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Abstract—Internet of Things (IoT) has become an integral part
of the modern era as it provides an ease of life with higher
flexibility, easier control, and wide connectivity through numer-
ous applications. However, security vulnerabilities in the IoT
domain have given rise to potential threats and attacks that can
compromise critical infrastructures and national security, cause
physical and financial loss. Being common and easier targets due
to low power and low processing capabilities, lightweight firewall,
and availability for service, IoT devices require lightweight but
enhanced security to thwart different cyber attacks. In this paper,
we champion for hardware-assisted defense mechanisms against
cyber attacks in IoT domain. We highlight that hardware-assisted
techniques indeed offer an additional layer of protection with
respect to traditional software-only cybersecurity. However, to
offer a comprehensive security, many challenges including area
and power footprint, as well as security strength, need to be
addressed.

I. INTRODUCTION

Internet of Things (IoT), the network of ubiquitous smart
objects, has become an integral part of modern day-to-day
life enabling novel applications and services, ranging from
home automation to embedded medical devices and personal
gears. Fast network connectivity and intelligent sensors allow
these IoT devices to collect, process, and relay information
in an efficient and seamless way. Advanced lightweight low-
power technologies have made it even more possible to employ
IoT devices in remote locations requiring no/minimal physical
observation and maintenance. Although seemingly harmless,
these IoT devices are not free from security and privacy
concerns as there exist numerous threats and vulnerabilities
in the modern IoT framework.

Security vulnerabilities in the IoT domain have given rise to
countless threats and attacks that can potentially compromise
critical infrastructures and national security, cause physical
and financial loss, and more. McAfee quarterly threat report
(Jan-Mar 2017) reveals that there are 176 new cyber-threats
every minute [1]. Mirai-botnet based recent DDoS attack on
low-cost IoT devices infected over 2.5 million devices within
only four months [1]. Such attack volume, exploiting various
security vulnerabilities, is expected to grow even larger with
an estimated 26 billion connected devices by the end of
2020 [2]. As of today, most of the prevailing IoT devices
do not offer adequate security measures to defend against
these ever-growing pool of attacks and threats. Further, having
easy network connectivity as an inherent feature, these IoT
devices have become lucrative targets for remote attacks. Al-
though techniques have been proposed for enhancing security
and trust for connected devices, those may not be suitable
solutions for lightweight IoT applications where processing

capability, memory, and power are scarce. Moreover, most
of such cybersecurity solutions are employed in the software
domain which has its own set of challenges and vulnerabilities.
Hence, it is crucial that one must explore, and, if suitable,
employ hardware-assisted security as well with the software-
only protections for IoT devices to thwart away prevailing and
unforeseen threats. In this paper, we make a comprehensive
study of recent hardware-based security solutions and high-
light existing challenges and future research directions to offer
a holistic security for IoT devices.

The rest of the paper is organized as follows: in Section
II, we provide preliminaries to common attacks and vul-
nerabilities for modern day IoT devices and establish the
threat model. In Section III, we analyze various hardware-
assisted techniques for ensuring IoT security. In Section IV,
we highlight some prevailing challenges and future research
directions in hardware security domain for establishing a
secure and trusted IoT system. Section V concludes the paper.

II. COMMON CYBER-THREATS FOR IOT DEVICES

Before employing a protective mechanism against various
attacks on IoT devices, it is crucial that one understands the
attacker’s capability and adversarial gains and targets. For a
remote IoT device, an attacker may gain physical access to
the device since regular monitoring and continuous protection
for such lightweight and low-cost devices may not always
be practically and financially feasible. A physical access to
such a device opens up possibilities of probing attack, physical
tampering attack, the inclusion of hardware bugs and Trojans,
and replacement with fake devices [3]. However, in this work,
we focus only on the cyber-attacks where the attack vectors are
exercised via software and networks and a physical access to
the device is not mandatory. We also assume that the network
itself is untrusted and the attacker can gain access to the device
without any loss of adversarial capability. Further, the attack
itself is not transparent to the user, i.e., concealed from the the
deployed security scheme, and the attacker can successfully
launch the first phase of the attack without prominent changes
in computation timing and processing power consumption.

