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Abstract Trends in miniaturization have resulted in an explosion of small, low
power devices with network connectivity. Welcome to the era of Internet of Things
(IoT), wearable devices, and automated home and industrial systems. These devices
are loaded with sensors, collect information from their surroundings, process it, and
relay it to remote locations for further analysis. Pervasive and seeminly harmless,
this new breed of devices raise security and privacy concerns. In this chapter, we
evaluate the security of these devices from an industry point of view, concentrating
on the design flow, and catalogue the types of vulnerabilities we have found. We
also present an in-depth evaluation of the Google Nest Thermostat, the Nike+ Fu-
elband SE Fitness Tracker, the Haier SmartCare home automation system, and the
Itron Centron CL200 electric meter. We study and present an analysis of the effects
of these compromised devices in an every day setting. We then finish by discussing
design flow enhancements, with security mechanisms that can be efficiently added
into a device in a comparative way.

1 Introduction

Totalling an estimated of 15 billion devices, there are roughly two connected devices
per living human [1]. This is thanks to trends in this past decade, which show a
drastic increase in the number of Internet of Things (IoT) and wearable devices
in the market. This trend is expected to continue, with an estimate of 26 billion
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connected devices by the year 2020, the majority of which being IoT and wearable
devices [2].

IoT and wearable devices mainly consist of sensor nodes with the ability of trans-
mitting data. Very little processing often takes place within this type of devices,
relying on remote services or nodes to perform the computational workload. The
information collected by these devices can range from a simple heartbeat, to tem-
perature and humidity data, to energy consumption patterns, all while providing
functionality such as health monitoring and home automation. Because of the type
of information these devices gather and store, they become prime targets for attack-
ers. Further, given their always-on network connectivity some of these devices ex-
hibit, these devices can be targets for malware, increasing their potential for harmful
usage.

Although some manufacturers are aware of the privacy and security implications
in IoT and wearable devices, in most cases, security is either neglected, treated as
an afterthought, or implemented incorrectly. The few devices that implement secu-
rity mechanisms usually employ software level solutions, such as firmware signing
and signed binaries. These are methods reminiscent of those used in regular com-
puting [3–12]. These solutions, however, do not consider the difference in usage
patterns between IoT, wearable, and industrial devices when compared to tradi-
tional computing systems. This has proven to be insufficient at times. Furthermore,
concentrating on software-based security mechanisms often leaves the underlying
hardware platform unintendedly vulnerable, allowing for new attack vectors.

In order to understand the security and privacy issues associated with current
IoT, wearable and industrial devices, their design flow, and their implication, we
categorize types of vulnerabilities we have encountered during our research. We
also examine trends in manufacturing while providing a discussion of their effects
in the final device. We then present four case studies: the Google Nest Learning
Thermostat, the Nike+ Fuelband SE Fitness Tracker, the Haier SmartCare home
automation system, and the Itron Centrol CL200 electric meter. These devices were
chosen because of their popularity and importance to the industry. Furthermore, we
believe that these devices are good representatives of their respective categories. We
will provide a security evaluation of these devices and present their vulnerabilities,
demonstrating how their software-based solutions were insufficient to fully protect
the device.

2 Design Practices and Taxonomy of Vulnerabilities

Throughout our study of Internet of Things (IoT) devices, wearable devices and IoT
devices, we have found common patterns in their design flow. Although these pat-
terns simplify the design process for manufacturers, it also leaves room for security
oversights. In this section, we discuss common design patterns we have encountered
while also presenting their consequences. We then categorize these consequences
into common security vulnerabilities that are found in these embedded devices.
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2.1 Common Design Patterns

Time to market is an important metric for companies looking to introduce their
products while remaining competitive. This usually results in a shortened research
and development phase which brings about patters on the design. We now discuss
some of these patterns.

Reliance on Vendor Designs. There are cases where the lack of familiarity with
the hardware being used has led to over reliance on vendor designs. That is, prod-
ucts are directly based on a design or application solution a vendor has provided.
Whereas for targeted applications this may be sufficient, when the only available
designs are for general purpose computing devices or development boards, it may
lead to the unintentional exposure of interfaces that are meant for debugging or re-
programming purposes.

