proof construction stages,
Hoare-logic is used to prove the trustworthiness of the HDL
code. This approach to proof generation enables proof reuse,
quick correction and modification, and the scalability of the
framework when applied to complex designs.

Phase V: Proof Validation. After proving the security
theorems, the verification house provides the SoC integrator
with the translated HDL code, formal security theorems, and
proofs of these theorems. The SoC designer then validates
the proofs using the proof checker. The presence of malicious

SoC Designer Side | Security Properties [Fail
(Natural language)
Functional Pas
— - SoC
Specifications
IP Core Vendors
Side Security
HDL Codes | | Theorems
from vendor 1 (Coq Logic) Proofs & Theorem
. & Coq Equivalent
- Coq Code
HDL Codes | | Ls| Equivalent .
from vendor k Code Verification House
Side

Figure 1: Working Procedure of the HiFV Framework.

logic in the design is revealed if the proof fails. Otherwise,
SoC integrators are assured that the SoC with untrusted IP
cores is trustworthy.

In our framework, proof construction is the most time con-
suming step. Thus, the task of proving security theorems on the
design is delegated by the IP consumer to the TTP verification
house. This reduces the workload of IP consumers who are
only responsible for informal security property development
and proof checking.

D. Semantic Translation

The semantic translation method of this paper is based
on the formal HDL developed in [10]. In this method, we
convert the HDL code of the SoC to Gallina, the underlying
formal language of the Coq proof assistant. Gallina is based
on dependently typed lambda calculus and it defines both
types and terms in the same syntactical structure. During
the translation process, syntax and semantics of the HDL
are translated to Gallina using the formal HDL. In addition,
interface and module are incorporated in the formal HDL
to preserve the design hierarchy of the SoC. The procedure
of semantic translation including code translation, interface
development and module representation are briefly introduced
below.

Translation of Syntax and Semantics of HDL. Before
building the formal model for the SoC system, the syntax and
semantics should be defined and then shared by any parties
who need to design or check the proof. The formal HDL is
used which can represent basic circuit units, combinational
logic and sequential logic.

Interface. To make distributed proof construction applicable
on hierarchical designs, an inferface is developed in the
HiFV framework. It makes the verification process flexible
and efficient for the TTP (verification house). To define the
interface, information about each IP and its corresponding
I/O are needed, such as the name, number, data type, etc. By
using the interface, the management of the plenty of formal
modules would be much easier in the verification house side.
The structure of the interface is shown in Figure 2 which helps
one IP module access other modules.

Module. The functionality of Coq enables representation of
IP modules of SoC in a hierarchical form.

SoC Formal
Module

ip_interface

ip_ipv_one ip_ipv_two

IP #1 Formal IP #2 Formal
Module Module

Figure 2: Structure of the SoC with Interface

E. Distributed Proof Construction

The distributed proof construction process follows Hoare-
logic style reasoning, where the trustworthiness of the SoC
formal HDL code is determined by ensuring that the code
operates within the constraints of the pre-condition and the
post-condition. The pre-condition of the formal HDL code is
the initial configuration of the design and the post-condition
is the security theorem. Although the PCH framework of [8],
[14] provides a high-level of security assurance to soft IP
cores, it suffers from the problem of scalability. The key issue
limiting scalability of the framework to SoCs lies in proof
construction. In PCH, proof construction is carried out on a
flattened design, which increases the effort required for proof
generation and modification. To overcome this limitation, we
develop a distributed proof construction approach, which is
dedicated for SoC designs with hierarchical structures. This
approach makes the HiFV framework scalable by reducing
the time required for proof construction, proof correction, and
proof modification.

In the HiFV framework, the translated HDL code of the
SoC, formal security theorems, and the initial configuration
of the design is represented as a Hoare Triple (Eq.1).

(¢)CoqEquivalentCode_SoC (1)) (1)

In this equation, ¢ is the pre-condition corresponding to
the initial configuration of the design. The translated HDL
code of the SoC design hierarchy in Gallina is given by
CoqEquivalentCode_SoC. In the process of translation,
modules in the SoC HDL code, which correspond to IPs from
different vendors, are also translated. The post-condition is
given by 1 which represents the formal security theorem.

The security theorem is divided into lemmas (Eq. 2), which
are post-conditions for individual IP modules. In Eq. 2, post-
condition for IPs (lemmas) are represented as ¢; (1 <i < n),
n = maximum number of IP modules required to prove the
security theorem and 1 is the security theorem. These lemmas
correspond to those IP modules that are required to satisfy the
security theorem.