The adversarial gain of an attacker from a remote cyber-
attack is either to ‘distort’ the output (and subsequent actions
due to faulty data/control) of the device, or to ‘disrupt’ the on-
going processes (e.g., denial of service), or to ‘disclose’ any
secret information residing in the device such as secret keys
and passwords [4], [5]. As shown in Fig. 1, an IoT device may
be affected by a variety of attacks as follows.
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Fig. 1. Common cyber-attacks for IoT devices and hardware-assisted mitigation techniques.

Malware. Modern day IoT devices may be infected by a
variety of malware at different stages of its lifetime. Common
malware, such as virus, worms, and Trojans, usually target
local and OS-level exploitation based on the attack and ex-
ecution complexity. The primary behavior of such virus is
to disrupt the ongoing operation and cause an illegitimate
interrupt or a routine call for malicious activity. The rootkit,
on the other hand, disrupts the OS level legitimate executions
since the original firmware is infected and modified. It can
provide continued privileged access to a system while actively
hiding its presence. Additionally, IoT devices, if not protected
properly, can fall into the victim of the denial of service
(DoS) or distributed denial of service (DDoS) attacks that
are becoming a major problem day by day. Such an affected
device can work as a bot (or ‘zombie’) to infect other valid
devices in the network or can consume network bandwidth
and processing power giving the attacker additional resources.
Integrity Violation. Getting the access to the private key (used
for encryption) and/or private information residing in the IoT
device is a lucrative adversarial gain for an attacker since it
allows to compromise the ‘root-of-trust’ of the systems. It en-
ables the attacker to gain control of the secure communication
and execution processes of the device.
Software-assisted Fault Injection. Another class of attacks
on IoT devices is the software-assisted fault injection in
the hardware during device runtime. Although, this type of
attacks are relatively complicated since they require in-depth
knowledge of the platform dependent hardware as well as the
underlying software; the remedy of such an attack is very
difficult to implement. For example, a runtime timing glitch
attack can be executed via software exploitation if there lacks
a security-aware design in the hardware module [6]. Since this
class of attacks search for and utilize minute vulnerabilities in
the hardware, employing software-only defensive mechanisms
are often futile.

We note that there have been various proposed software-
only solutions to mitigate the existing treats for IoT devices

[7]–[10]. However, the advanced attacks and cyber-threats
for modern IoT devices are not always preventable by such
software-only techniques because:

– The software-based defense mechanism, employed in the
IoT device, itself may vulnerable to remote attacks. Ad-
ditionally, it does not necessarily have a large coverage of
defense, can often be bypassed and compromised without
the user’s knowledge. For example, the DoubleAgent
attack has compromised many known anti-virus software
causing a loss of integrity [11].

– Software-based anti-malware solutions (programs) re-
quire regular updates and patches to keep the system
protected. Many new threats do emerge by exploring
such updates as well since an smart analysis of such
updates reveals the points of vulnerabilities and many
existing user do not always comply to such update at
the moment of release. Additionally, these approaches are
often vulnerable to zero-day attacks.

III. HARDWARE-ASSISTED SECURITY TECHNIQUES

Hardware-assisted security has become a promising alterna-
tive to the software-only defense mechanism as the latter alone
do not provide the level of security needed for present day
IoT devices. Hardware-based methods leverage the hardware
modules and can collect micro-architectural information to an-
alyze the prevailing software-level threats and vulnerabilities.
As shown in Fig. 1, hardware-assisted techniques provide a
wide range of solutions, described as follows, for secure and
trusted IoT applications.