For example, Texas Instruments provides the EVM430-F6779 kit [13]. This kit
is a demonstration platform and development board for smart meter and related ap-
plications. It is based around an MSP430F6779 microcontroller and a peripheral set
necessary to build a 3-phase electric meter. Texas Instruments provides documenta-
tion [13] on how to design a smart meter around this platform, however, provides no
details on security. As a development board, this platform comes equipped with the
necessary debug facilities meant for testing. If left in a production run, an attacker
can easily leverage these interfaces to leak internal sensitive information or even
install malicious firmware to control device operation.

Software Source Models. At firmware level, some of the higher end devices
commonly utilize Linux-based software stacks. However, other open source projects
such as FreeRTOS [14] are also popular choices. Other manufacturers opt for pro-
prietary solutions, such as Wind River’s vxWors [15] or Blackberry’s QNX [16].
Smaller devices are often designed using a hardware vendor’s toolkit, such as Texas
Instruments’ DriverLib [17]. The general idea is to utilize a pre-existing framework,
saving time and development costs on the device.

Whether the software development model directly affects security is a hard ques-
tion to answer. Open source software provides the attacker with the means to easily
find vulnerabilities to utilize as an attack vector. However, under an open source
model, a manufacturer does not have to rely on a vendor for security fixes. Closed
source software requires extra effort for an attacker to reverse engineer, providing a
layer of resistance against finding vulnerabilities. However, manufacturers need to
rely on vendors once a vulnerability is found.

Weak or Bad Cryptographic Implementations. If a device is designed to be
remotely updated, it must be able to verify the downloaded image for both integrity
and authenticity. This usually involves a cryptographic algorithm, sometimes many.
Cryptographically securing a product is a complicated task, as proven by the count-
less vulnerabilities found in software, not only because of the mathematics involved,
but because of implementation errors [18–23]. Two of these vulnerabilities are of
critical importance to our research as it shows how weakly implemented crypto-
graphic systems can be bypassed, providing for a way to remotely attack the device.
These exploits describe how an attacker can remotely compromise a Belkin WeMo
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Home Automation device by exploiting the faulty usage of SSL, allowing remote
firmware installation by spoofing a distribution server, or by spoofing SSL servers
via arbitrary certificates.

Debug Interfaces on Production Runs. It is often cheaper to write images to
flash chips when assembling the device, rather than purchasing preprogrammed
parts. Furthermore, the device must be functionally tested before it leaves produc-
tion. This implies that the circuit board must expose programming interfaces and test
points for the different components present within. Although at times unlabeled,
these often unpopulated interfaces are not removed after testing. An attacker can
utilize them to inject his own code on the unit or alter their functional behavior.
The software component may also fall prey to this issue, as compilers can generate
binaries that include debugging symbols, expressing the constructs that generated
a certain block of machine code. Leaving these debugging symbols in production
runs aids an attacker in reconstructing the original sources, allowing for easier vul-
nerability detection.

Supply Chain Threats. Hardware Trojans also pose a serious threat to IoT se-
curity. These malicious modifications to integrated circuits can leak key data to an
attacker, cause a device to operate outside specified parameters, or otherwise ren-
der the device inoperable. Hardware Trojans further pose the threat of not being
detected by normal testing methodologies, requiring expensive specialized tests to
detect them. For example, a malicious adversary could insert a hardware Trojan
in a cryptographic IP core utilized in a System-on-Chip (SoC) used in an IoT de-
vice [24]. When triggered, this Trojan weakens the entropy of the random number
generator used to generate keys. If these keys are used to encrypt sensitive data that
is being transmitted by the device, the amount of computational effort required by
the attacker to decrypt the data is severely reduced.

2.2 Security Threat Taxonomy

We now group common security vulnerabilities found in embedded devices. These
categories range from software-based issues to hardware-based errors. We enumer-
ate the types of vulnerabilities below and discuss their implications.

Board Level Exploitation. During manufacturing, test points and debug ports
are added to devices in order to ensure their functionality before being shipped. This
is necessary as it is part of quality assurance during production. Furthermore, it is
often cheaper to perform in-board programming of the device rather than purchase
pre-programmed chips. Unfortunately, leaving open test points and programming
or debug ports on the circuit board provides an avenue for an attacker with phys-
ical access to probe the device and test its functionality. For example, exploits on
the XBOX 360 allows an attacker to downgrade the system to a vulnerable kernel
version through a timing attack [25] utilizing the on-board debug facilities.