V=11 ANpg - Ny 2)
Similarly, the pre-condition of the SoC design
() and the translated HDL code of the SoC
design (CoqEquivalentCode_SoC) are divided

according to Eq.3 and Eq4. Here, (¢;) and
(CogEquivalentCode_I Pmodule_i) (1 < i < n) represent
the pre-conditions and translated HDL code of each IP
module of the SoC respectively.

Q=1 NP2 NPy 3)

CogEquivalentCode_SoC' :=
CoqFEquivalentCode_I Pmodule_1

A CoqEquivalentCode_I Pmodule_2 . ..
A CogqEquivalentCode_I Pmodule_n

“4)

For proving the trustworthiness of IP modules and
the SoC, Hoare-logic style reasoning is used. In this
approach, the translated HDL code of individual IPs
(CoqEquivalentCode_I Pmodule_i), the pre-conditions
(¢;) of each module, and the post-conditions (1);) are
represented as a Hoare Triple (Eq.5). The HDL code of the
IP core is certified to be trustworthy only if it satisfies the
pre-condition and the post-condition. When all the modules
of IP cores satisfy the post-conditions (lemmas), we can state
that the security theorem is proven for the SoC design.

(¢;)CoqEquivalentCode_I Pmodule_i(1);) 3)

The distributed approach of proof construction also enables
proof reuse. After certifying the trustworthiness of each IP core
of the SoC, the proofs can be stored in a library and accessed
by the TTP verification house for verification of other SoC
designs in which the same IP modules are used and similar
security properties are applied. In this way our framework
further reduces the time for verifying complex designs.

IV. DEMONSTRATION

In this section, we demonstrate the working procedure of
the proposed HiFV framework where the 8051 microprocessor
serves as the SoC platform under verification since the design
is constructed on top of various IP modules. The block
diagram of the microprocessor is shown in Figure 3 and
the source VHDL code is available at [16]. We treat all
sub-modules of the microprocessor as untrusted third-party
IPs. In our demonstration, security properties for memory
integrity are also developed to verify the trustworthiness of
the target design. Compared to PCH, the overall workload for
proof writing has been significantly reduced through the HiFV
framework!.

In our framework, no modifications are required on the
original code throughout the verification procedure. As a
result, there is no performance overhead on the computer
system under security verification.

A. Security Property Construction

In this demonstration, we consider attacks which can ma-
nipulate the memory unit (special function registers) of the

"While it is difficult to quantify the time used for proof writing since this
procedure is still performed manually, the elimination of HDL code flattening
and the reuse of proofs for submodules clearly show the workload reduction
in the new HiFV framework.

/8051 Core module_core \
(" (Siu) L (Siu)
ALU

_ (Trmrctr) eos (Tmrctr)

(t i
lul trol_f:) 7
(module_control_fsm Control Unit

module_control_mem
(i_mem)

module_mc8051
_control

k | II‘ s reg wr en (i_control) /

N ! ;

v i v
RAM ROM RAMX
(128 Bytes) (64K Bytes) (64K Bytes)

Figure 3: Hierarchical Structure of the 8051 Microprocessor

8051. Therefore, the security property is developed to detect
these type of attacks. The informal security property, given by
the SoC designer to the TTP can be described as, Contents
of the special function registers (SFR) of the 8051 core will
not be changed if the executing instructions are not allowed
to modify the register’s contents. Since there are a large set of
instructions which are not allowed to change the contents of
the SFR, the developed security property should apply to all
of them.

B. Semantic Translation of HDL Code

To make the demonstration process easy to follow, we only
present the operation details of the control unit (the corre-
sponding formal module is named module_mc8051_control)
in the 8051 microprocessor. According to the hierarchical
structure of the 8051 microprocessor, given in Figure 3,
there are two sub-modules, module_control_mem and mod-
ule_control_fsm, of the module module_mc8051_control. We
consider the scenario where the module module_mc8051 _core
loads the sub-module, module_mc8051_control. This sub-
module oversees the functionality such as writing to special
function registers and addressable memory locations.

Based on the developed semantic translation rules, inter-
face, and module, we define interface for each module as:
ip_control_fsm for module_control_fsm, ip_control_mem for
module_control_mem, and the ip_mc8051_control for mod-
ule_mc8051_control as shown in the following code.

Inductive ip interface :=
| ip_control fsm : bus—>bus—>bus—>...—>ip_interface
| ip_control mem : bus—>bus—>bus—>...—>ip_interface
| ip_mc8051_control : ...—>ip interface->ip_interface

| ip_mc8051_core : ip interface>ip_interface.