A. Secure and Trusted Hardware Architectures

One of the primary requirements for performing a secure
information transaction among the IoT devices via an untrusted
network is to employ a trusted and secure key management
and data processing scheme in hardware. The trusted platform
modules (TPMs) have been well adopted in this regard to
serving as the hardware root of trust [12]. Such TPMs allow



using cryptographic keys that can be tied to certain platform
measurements and are protected from disclosure to any other
untrusted hardware components, processes, or software. The
discrete-TPM (dTPM) chips and plastic circuit board modules
can offer a larger coverage of services allowing sharing the
resources among multiple applications on the same physical
machine [13]. Additionally, ARM TrustZone [14] and Intel
Software Guard Extension (SGX) [15]-enabled architectures
add new features to modern-day SoCs to offer trusted and se-
cure environment for execution of security-critical processes in
the face of the privileged kernel and software being potentially
malicious [16], [17]. On the other hand, secure processors
such as AEGIS [18] and Ascend [19] leverage single-chip
architectures to ensure private and authentic processing with
encrypted and obfuscated instruction executions. However,
such proposed designs mostly offer security against physical
attacks, such as tampering and probing, and do not necessarily
have provisions to offer safeguard against prevailing cyber
threats if the program itself is compromised.

B. Micro-architectural Event Monitoring for Security

Although TPMs and secure architectures offer a trusted en-
vironment for security-sensitive applications, such a hardware
is generally expensive, power-hungry, and is not suitable for
lightweight and low-cost IoT applications. Furhter, malware
such as virus, Trojans, and bots can infect IoT devices in
disguise if the network is not sufficiently protected. Once
infected, it is very difficult to detect the malware as it can
bypass the anti-malware programs in the device. Hardware-
based micro-architectural event monitoring for recognition
of malware and anomaly detection can help in such cases.
It offers a fine-grain filtering for individual executions, can
collect multi-dimensional information, and provides a faster
response than the software-only anti-malware counterparts.

The heart of such hardware-based monitors is the perfor-
mance monitoring units (PMU) available in the most modern
processors and SoCs [20], [21]. The basic goal of PMUs is to
provide the performance insight of the CPU by capturing a set
of micro-architectural events and respective counts using the
inbuilt hardware performance counters (HPCs). For example,
one or more HPCs in the PMU can sample how many times
a pre-defined event (enabled by the associated architecture),
such as cache misses, occurs during the program runtime to
evaluate the performance of the system under test. PMUs
in ARM and Intel x86 architectures can be controlled via
software modules such as Linux Perf tool [22]. It can provide
real-time feedback to diagnose bugs or identify bottlenecks
in the software based on the hardware platform. Although
originally designed for performance monitoring, the PMU can
be intelligently used for security applications by analyzing
whether an runtime event profile is malicious in nature.
Another advantage is that, being an integrated part of the
hardware, the PMU operates transparently to any software
running on the processor and cannot be fooled by external
malicious software. That is the hardware monitor itself is
process-oblivious. Since any malware or even a modified

firmware or rootkit needs to perform certain executions, PMU-
driven event monitoring is potentially capable to detect such
malicious activities.

Tang et al. [23] proposed a method for anomaly-based detec-
tion of malware using lower-level micro-architectural features
collected from HPCs in modern processors. Since the micro-
architectural characteristics of the benign programs can be
noisy due to diffusion of multiple program executions within
a given time window, it is quite difficult to characterize and
distinguish a malicious program. However, a careful feature
selection, i.e. event for the HPCs to collect, and extraction can
lead to the benign program characterization with unsupervised
ML techniques. This model, built on the sub-semantic micro-
architectural features, then can be leveraged for an offline
classification between the original and the possibly modified
malicious program.