Chip Level Exploitation. Commercial off-the-shelf (COTS) components are de-
signed with general purpose usage in mind. This is specially the case with micro-
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processors and microcontrollers. These devices offer commonly used functions and
peripherals with the aim to make them as flexible as possible. As such, documen-
tation on the operation of these devices is often public knowledge. As such, COTS
components are not designed to contain a per-device root of trust internally embed-
ded.

However, vendors such as Texas Instruments are capable of designing and fabri-
cating customized parts for application-specific scenarios. These parts, such as some
of their OMAP-based parts sport an on-die root of trust. Unfortunately, chip-level
exploitation of integrated circuits defeats this kind of protection. Semi-invasive and
invasive probing can reveal the secrets contained within the root of trust of the de-
vice. Modern technology facilitates the reverse engineering and leakage of sensitive
information stored on-chip. For example, by “bumping” the internal memory on an
Actel ProASIC3 FPGA, researchers were able to extract the stored AES key [26].
Furthermore, vendors such as Chipworks are capable of performing most reverse
engineering tasks on a device [27].

Boot Process Vulnerabilities. Devices that, due to processor and system limi-
tations, chainload an operating system may present security vulnerabilities. Chain-
loading refers to running sequentially larger pieces of software until the target soft-
ware has been reached. This is done since devices do not usually have all of their
hardware or software mechanisms initialized during boot. However, an attacker may
leverage issues in the boot process of a device to inject a malicious payload. Any
protection mechanism that is not active from the time of boot can be leveraged by
an attacker to insert a malicious payload.

The boot sequence is one of the main targets of attack, as many of the high-level
protection mechanisms are unable to be executed during the boot process. Since
these mechanisms are not present, it leaves the system open for attack, which makes
this a critical area to protect. For example, the attack on the iPhone’s bootloader
leads to a chain-of-trust exploit [28].

Implementation Errors. Encryption and hash functions are used in smart de-
vices to secure passwords and other sensitive information, in addition to playing a
key role in device communication and authentication. These functions are mathe-
matically proven to be secure and robust, however side-channel attacks and infor-
mation based cryptanalysis methods are threatening their integrity. In addition, im-
proper implementations of these functions and the utilization of cryptographically
weak encryption algorithms threaten the security of these devices. For example,
the Sony PlayStation 3 firmware was downgraded due to a series of vulnerabilities
in weak cryptographic applications [29, 30]. Interestingly, while the problems have
been repeated in modern smart devices, the mitigation methods have already been
proposed decades ago [31].

Software-level vulnerabilities in smart devices are similar to those in traditional
embedded systems and general computing systems. Because smart device software
stacks are often derived from the general computing domain, any software vulnera-
bilities found in the general computing area will also affect these devices. Therefore,
software patches are required to update smart devices against known software-level
attacks. Recent examples include a stack-based buffer overflow attack in glibc [32].
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Methods to mitigate software exploitation attacks often follow those developed in
general computing areas [33,34]. However, as discussed in [35] that these solutions
may not fit in smart devices due the resource constraints.

Remote Access Channels. Smart devices are often equipped with channels that
allow for remote communication and debugging after manufacturing. These chan-
nels are also used for over-the-air (OTA) firmware upgrades. Though these channels
are extremely useful, their implementations are not always secure. During develop-
ment, manufacturers may leave in APIs which allow arbitrary command execution,
or developers may not properly secure the communications channel. Through this
attack vector, attacks may be able to remotely obtain the status of the device, or
even control the device. A modern example of a backdoor in a remote channel is the
Summer Baby Zoom WiFi camera, which has hardcoded credentials for administra-
tor access [36].

3 Case Study 1: Smart Thermostat

Boot process hijacking invalidates software level protection schemes before they
are properly installed and loaded. In this case, attackers try to break the normal boot
process through the vulnerabilities within the chain-of-trust and install customized
userland images or kernel modules. Malicious payloads can be inserted into the
kernel modules and/or userland filesystems. One example of this type of attack is
the compromise of the Google Nest Thermostat [37–39].