The description of the formal module mod-
ule_mc8051_control ~ which implements the interface
ip_mc8051_control is shown below. In this module, the
circuits detail is described by using the keyword Fixpoint.
Through using the keyword Axiom, the control_core_rtl is

generated as the instantiation of the circuit in the module

module_mc8051_control. The corresponding information of
these modules can be found in Figure 3. After that, the
instantiation can be used as precondition for proving the
security theorem Security_ControlUnit. At this point the
proof of Security_ControlUnit can be integrated to prove the
security theorem Security_SoC.

Module Type module_mc8051_control.
Declare Module i _mem : module control mem.
Declare Module i_fsm : module control fsm.
Parameters s _pc_inc_en s_regs wr_en ... all thl i : bus.
Fixpoint module _inst (m:ip_interface) (t:nat) :=
match m with
| (ip_control mem pc_o rom data_i ram data o ...
lcasel3 1lblockl3)=> i_mem.module_inst m t
| (ip_control fsm state_i help_i...)=>i_ fsm.module inst m t
| (ip_mc8051_control s_pc_inc en ...) =>
(update ((upd_expr acc_o (econb acc))) t) ...

| (ip_mc8051 core mymodulel) => True
end.

Axiom control_core_rtl : forall (t:nat),

module_inst (ip mc8051_control s_regs_wr_en ...) t.
Theorem Security_ControlUnit :
forall (t : nat) (dtl : bus_value) ,
i_mem.state t = FETCH —>
i_mem.rom data_i t = ADD_A DATA —>
i_mem.rom data_i (S t) = dtl —>
i_mem.reset t = lo::nil—>
i_mem.reset (S t) = lo::nil —>
i_mem.ie t = lo::lo::lo::lo::lo::lo::lo::lo:nil —>
i mem.ie (S t) = lo::lo::lo::lo::lo::lo::lo::lor:nil —>
i_mem.s_intpre2 t = lo::nil —>
i_mem.s_intpre2 (S t) = lo::nil —>

(hi::lo::lo::nil) = lo/\
(hi::lo::hi::nil)=lo)/\

(hi::lo::lo::nil) = lo/\
(hi::lo::hi::nil)=lo).

(bv_eq (i_mem.s_regs_wr_en t)

bv_eq (i_mem.s_regs wr_en t)

(bv_eq (i_mem.s_regs_wr_en (S t))

bv_eq (i_mem.s regs wr_en (S t))
Proof.

Qed.
End module_mc8051_control.

C. Distributed Proof Construction

For the security assurance of the SoC, the security properties
on a large set of instructions need to be proven. Due to page
limits, only the ADD instruction is shown as an example in
this section. For this specific instruction, the security property
is refined to The contents stored in the special function
registers should not be modified during the execution of the
immediate add instruction - ADD A, #immediate. The formal
security theorems are then derived from the informal security
property and are verified with respect to the instruction ADD
A, #immediate.

An analysis of the 8051 microprocessor structure shows
that the permission to write on the special function registers
depends on the enable signals s_regs_wr_en of the IP module
named module_control_mem. The special function registers
are updated when the following conditions are satisfied: the
control signal s_regs_wr_en equals 100 or 101. Then the
formal theorem (Security_SoC) for the security property is
constructed as following:

Module Type module_core.

Declare Module i_control : module mc8051_control.

Theorem Security_SoC :
forall (t : nat) (dtl : bus value) ,
i_control.i_mem.state t = FETCH —>
i_control.i_mem.rom data i t = ADD_A DATA —>
i_control.i_mem.rom data i (S t) = dtl —>
i_control.i_mem.reset t = lo::nil—>
i_control.i_mem.reset (S t) = lo::nil —>
i_control.i_mem.ie t = lo::lo::lo::lo::lo::lo::1lo::1lo::nil—>
i control.i_mem.ie (S t) = lo::lo::lo::lo::
lo::lo::lo::lo::nil —>

i_control.i_mem.s_intpre2 t = lo::nil —>
i_control.i_mem.s_intpre2 (S t) = lo::nil —>
(bv_eq (i_control.i_mem.s_regs wr_en t) (hi::lo::lo::nil)=lo/\
bv_eq (i_control.i _mem.s regs wr_en t) (hi::lo::hi::nil)=lo)/\
(ov_eq (i_control.i mem.s_regs_wr_en (S t))

(hi::lo::lo::nil) = lo/\
bv_eq (i_control.i _mem.s_regs_wr_en (S t))

(hi::lo::hi::nil)=lo).
Proof.
intros.
apply i_control.Security ControlUnit with (t:=t0) (dtl:=dtl) .

Qed.

End module_core.

