
Automatic RTL-to-Formal Code Converter for IP
Security Formal Verification

Xiaolong Guo∗, Raj Gautam Dutta∗, Prabhat Mishra†, and Yier Jin∗
∗Department of Electrical and Computer Engineering, University of Central Florida

†Department of Computer and Information Science and Engineering, University of Florida
{guoxiaolong, rajgautamdutta}@knights.ucf.edu, prabhat@cise.ufl.edu, yier.jin@eecs.ucf.edu

Abstract—The wide usage of hardware intellectual property
(IP) cores from untrusted vendors has raised security concerns in
the integrated circuit (IC) industry. Existing testing methods are
designed to validate the functionality of the hardware IP cores.
These methods often fall short in detecting unspecified (often
malicious) logic. Formal methods like Proof-Carrying Hardware
(PCH), on the other hand, can help eliminate hardware Trojans
and/or design backdoors by formally proving security properties
on soft IP cores despite the high proof development cost. One
of the causes to the high cost is the manual conversion of the
hardware design from RTL code to a domain-specific language
prior to verification. To mitigate this issue and to lower the overall
cost of PCH framework, we propose an automatic code converter
for translating VHDL to Formal-HDL, a domain specific language
for representing hardware designs in Coq language. Our code
converter provides support to wide variety of hardware designs.
Towards the goal of speeding up the verification procedure in
our PCH framework, the code converter is the important first
step. The applicability of the tool is demonstrated by converting
soft IP cores of AES to its Coq equivalent code.

I. INTRODUCTION

The improvement of manufacturing technology makes it
possible to integrate billions of transistors in one chip, but it
increases the difficulty of designing such large-scale circuits.
To alleviate the workload of the circuit designers and to
shorten the time-to-market (TTM), the hierarchical design
methodology has been widely used in the IC industry with
the leading example being system-on-chip (SoC) platforms.
System integrators use IP cores from trusted and untrusted
third-party vendors to build SoCs in a hierarchical structure.

The prevailing usage of third-party soft IP cores in SoC
designs raises security concerns as current IP core verification
methods focus on IP functionality rather than IP trustworthi-
ness. Moreover, lack of regulation in the IP transaction market
adds to the predicament of the SoC designers and forces them
to perform verification and validation of IPs themselves. To
help SoC designers in IP verification, various methods have
been developed, which leverage enhanced functional testing
and/or perform probability analysis of internal nodes for IP
core trust evaluation and malicious logic detection [1], [2].
However, these methods were easily bypassed by sophisticated
hardware Trojans [3]–[5]. Formal methods were also intro-
duced for IP core trust evaluation [1], [6]–[10]. Among all the
proposed formal methods, PCH, which originated from proof-
carrying code (PCC), emerged as one of the most prevalent
methods for certifying the absence of malicious logic in soft IP
cores and reconfigurable logic [6]–[10]. In the PCH approach,

synthesizable register-transfer level (RTL) code of IP core and
informal security properties were first represented in a domain-
specific language (DSL), Formal-HDL, which is built on top
of Gallina, the functional programming language of the Coq
proof assistant [11]. Then, Hoare-logic style reasoning was
used to prove the correctness of the RTL code in the Coq
platform.

However, extending existing PCH methods to large-scale
design such as SoCs was difficult due to the time required for
verification [8]–[10]. This was because a significant manual
effort was required for converting HDL code to a formal
representation, and constructing proofs of security properties
based on the design. Moreover, any modification of the
design required repetition of the entire deductive process,
thereby further increasing the verification time. To address
these problems, an automatic tool for syntactic and semantic
translation of RTL code to a domain-specific language is
developed. Compared to the manual translation in previous
PCH frameworks [8]–[10], this tool considers all the common
VHDL syntaxes and converts the hardware design written
using it to Formal-HDL. Apart from design translation, our
tool can also convert the informal security specification to
the domain specific language of Coq. Thus, this tool is an
important step toward reducing effort required in deductive
verification of large-scale hardware designs in tools such as
the Coq platform.

The rest of the paper is organized as follows: In section
II, we mention works related to ours. In section III, we
introduce the threat model and describe our PCH framework.
In Section IV, we provide implementation details of the code
converter. Section V presents demonstrations of the proposed
code converter by translating AES core in VHDL to Coq
language. Final conclusions are drawn in Section VI.