The Nest Thermostat is a smart device designed to control a standard heating,
ventilation and air conditioning (HVAC) unit based on heuristics and learned be-
havior. Coupled with a WiFi module, the unit is able to connect to the user’s home
or office network and interface with the Nest Cloud, thereby allowing for remote
control of the unit. The thermostat is divided into two main components, a back-
plate which interfaces with the HVAC unit and a front plate which presents the main
user interface. The largest part count is found in the front plate of the thermostat,
which is driven by a Texas Instruments Sitara AM3703 system-on-chip (SoC) [40],
interfacing directly with a Micron ECC NAND flash memory module, a Samsung
SDRAM memory module and a LCD screen. Figure 1 shows the device’s internal
components and the overall device configuration.

Upon normal powering on process, the Sitara AM3703 starts to execute the code
in its internal ROM. This code initializes the most basic peripherals, including the
General Purpose Memory Controller (GPMC). It then looks for the first stage boot-
loader, x-loader, and places it into SRAM. Once this operation finishes, the ROM
code jumps into x-loader, which proceeds to initialize other peripherals and
SDRAM. Afterwards, it copies the second stage bootloader, u-boot, into SDRAM
and proceeds to execute it. At this point, u-boot initializes the remaining subsys-
tems and executes the uImage in NAND flash with the configured environment.
The system finishes booting from NAND flash as initialization scripts are executed
and services are run, culminating with the loading of the Nest Thermostat propri-
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Fig. 1: Device map of the Nest Thermostat [39].
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Fig. 2: Standard Nest Thermostat boot process.

etary software stack. Figure 2 shows the normal boot sequence of the device. The de-
vice boot configuration is set by six external pins, sys boot[5:0]. After power-
on reset, the value of these pins is latched into the CONTROL.CONTROL STATUS
register. Table 1 describes the boot selection process for a selected set of configura-
tions.

sys boot[5:0] First Second Third Fourth Fifth
001101 XIP USB UART3 MMC1
001110 XIPwait DOC USB UART3 MMC1
001111 NAND USB UART3 MMC1
101101 USB UART3 MMC1 XIP
101110 USB UART3 MMC1 XIPwait DOC
101111 USB UART3 MMC1 NAND

Table 1: Selected boot configurations

After performing basic initialization tasks, the on-chip ROM may jump into a
connected execute in place (XIP) memory, if the sys boot pins are configured as
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such. This boot mode is executed as a blind jump to the external addressable mem-
ory as soon as it is available. Otherwise, the ROM constructs a boot device list to
be searched for boot images and stores it in the first location of available scratch-
pad memory. The construction of this list depends on whether or not the device is
booting from a power-on reset state. If the device is booting from a power-on re-
set, the boot configuration is read directly from the sys boot pins and latched
into the CONTROL.CONTROL STATUS register. Otherwise, the ROM will look
in the scratchpad area of SRAM for a valid boot configuration. If it finds one, it
will utilize it, otherwise it will build one from “permanent devices” as configured
in the sys boot pins. Through this vulnerability, attackers can send a modified
x-loader into the device, coupled with a custom u-boot crafted with an argu-
ment list to be passed to the on-board kernel. Arbitrary payloads can then be inserted
into the device through the custom u-boot image [39].

4 Case Study 2: Nike+ Fuelband

Architecture wise, wearable and medical devices resemble IoT devices, however,
they tend to have much less computational power and limited communication in-
terfaces. Nevertheless, these units perform as much if not more data collection than
IoT devices do. Although closely related to IoT devices, security vulnerabilities on
wearable devices can lead to safety concerns for users. A pacemaker with wireless
capabilities was proven to be vulnerable and could be used to affect the health of the
patient [41]. Information leaks from fitness devices owned by corporate executives
could be used against them, causing the corporation’s value to deteriorate on the
market, severely affecting its performance.

Much like our work with the Nest Thermostat, we performed a similar analy-
sis on medical and wearable devices, looking for possible hardware vulnerabilities
which may be utilized against an unsuspecting user. In the following subsections, we
introduce as a secondary case study our work with the Nike+ Fuelband, a wearable
device with fitness monitoring capabilities.

4.1 High Level Overview

The Nike+ Fuelband is a low-power Bluetooth 4.0-enabled fitness wristband de-
signed to measure daily physical activity, such as the amount of steps taken, sleep
patterns and estimate the amount of calories burned (see Figure 3). This is done
by means of reading data from the on-board 3-axis accelerometer, which is subse-
quently stored within the unit. By means of software provided by the manufacturer,
the unit can communicate with a Windows or OS X based computer, as well as An-
droid and iOS devices. The collected data can then be analyzed, tracked and shared
with the Nike+ online community. Periodic synchronization with the device can
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Fig. 3: Nike+ Fuelband SE fitness tracker (credit: Nike).

be achieved with the mobile applications and real-time feedback is performed with
the on-board LED matrix display. The device is powered by two Lithium-polymer
batteries, advertised to provide up to four days of continuous usage.