The example code calls entities and instantiations within
the sub-module: i_control.i_mem.s_regs_wr_en indicates the
variable s_regs_wr_en in the sub-sub-module i_mem, which
is inside another sub-module i_control. Also, pre-conditions
of the formal security theorem can be explicitly specified as
follows:

1) forall (t : nat) means that the execution can begin at any
time while (S t) stands for the 7+1.

2) state t = FETCH indicates that the function is executed
from the initial state - FETCH at the ¢ clock-cycle;

3) reset t = lo::nil, ie t = lo::... and s_intpre2 t = lo::nil
imply that our framework does not handle reset and interrupt
during the SoC operation;

4) i_control.i_mem.rom_data_i t = ADD_A_DATA implies
that rom_data_i in the sub-module i_mem takes the op-code
of the ADD A, #immediate instruction at ¢ clock cycle;

5) i_control.i_mem.rom_data_i (S t) = dtl indicates that
rom_data_i can take any input at the ¢+ clock cycle.

The variable dtl of the formal theorem indicates that the
input can be any binary code. The function bv_eq compares
two binary codes and returns the result lo when there is a
match between the codes and hi otherwise.

In this approach, the theorem in the top module (such as
the module module_core) accesses the lemmas (or theorems)
in the lower level (such as the module_mc8051_control) during
the proof construction process. At the lowest level of the
hierarchy, the lemma Security_ControlUnit is proven for the
instruction ADD A, #immediate with respect to the pre- and
post-condition of the lemma of the Control Unit module. In the
top module module_core, the theorem already proven at the
sub-module module_mc8051_control is reused by accessing
the instantiation i_control. With the same procedure, contents
in the other sub-module module_control_mem can also be
called by using the corresponding instantiation i_mem.

The proof was successfully constructed for the security
theorem for the Control Unit IP of the 8051 microprocessor.
Consequently, we can conclude that the SoC is secure from
any malicious memory manipulation attack within the domain

of the defined security property.

V. CONCLUSION

In this paper, we have extended the previously developed
PCH framework into the SoC design flow and largely sim-
plified the process for proving security properties through
a hierarchical proof construction procedure. To reduce the
workload for circuit verification, the proof of the security
properties for individual IPs can be encapsulated and reused
in proving security properties at the SoC level. Also, in the
hierarchical framework, the amount of updates that need to
be done to existing proofs when SoC designs are modified is
significantly lowered. The developed HiFV framework paves
the way for large-scale circuit design security verification.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation grants CNS-1319105.

REFERENCES

[1] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in /EEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2010, pp. 56-59.

[2] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identifi-
cation of stealthy malicious logic using boolean functional analysis,”
in Proceedings of the ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS 13, 2013, pp. 697-708.

[3] D. Sullivan, J. Biggers, G. Zhu, S. Zhang, and Y. Jin, “FIGHT-metric:
Functional identification of gate-level hardware trustworthiness,” in
Design Automation Conference (DAC), 2014.

[4] N. Tsoutsos, C. Konstantinou, and M. Maniatakos, “Advanced tech-
niques for designing stealthy hardware trojans,” in Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE, 2014.

[5] M. Rudra, N. Daniel, V. Nagoorkar, and D. Hoe, “Designing stealthy
trojans with sequential logic: A stream cipher case study,” in Design
Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, 2014.

[6] S. Drzevitzky, U. Kastens, and M. Platzner, ‘“Proof-carrying hardware:
Towards runtime verification of reconfigurable modules,” in Interna-
tional Conference on Reconfigurable Computing and FPGAs, 2009, pp.
189-194.

[7]1 S. Drzevitzky and M. Platzner, “Achieving hardware security for re-
configurable systems on chip by a proof-carrying code approach,” in
6th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip, 2011, pp. 1-8.

[8]1 E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 1, pp. 25-40, 2012.

[91 Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assurance
by proof-carrying based signal sensitivity tracing,” in IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), 2013, pp.
99-106.

[10] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted
microprocessor IP,” in 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 824-829.

[11] INRIA, “The coq proof assistant,” 2010, http://coq.inria.fr/.

[12] G. C. Necula, “Proof-carrying code,” in POPL ’97: Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1997, pp. 106—119.

[13] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-silicon
security verification and validation: A formal perspective,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference, ser. DAC 15, 2015,
pp. 1-6.

[14] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in /EEE 30th VLSI Test
Symposium (VIS), 2012, pp. 252-257.

[15] Oski Technology: http://www.oskitechnology.com/.

[16] Oregano Systems, “8051 1P
http://www.oreganosystems.at/?page_id=96.

core,”