Jyothi et al. [24] proposed a host-based DDoS-detection
framework called BRAIN (BehavioR based Adaptive Intrusion
detection in Networks). It uses hardware features to model the
benign and DDoS behavior. To detect DDoS attacks, it uses
machine learning techniques on modeled application behavior
and network statistics both. Since the correlation between the
network and the application statistics with HPC data is non-
trivial, high-fidelity hardware events need to be selected. The
authors proposed to implement an integrated DDoS Detection
Engine (DDoSDE) that monitors both the hardware and net-
work behavior to detect the DDoS/DoS attacks. The DDoS
Prevention Interface (DDoSPI) responds against any detected
attack by blacklisting IPs (and removing if needed) based on
a dynamic network and HPC-based threshold that thwarts the
attacker from learning the policy.

Wang et al. [25] proposed a low-cost host-based validation
tool, namely ConFirm, to detect the malicious modifications to
the firmware of embedded systems, such as calling, injection,
or execution of codes that are not a part of the original code
flow execution. The technique exploits hardware event counts
via HPCs creating internal check-points within the original
firmware. An event-count of a possibly maliciously modified
firmware can, therefore, be matched within the checking points
(checking window) to validate the integrity of the malware.
Malone et al. [26] also considers a similar threat of modified
firmware. However, for accurate detection, the authors ana-
lyzed malicious static and dynamic program modification by
modeling the architectural characteristics of benign programs
using linear regression models.

C. Security Enhancement via Machine Learning Techniques

One major obstacle for leveraging micro-architectural event
monitoring for security is that the same micro-architectural
event can occur in a similar manner (i.e., frequency count and
event profile) during a valid operation and, therefore, it may
not be an obvious indicator for flagging a particular program
(or execution) as a malicious one. However, researchers have
implemented different machine-learning techniques to learn
and differentiate between such events to identify any kind
of anomaly with a higher detection accuracy and lower false
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Fig. 2. Hardware Performance Counter-based Malware Detection.

positive/negative [27], [28]. Two fundamental requirements
for such techniques are: 1) selecting high-fidelity micro-
architectural features for event collection via HPCs, and 2)
choosing efficient machine learning techniques for classifica-
tion/detections. Demme et al. [27] envisioned the architecture
necessary to support behavioral-based malware detection in the
hardware using HPC data. The key observations for building
such a framework is that

- The semantics of a program do not change significantly
even though the attacker tries to restructure it.

- While accomplishing a particular task, there exist sub-
tasks that cannot be radically modified.

Based on the given assumptions, a machine learning-based
hardware-assisted anomaly detection unit should perform the
following general tasks, as shown in Fig. 2:

1) Data Collection and Feature Selection. It decides what
micro-architectural event data needs to be collected and
how the detection engine should store and process the
collected information.

2) Data Analysis. It determines the malicious behavior (if
any) by analyzing the data. ML classifiers are used for
learning, testing, and validating the correlation between
the collected data and untrusted behavior.

3) Action System. It takes action when a threat is detected.
It could be simple as just flagging/reporting the event to
the user for potential threat or crucial as shutting down
the complete unit to protect critical data/system.

4) Secure Updates. It keeps the detection engine up-to-
date by dispatching necessary updates with newly learned
classifiers and new vulnerabilities. Such an update must
be secure to indicate that it can be done only by a trusted
authority.

The detection module receives HPC information periodi-
cally from the target module where the untrusted program
or malware is running. The system architecture should allow
the detection module to run at the highest privilege level

and independently of any other program. Also, it should give
access to physical memory to store HPC data and have isolated
memory and execution for itself so that the detection module
itself does not get corrupted. The amount of storage required
to store the ML data varies greatly depending on the type
of classifier being used for analysis. As one can understand,
the accuracy of the ML technique used and the fine-grained
resolution of the sampled HPC data for selected events play
a vital role to improve the accuracy and performance of the
overall detection system.