4.2 Device Security

The Nike+ Fuelband contains a Bluetooth interface which it uses to communicate
with a smartphone. Some settings of the Fuelband can be configured through these
means and information from the band can be sent back to the smartphone using
this channel. Firmware updates, however, are performed by means of the Nike+
application on a Windows or OS X based personal computer. Most of the communi-
cations from the smartband are done through the smartphone or personal computer
application. Upon boot, the firmware is checked against a checksum before it is run
ensuring a valid image.

4.3 Device Descriptive Overview

The main processing unit in this device is the ST Microelectronics STM32L151QCH6
microcontroller. Built upon an ARM Cortex-M3 core, this microcontroller is de-
scribed in greater detail in Section 4.4. An LIS3DH 3-axis MEMS accelerome-
ter from the same manufacturer interfaces with the STM32 by means of a Silego
SLG46300 programmable mixed signal array. The 120-LED matrix is driven by an
AMS AS1130 driver, which simplifies some LED matrix related operations. Power
management is provided by the ST Microelectronics RS12, which also facilitates
communications over USB 2.0. Bluetooth communication is achieved by means
of a Cambridge Silicon Radio CSR1010 Bluetooth Low Energy module. Figure 4
shows the device map of the unit.
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Fig. 4: Device map of the fuelband.

4.4 The STM32L151QCH6 - A Closer Look

The ST Microelectronics STM32L151QCH6 system on a chip (SoC), hereafter re-
ferred to as STM32, is an ultra-low-power platform offering a 12 channel DMA
controller, 23 capacitive sensing channels and a CRC calculation unit. The SoC
further includes a 96bit unique ID, a preprogrammed bootloader supporting both
USB and USART programming, 116 fast input/output pins which are mappable to
a 16 interrupt vector table. Storage wise, the STM32 in question offers 256KiB of
flash storage with ECC support, 32KiB of SRAM, 8KiB of ECC supporting EEP-
ROM and a 128B backup register. Included peripherals range from an LCD driver,
to communication interfaces supporting USB 2.0, USART, SPI and I2C [42].

The included ARM Cortex-M3 core supports both the Thumb and Thumb-2
instruction set architectures. Advanced low-power optimizations are achieved by
means of multiple power and clock domains, architecture defined sleep modes and
support for advanced low-power technologies such as State Retention Power Gat-
ing. A JTAG mechanism is provided by means of serial wire debug, which provides
real-time access to system memory without halting the processor.

A simplified memory map of the STM32 is illustrated in Figure 5. The high-
lighted block of addresses in the figure are multiplexed between Flash or System
Memory, depending on the status of the external BOOT0 pin (see Section 4.5).
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Fig. 5: Simplified memory map of the STM32L151QCH6.

4.5 Boot Process and Device Initialization

Upon device power on, the STM32 executes the code stored in its internal ROM,
initializing the device’s basic peripherals. Execution then continues from internal
flash memory, which proceeds to finish device setup into a working model. Specific
to the Nike+ Fuelband, this entails activation of the Bluetooth radio, mixed signal
array and LED driver, along with the calibration of the accelerometer. At this point,
the device is ready for regular usage.

The STM32, however, implements a secondary boot mode, which is triggered
by holding the BOOT0 pin to a logic 1 as the device starts. If started this way,
the device initializes a basic set of peripherals and configures the USB subsystem.
Then, if a USB cable is detected whilst being driven by the proper clock signal, the
internal PLL reconfigures the system clock to 32MHz and the USB subsystem clock
to 48MHz. The system proceeds to execute the DFU bootloader with USB interrupts
enabled, as to allow for communication. Using this mechanism, the STM32 can be
sent commands which allow for read and write operations to memory, changing
memory protection modes and status retrieval.