II. RELATED WORK

Various methods have been proposed in the software domain
to validate the trustworthiness and genuineness of software
programs. These methods protect computer systems from
untrusted software programs. Most of these methods place the
burden on software consumers to verify the code. However,
PCC switches the verification burden to software providers
(software vendors/developers) [12].

A similar mechanism, called PCH, was used in the hardware
domain to protect third-party soft IPs [8]–[10]. The PCH
framework certifies that soft IPs are trusted if certain carefully



specified security properties hold. As shown in Figure 1, in this
approach, the IP consumer provides functional specifications
and security constraints to the IP vendor. Upon receiving
the request, the IP vendor develops the RTL code using
hardware description languages (HDLs). Before proving the
trustworthiness of the RTL code with respect to the formally
specified security properties in Coq, the IP vendor needs to
perform semantic translation of the HDL code and informal
security properties into Formal-HDL. After the proof has
been constructed, the IP vendor provides the IP consumer
with the RTL code, formalized security theorems of security
properties, and proofs of security theorems. The IP consumers
also translate the design and security properties to Formal-
HDL. Then, the proof checker in Coq is used to automatically
validate the proof of security theorems on the translated code.
Correspondingly, the PCH and its applications were introduced
in detail in [13], where the use of theorem proving methods
for providing high level protection of IP cores is demonstrated.

A language translation tool called VeriCoq was developed in
[14] which converts hardware designs represented in Verilog
into Coq. However, VeriCoq requires a flattening the hierar-
chical design, which makes manual proof development very
challenging. Moreover, the authors in [14] did not provide
details of the supported Verilog syntaxes the VeriCoq can
support and the demonstration in the paper is not sufficient to
show applicability of the VeriCoq tool to any general hardware
design. Thus, we develop VHDL-to-Coq code converter, which
can convert general VHDL designs to Coq equivalent codes
by supporting all common VHDL syntaxes.

III. BACKGROUND

A. Attack Model

In this paper, we assume that malicious logic is inserted
by an adversary at the design stage of the supply chain. We
also assume that the rogue agent at the third-party IP design
house can access the HDL code and insert a hardware Trojan
or backdoor to manipulate critical registers of the design.
Such a Trojan can be triggered through different mechanisms.
Upon activation it can leak sensitive information from the
chip, modify functionality, or cause a denial-of-service to the
hardware. In this paper, we only consider Trojans which can
be activated by a specific digital input vector.

Further, we assume that the verification tools (e.g., Coq)
used in our PCH framework produce correct results. The
existence of proofs for the security theorems indicates the
genuineness of the design whereas its absence indicates the
presence of malicious logic. However, the framework does not
provide protection of an IP from Trojans whose behaviors are
not captured by the set of security properties. Furthermore,
we assume that the attacker has intricate knowledge of the
hardware to identify critical registers and modify them for
carrying out the attack.

B. Automatic PCH Framework

As mentioned in previous sections, extending PCH method
to large-scale design such as SoCs was difficult due to the time

Figure 1: Working procedure of the PCH [13]

required for verification. Therefore, development of automa-
tion tools were required to alleviate this challenge. The soft-
ware tools we intend to develop will help facilitate the process
of code conversion, security property translation, and proof
generation. An overview of these tools in the PCH framework
is shown in Figure 2. Code converter will convert HDL code to
our DSL, Formal-HDL, security property translation tool will
convert an informal security property given in natural language
to provable security theorem represented in Formal-HDL, and
automated proof scripts (tactics) will help in expediting proof
construction in Coq.

In previous PCH methods, code conversion was done man-
ually, which increases the workload and risks of human error.
In order to eliminate the burden of code conversion, we have
firstly developed the Formal-HDL, a hardware description
language within Coq environment. The Formal-HDL was pro-
posed in [10] and was further enhanced to include additional
VHDL language constructs in [15]. In this paper, we aim to
design and implement the automated code converter to convert
the HDL code to the Formal-HDL (the Tool 1 in Figure
2). Supported by this automatic code converter, verification
experts can then ensure that the circuit on which security
theorems are proved corresponds exactly to the HDL code
that needs to be verified.

Furthermore, in PCH the IP consumer provides informal
(written in natural language) security properties to the IP
vendor as shown in Figure 1. Upon receiving these informa-
tion, semantic translation of the informal security properties
to Formal-HDL is carried out. This translation was also done
manually in the previous PCH method. To achieve a fully
automatic PCH framework, another automation tool is required
to facilitate this conversion process1.