To further examine the impact of different ML techniques
for malware detection, Patel et al. [28] presented a compre-
hensive analysis using runtime HPC information. The analysis
shows that the OS Kernel level software implementation
of various ML methods are extremely slow, in the range
of milliseconds, with respect to the malware runtime and
data sampling at the hardware level. It is apparent that the
software-level classification techniques are not suitable enough
for high-resolution data capture and anomaly detection with
high confidence. Therefore, a hardware-based ML technique
implementation is required for lower latency and higher ac-
curacy. The authors synthesized different ML methods in a
programmable platform (Virtex 7) for a comparative analysis
and it was found that OneR technique was the most efficient
benign vs. malware classifier with the highest accuracy/area
and the lowest power-delay product, with an overall detection
success of around 81%.

D. Leveraging Side-channel Information

Power side-channel-based instruction-level disassemblers
have been demonstrated by Eisenbarth et al. [29] and Park
et al. [30]. The implication of such a disassembler is manifold
- it can be used for code tracing and reconstruction, firmware
reverse engineering, hardware-software co-attestation, and,
most importantly, for the integrity verification of a software
running in an IoT device. Msgna et al. [31] has leveraged
the power side-channel information for embedded software
integrity verification by constructing instruction-level power
templates, using selected ML techniques, from multiple iden-
tical (by design) processors and matching the application
runtime power consumption profile against them through RSA
signature screening scheme. However, such a disassembly
scheme is basically suitable for simple microcontrollers. With
the increasing complexity of the modern day processors and
extensive pipelining, it becomes extremely difficult to offer
an efficient and guaranteed anomaly detection via instruction-
level disassembly using only power-side channel. Moreover,
extremely large data and complex post-processing suggest it to
be an off-the-chip anomaly detection and integrity verification
scheme. However, such a scenario may not be practical for
IoT devices.

Further, Clark et al. [32] have demonstrated that a pre-
vailing malware can be detected using side-channel power
disruptions in medical devices. The proposed system monitors
the power consumption of the embedded device and employs
machine learning technique to detect potential abnormal be-



havior/signature from the device. Gonzalez et al. [33] has
shown that one can accurately discriminate between encrypted
and unencrypted transmissions in a software defined radio
platform using power fingerprinting. Such techniques can
be used for IoT device attestation and authentication in an
untrusted network.

Additionally, Nazari et al. [34] has implemented a runtime
monitoring system using electromagnetic emanations (EM) as
a side-channel. It can potentially detect abnormal behavior
during program execution such as malware or other code
injections using supervised ML classifiers. This scheme does
not need to perform any malware characterization; rather it
uses the peaks in the measured EM spectrum during the
program execution and compares them with the training-
phase golden data. This technique is potentially well-suited
for security monitoring of IoT and embedded devices since it
does not need additional resources on the monitored machine,
does not require wired connection as in the case for power
side channel information collection, or does not impact the
monitored (malicious or not) program.

E. Security-aware Design and Control

Tang et al. [6] has demonstrated the first software-exposed
fault-attack that exploits the security-obliviousness of the com-
mon on-chip energy management mechanisms. The authors
developed a malicious kernel driver to exploit the on-chip
dynamic voltage and frequency scaling (DVFS) modules for
inducing timing faults during the program execution. Such an
attack can eventually extract secret cryptographic keys and
alter kernel privilege in the ARM Trustzone. Although carried
out via a malicious program on a Nexus 6 device, this attack
leverages the implementation vulnerabilities of the existing
hardware module and, therefore, can potentially be extended
to remotely attack and compromise IoT devices.

The defense against such an attack requires removing
multiple implementation vulnerabilities of the on-chip energy
management module. The DVFS, traditionally being security-
oblivious, can be operated way outside of the vendor-specified
ranges. One can address this by enforcing the operating limits
within a specified range. Further, the DVFS regulator should be
well isolated from each other so that the protected environment
cannot be compromised by another module. And, finally,
necessary redundancy and check-points implemented both in
hardware and software can remove the fault should it occur.