4.6 Attack Vector on the Nike+ Fuelband

Although the STM32 documentation states that the microprocessor contains the nec-
essary capabilities to lock external reads and writes against the internal flash, thus
isolating the device’s firmware from the external world, this protection was not em-
ployed on the Nike+ Fuelband. As such, the contents of flash can be freely modified
by an attacker with access to the device.
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The Nike+ Fuelband contains a standard USB connector which is used for both
device charging and synchronization. This connector can also be used to write new
firmware onto the device, however, the necessary access to the BOOT0 pin is not
externally provided. As such, the device must be opened in order to trigger the
alternate boot sequence. Further complicating the issue is the fact that the micro-
controller is packaged as a Ball Grid Array (BGA) and thus no direct access to the
BOOT0 pin can be obtained. Traces on the circuit board must then be followed in
order to encounter a test point indirectly exposing the pin in question.

After following this process, we were able to indirectly locate the BOOT0 pin,
which was subsequently driven a logic 1 state by means of a 100Ω resistor connected
to VDD. This allowed us to enter the alternate boot mechanism and exploit the lack of
read and write protection on the device. By means of standard ST Microelectronics
development tools, communication over USB with the STM32 was achieved and
the device’s firmware was obtained.

With the device’s firmware in our hand, we set on to modify it. The simplest
change is one of string replacement, that is, find a string in the program that gets
displayed at some point and change it to something else. With the change made,
the modified firmware was written to the device, only to find normal functionality
had ceased to exist. Further testing demonstrated that this was caused by a failure
to compute the proper CRC for the image. Since the image was modified, the check
failed.

Closer examination of the disassembled firmware image demonstrated that it uti-
lized the CRC engine within the STM32 microcontroller in order to verify itself as
genuine by checking the result of the CRC computation against a stored value. This
value was found within the image itself, and thus easily modifiable. With the proper
checksum added, the modified firmware was sent to the device and proven to work.

5 Case Study 3: Haier SmartCare

Commercial IoT devices which directly target end-users are often designed with
emphasis on device functionality. Security features are often added in an ad-hoc
manner where remote attacks are treated as the main threats. Therefore, commer-
cial IoT devices often suffer from hardware-level vulnerabilities [37] which may be
remotely exploited. In order to demonstrate these security vulnerabilities and help
designers/consumers better understand the design backdoors, the Haier SmartCare
home automation system is selected as a case study in this paper.

5.1 High Level Overview

The Haier SmartCare is a smart device designed to control and read information
from various sensors placed throughout a user’s home which include a smoke de-
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tector, a water leakage sensor, a sensor to check whether doors are open or closed,
and a remote power switch. These sensors are connected through the ZigBee proto-
col. The primary function of this device is to allow the user to better monitor their
homes when they are away and to get alerts based on sensor information.

Fig. 6: Haier SmartCare device (credit: Haier).

In order for users to connect to the device, they must first download a mobile ap-
plication from the manufacturer’s website. Next, they must connect the SmartCare
to their network using an Ethernet connection. Following, they must connect their
mobile device to the same local network as their SmartCare. Once it is connected,
they must open the mobile application and create an account through the manufac-
turer’s cloud service, which allows users to view their sensor data outside of their
local network. Once this has been established, the users will be able interact with
the sensors from their SmartCare through the mobile application.

5.2 Hardware Analysis

The first step in our vulnerability analysis was to analyze the components on the
SmartCare’s hardware platform. The main processing unit is a TI AM3352BZCZ60,
which is a part of TI’s Sitara line of processors. The processor contains an ARM
Cortex A8 with NEON extensions. The processor also supports the use of operating
systems such as Linux and Android.Upon analyzing the data sheet for the processor,
we were able to locate traces for UART on the device. The SmartCare PCB is shown
in Figure 7.
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Fig. 7: SmartCare hardware platform.

By leveraging the UART connection, we are able to read serial data from the
device. By setting the correct parameters in the terminal emulator and connecting a
serial-to-USB device to the SmartCare, we were able to view its start up sequence.
In the beginning of the boot process, the device prompted us as to whether we
would like to stop the automatic boot sequence. Upon stopping the process we were
dropped into a U-Boot shell. It is here where the we were able to modify specific
boot parameters for the device, such as where to start reading from memory, and
what the initial shell will be. By modifying the initial shell among other variables,
attackers will be able to gain low-level access to the device. After modifying the
parameters we initiated the boot process. Once the device had finished booting up,
we were dropped into a rudimentary shell.