IV. AUTOMATIC CODE CONVERTER

In the translation, the source language is VHDL and the
destination language is Formal-HDL which is defined on top
of Gallina of Coq. As shown in Figure 3, the hardware design
constructed using VHDL syntaxes is first converted to an
intermediate representation (IR). Then, the IRs are translated
to Formal-HDL.

1Note that the development of the property formalization tools as well as
other tools for the full automatic PCH framework is out of the scope of this
paper and will be discussed in our future work.



Figure 2: Automatic PCH Framework

Figure 3: Code conversion from VHDL to Formal-HDL
through IRs

A. From-VHDL to Intermediate Representations

Our paper extends the work of [16], where a tool was
developed to translate VHDL to counter automata. Their tool
supported the following syntaxes of the VHDL language: en-
tity, generic, architecture, signals, process, direct assignment
and if-else statement. The developed tool here incorporates
additional syntaxes such as component instantiations, user

defined types, ranged types, constants, two dimensional array,
case statements.

The IRs are constructed using variables V , functions T , and
behavioural rules B. An expressions E can be formed by using
V , arithmetical (+,−,×, ÷, ⊕), relational (=, 6=, >,<, ≤, ≥),
and logical (¬,

∨
,
∧

). Let C be the subset of E containing all
boolean valued expressions. Then, a behavioural rule b ∈ B
can be written as:

c→ v := e (1)

where, c ∈ C, v ∈ V , and e ∈ E. Equation (1) signifies that
under a list of enabling conditions c, a variable v is assigned to
a new value, defined by an expression e. As shown in Figure
3, most of VHDL codes will be parsed to IRs in the form of
Equation (1).

B. Formal-HDL Representations

As shown in the Figure 1, the first step in verifying the
security properties of IP cores is converting the code written
in HDL into a DSL so that the proof-assistant can recognize
and construct proofs.

The Formal-HDL of [10], can represent basic circuit units,
combinational logic, sequential logic, and module instanti-
ations. In [15], Formal-HDL is further updated to include
component instantiations to preserve the design hierarchy of
the SoC. Below, we show code conversion details of hardware
designs from VHDL to Coq equivalent expressions.

1) Data Types: To represent a single regular logical value
in hardware, a value type is defined as a enumeration, which
includes three elements - hi, lo, and x, where hi stands for
high voltage or logical value 1, lo stands for low voltage or
logical value 0, and x stands for all other unknown values,
respectively. To define binary logical values and vectors, a bus
type is defined as a function in Formal−HDL, which takes
one parameter, a timing variable t, and returns a list of signal
values with data type value. Since the Formal-HDL can be
applied to only synchronous hardware, the variable t indicates
the global clock cycle.

2) Structural Syntax: As the most important behavior, up-
dates of wire and flip-flop/latch are distinguished as blocking
assignment and nonblocking assignment like in VHDL. Then,
the keyword assign of the Formal-HDL is used for blocking
assignment, while update is mainly used for nonblocking
assignment. During the blocking assignment the bus value will
be updated in the current clock cycle and in the nonblocking
assignment the bus value will be updated in the next clock
cycle.

To facilitate clock-edge specifications and synchronizations
among signal assignments, processes are defined in VHDL.
In Formal-HDL, these behaviours are characterized using the
following logical syntax, and constructed using propositional
logic symbol

∧
.

3) Logical Syntax: To represent logical interactions be-
tween signals, arithmetic, relational, and logic operations are
defined in Formal-HDL. For example, the logic operator
exclusive OR is defined as a type with two input and one
output:



exor : expr → expr → expr (2)

The key word expr stands for expressions and is the parent
type of all the logic operations.

Another commonly used form of syntax is conditional
statements. According to two assignment types, conditional
statements are designed as blocking if statements adoif and
non-blocking if statements doif.

4) Module Structure: For hardware infrastructure, the
Formal-HDL supports hierarchical designs where basic func-
tional blocks and low-level modules are instantiated in a
high-level structure (note that processors often follow the
hierarchical structure because of their high complexity). Like
the entity in VHDL, keywords Module Type are defined for
circuit module definitions. And the other sub modules’ instan-
tiations inside a top module are defined by using keywords
Declare Module. Meanwhile, in each module, circuit details
are described by using the keyword Fixpoint, which is a special
syntax provided in Coq for generic primitive recursion. The
input parameter of Fixpoint is defined as an inductive type,
which explains how the inhabitants of the type are built by
giving names to each construction rule. This specific inductive
type is treated as an interface which provides the rule of how
the entities are connected.