Additionally, Spisak et al. [35] leveraged the PMUs of a pro-
cessor for implementing a hardware-assisted rootkit. Using this
kernel mode rootkit, an attacker can redirect existing control
flow to malicious code without any kernel image modification.
As it is seen, such a PUM-assisted rootkit design can possibly
trap system calls and other interrupts driven entirely by the
PMU. Although the proposed attack was carried out on a
Qualcomm Snapdragon processor used in Nexus 6 device, a
similar or inspired attack can be launched on modern IoT
devices with comparable processing architecture. However,
this attack has its own weakness because other programs
with kernel-level privilege are capable of reading, writing,

or tampering the counters in PMUs. To prevent this rootkit
attack, one may employ dynamic event code filtering, reset
the counter value before overflowing, and keep monitoring the
PMU itself for any anomalous behavior.

IV. CHALLENGES AND FUTURE DIRECTIONS

Although the aforementioned hardware-assisted security
techniques provide a wide range of protections for modern IoT
devices, several challenges and limitations exists with respect
to the detection or prevention efficiency, associated software,
and hardware footprint. Some major challenges regarding a
successful implementation are:

• Existing trusted and secure hardware, such as a TPM,
commonly suffers from a relatively larger footprint and
is usually power hungry. A plug-and-play adaptation of
such devices and architectures is therefore not suitable
for lightweight IoT devices where the processing unit is
less powerful and area and energy are scarce.

• Hardware performance counter-based malware detection
methods deeply rely on efficient and complex machine
learning techniques to differentiate between the valid and
malicious operations. However, such ML techniques are
usually implemented on software, where the HPC data is
collected in the hardware and fed to the software program
for online/offline processing and detection. This, unfortu-
nately, creates the bottleneck in the detection scheme as
the software-based classification is very slow with respect
to the accumulated hardware data. It forces the event/data
sampling to be done at a much lower rate (i.e., high event
sampling interval) increasing the risk of malicious events
or executions to go unnoticed. Eventually, it reduces the
success rate and increases operational overhead [28].

• Most of the ML techniques used in the aforementioned
schemes require a large data for training, testing, and
validation. Such a golden model-based scheme is only
suitable for known cyber threats as it allows a proper
characterization of the malicious events in the training
phase. Hence, detecting zero-day vulnerabilities and un-
known threats using such a scheme is quite challenging.

• Side-channel based IoT monitoring and malware detec-
tion systems require additional hardware for data col-
lection and processing. Here, self-monitoring may create
interference with the collected signatures or the moni-
toring unit may itself get compromised. On the top of
that, obtaining power side channel information requires
additional wire-connection to the device being moni-
tored. Although EM monitoring does not need a wire-
connection, however, the resolution of the EM-collecting
antenna and environmental interference greatly impact the
quality of the detection. For both the power and EM-
based monitors, placing additional monitoring hardware
may not be a feasible solution for low-power remote IoT
devices.

Hardware-assisted security for IoT devices may act com-
plementary to the existing software-only defense mechanisms.



A key research thrust in this direction may be to build hard-
ware accelerators for high-speed on-chip ML implementations.
Designing lightweight ML techniques is also crucial for event-
recognition based malware/anomaly detection. In addition to
PMUs, various other on-chip sensors, such as temperature and
aging sensors, and novel architectures may also be employed
for ensuring security.

V. CONCLUSION

With the rise of the IoT devices and IoT-centric applications,
it is imperative that we provide a trusted and secure platform
for this domain to offer maximum defense against prevailing
and future cyber attacks. Existing security solutions are not
adequate since such defense techniques do not offer a wide and
strong coverage. Hence, it is high time to employ both hard-
ware and software solutions in a hybrid manner. Hardware-
assisted protection for the security of IoT devices has proven
their importance and versatility over time and across multiclass
attack vectors. However, there is no doubt that further research
is required to develop and design appropriate security mech-
anisms with high accuracy and low overhead for lightweight
IoT applications.
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