5.3 Into the Shell

After reading the boot output of the device, it was apparent that this device was
running Linux. Being on a Linux device, it is necessary to know what kind of per-
missions we have, running id showed us that we were on the root account of the
device. Looking through the BusyBox utility showed us that the device is capable
of running a telnet server, allows for TFTP file transfer, and is able to fetch files
from the web through wget.

Being on the root shell of the device also gave us the opportunity to look at the
password hashes on the device, shown in Figure 8.
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Fig. 8: SmartCare hashed root password.

By referencing documentation on Linux shadow file structures, we were able
to deduce that this device was using DES encryption on the password while also
not using a salt. This means that the password is truncated to a maximum of eight
characters then hashed. In order to obtain the root password for the device, the root
password hash had to be cracked. The first attempt at cracking utilized a dictionary
attack. In a dictionary attack, each password in the dictionary is hashed and subse-
quently checked against the hash in question. If the hashes match, then the password
has been found, otherwise it will continue to check and hash each password in the
list until it has reached the end. In this attack, a large word list containing approxi-
mately 32 million passwords was checked against.

Though 32 million passwords were checked against, none of them matched the
root password of this device. The next option was a brute force attack, where every
possible combination of characters is checked and hashed in order to find the root
password. The total keyspace for a DES password using printable ASCII characters

is
8
∑

i=0
95i. This is a somewhat large keyspace, and may take hours or even days to

go through every iteration on high performance hardware. Given that this method
of attack is much more computationally intensive, we tried to optimize the cracking
procedure leveraging high performance hardware with parallel processing capabil-
ities. In our case study, we used two AMD R9 290 graphics cards to speed up the
process

In our run, it took around five hours to get the root password. Since the root
password for the device was known, the next course of action was to move onto
another layer of attack. That is, we wanted to find out how we could attack other
SmartCare devices using the secret learned from the device.

5.4 SmartCare Network Analysis

The new attack we tried to perform was a network-based remote attack. The first
step in performing the network analysis was to scan the ports on the SmartCare
to see if it is listening or transmitting on any of them. By performing a network
scan we were able identify that the device may have had a telnet server running.
Connecting to the device over telnet, we encountered a login prompt. Using the root
credentials that were found earlier, we were able to get a root shell, which is shown
in Figure 9.

Since we were able to get a root shell over a local network, the next step was to
see what kind of traffic this device generates. In order to analyze its network traffic,
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Fig. 9: SmartCare Telnet login prompt.

we had to perform a man-in-the-middle attack. This involved us using our computer
as the gateway for the network the SmartCare was on. Through the gateway we were
able to provide internet access. Using a packet sniffing program we were able to see
what kind of traffic the device generates.

Once the network was up and running, we started the packet sniffer and looked
at the network traffic. While most of the traffic going to and coming from the server
was encrypted at the beginning, the device later fetched a firmware update over a
plaintext HTTP connection, which is shown in Figure 10.

Fig. 10: SmartCare fetching update from manufacturer’s server.

As we can see in Figure 10, the first line in red indicates the package it wants to
receive, which in this case is the firmware update. The second line indicates where
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it wants to get the firmware package from. The third line indicates the method it is
using to receive the package, which in this case is wget. The blue section following
shows the manufacturer’s server’s response to the firmware update fetch request, and
subsequently the firmware image. Because the firmware update was fetched over a
plaintext connection, and the SmartCare uses a standard utility to fetch the update,
we decided to fetch the update ourselves. After fetching the update using wget and
performing a file analysis on it, we were able to find that the firmware update was
simply a ZIP archive.

Unzipping the archive allowed us to see the SmartCare’s main binary along with
bash scripts for updating the device and one of the SmartCare’s main initialization
scripts. Based on the initialization script, the device will set itself up, and then run
the device’s main binary. Knowing this information, the next step in our analysis was
to see how the device handles firmware updates, which involves reverse engineering
the SmartCare’s binary.

5.5 SmartCare Binary Analysis

Using binary analysis software, we were able to search through the binary and see
how it handles updates. The device utilizes the MQTT protocol in order to commu-
nicate securely with the manufacturer’s server through an encrypted channel. MQTT
is a Publisher/Subscriber protocol, where there is a broker which takes in informa-
tion from publishers, and pushes the information to subscribers. The subscribers
subscribe to topics, which are posted by the publishers. In our case, the SmartCare
is a subscriber which communicates to the manufacturer’s server to fetch the names
of firmware updates, the correct hashes for the updates, commands from the user,
and the current time. It also acts as a publisher, sending sensor information back to
the manufacturer’s server.