V. CASE STUDY

In this section, we show the development of a Python-
based automatic code converter, and results of converting a
sample VHDL design - AES encryption core, to its Formal-
HDL equivalent expressions.

Following Section IV, for parsing VHDL to IRs, translation
rules of [16] are used. Furthermore, we extend the tool to
incorporate additional syntaxes of VHDL such as constants,
component instances, choices in expressions, user defined
types. For the translation of IRs to Formal-HDL, mapping will
be built. For instance, as shown in equation (1), the conditions,
variables, and expressions will be described by using if-then-
else statements in Formal-HDL. Figure 3 is an example of
IR and Formal-HDL codes during the conversion of a small
VHDL program.

To test our proposed code conversion tool, we have applied
it on the AES soft IP core [17], represented in VHDL. The
synthesized AES design contains 326 registers and 935 logic
gates. Experiments were carried out in a desktop with 64-
bit Intel i7-3370 CPU and 16GB RAM. In total, the time
consumed in conversion is 1.526 seconds. Thus, we can
conclude that the time required for converting VHDL designs
to Coq equivalent code is significantly less than the manual
effort (several hours or even days) required for the same in
the previous PCH framework.

VI. CONCLUSION

As an interactive theorem prover such as Coq requires lot
of effort to manually verify hardware designs against security
specifications, PCH framework suffers from scalablity issues.
In this paper, VHDL-to-Coq code converter is developed to
automate the code conversion process in PCH framework. Two

important steps are involved in construction of this tool: 1)
translation of VHDL program to IR and 2) conversion of IR
to Formal-HDL. The results obtained while demonstrating our
tool in an AES IP core shows significant reduction in the
amount of effort required for translating the design from HDL
to the Coq equivalent code.

ACKNOWLEDGMENT

This work has been partially supported by the National Sci-
ence Foundation (NSF-1319105), the Army Research Office
(ARO W911NF-16-1-0124) and Cisco.

REFERENCES

[1] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2010, pp. 56–59.

[2] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis,” ser. CCS
’13, 2013, pp. 697–708.

[3] D. Sullivan, J. Biggers, G. Zhu, S. Zhang, and Y. Jin, “FIGHT-metric:
Functional identification of gate-level hardware trustworthiness,” in
Design Automation Conference (DAC), 2014.

[4] N. Tsoutsos, C. Konstantinou, and M. Maniatakos, “Advanced tech-
niques for designing stealthy hardware trojans,” in Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE, 2014.

[5] M. Rudra, N. Daniel, V. Nagoorkar, and D. Hoe, “Designing stealthy
trojans with sequential logic: A stream cipher case study,” in Design
Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, 2014.

[6] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying hardware:
Towards runtime verification of reconfigurable modules,” in ReConFig,
2009, pp. 189–194.

[7] S. Drzevitzky and M. Platzner, “Achieving hardware security for re-
configurable systems on chip by a proof-carrying code approach,” in
6th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip, 2011, pp. 1–8.

[8] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Transactions
on Information Forensics and Security (TIFS), vol. 7, no. 1, pp. 25–40,
2012.

[9] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assurance
by proof-carrying based signal sensitivity tracing,” in IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), 2013, pp.
99–106.

[10] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted
microprocessor IP,” in 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 824–829.

[11] INRIA, “The coq proof assistant,” 2010, http://coq.inria.fr/.
[12] G. C. Necula, “Proof-carrying code,” in POPL ’97: Proceedings of the

24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1997, pp. 106–119.

[13] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-
silicon security verification and validation: A formal perspective,” in
Proceedings of the 52Nd Annual Design Automation Conference, ser.
DAC ’15, 2015, pp. 145:1–145:6.

[14] M.-M. Bidmeshki and Y. Makris, “Vericoq: A verilog-to-coq converter
for proof-carrying hardware automation,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2015, pp. 29–32.

[15] X. Guo, R. G. Dutta, and Y. Jin, “Hierarchy-preserving formal verifi-
ation methods for pre-silicon security assurance,” in 16th International
Workshop on Microprocessor and SOC Test and Verification (MTV),
2015.

[16] A. Smrčka and T. Vojnar, “Verifying parametrised hardware designs via
counter automata,” in Haifa Verification Conference. Springer, 2007,
pp. 51–68.

[17] AES core modules. http://opencores.org/project,aes 128 192 256.