In terms of actually performing the firmware update, the device will fetch the
package using the information gathered over MQTT. Once received, the device will
run an MD5 checksum on the package and compare this hash to the hash provided
by the manufacturer over MQTT. If both hashes match, the device will go through
with the update. If the hashes do not match, the device will reboot, and start the
entire process again. The whole verification mechanism is still under investigation
for possible security vulnerabilities.

6 Case Study 4: Itron Centron CL200 Meter

Similar to commercial IoT devices, smart devices are also widely used in industrial
applications. These devices, if compromised, may have a more serious impact than
compromised commercial IoT devices. To better understand the security protections
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in place for industrial IoT devices, we selected the Itron Centron smart meter as the
other case study. Figure 11 shows the smart meter.

Fig. 11: Itron Centron CL200 smart meter (credit: Itron).

6.1 High Level Overview

The primary functionality of this device is to measure a customer’s energy usage and
report the collected information through an RF channel to a nearby meter reader or
to a local substation. This information is then used to charge the customer for their
energy usage, and may also be used to get statistics on community energy usage.

6.2 Hardware Analysis

Similar to our work on the home automation device, the first step in our analysis was
to analyze the hardware platform of the smart meter. Inside of the device we were
able to see a heavy-duty plastic cover, which guarded the main hardware platform.
When looking at the hardware platform, we identified that it measures line voltage,
measures reference voltages, checks the energy flow direction, energy pulse data,
and checks the line frequency. Attached to the main hardware platform is a daugh-
terboard, which is used when a company wants to implement functionality on the
meter without having to replace the entire device.

In this case, the daughterboard is used to collect energy usage information along
with tamper data and the ID of the board itself (see Figure 12). Located on the
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Fig. 12: Smart Meter CL200 daughterboard.

daughterboard is an ATMega microcontroller, a tamper sensor, and a 1 KB EEP-
ROM. Through the microcontroller we were able to re-enable JTAG, and re-enable
write access for on-chip memories.

6.3 Device ID Modification

For our analysis, our objective was to modify the smart meter ID in order for a
meter reader to read the incorrect ID for the device. Upon further analysis, the ID
was being stored in the external EEPROM. In order to figure out the ID of the meter,
we had to read the ID on the meter itself, which is found on the front of the device
underneath the grey cover. By analyzing the EEPROM dump, we were able to find
where the ID was stored and change the ID to any arbitrary value.

6.4 Demonstration

Now that we had modified the ID of the meter, we needed to read the ID of the meter
remotely to demonstrate that a smart meter reader will pick up the wrong ID from
a modified device. Utilizing a software-defined radio (SDR), we were able to run
a TCP server on the SDR and connect it to another program which parses wireless
information and displays the ID, the tamper bit status, and the energy usage for the
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meter. Through the experimental platform, we were able to demonstrate that due to
the lack of proper protection, one compromised smart meter can “represent” itself as
any other smart meter. Figure 13 shows the SDR output in which two smart meters
share the same ID but different power consumption values. At the bottom of the
figure, there is a meter which identifies as the other, however its power consumption
is different than those above it. Through this vector, energy theft becomes possible.

Fig. 13: Demonstration of the security vulnerability on the meter

7 Discussions

7.1 Security Impact to Network

A compromised IoT device can be utilized to further attack other units in an un-
suspecting victim’s network. Effects could range from simple backdoor injection to
leaking user information and credentials to even causing physical harm to the user.
As shown with the case of the Nest Thermostat, it can be used as a beachhead to
other nodes within the network, allowing for discovery and attack of those nodes.

Furthermore, rogue services may be installed on the device, aiming to disrupt
regular network operations. For instance, a rogue DHCP server may be utilized to
inject DNS requests to a poisoned server which would return false information,
allowing for traffic shaping. Address Resolution Protocol (ARP) based attacks are
also possible, with the compromised device masquerading as the router, allowing
for the capture and redirection of a target computer’s network traffic.

Security issues with backdoored IoT devices are exacerbated by the fact that lo-
cal network credentials need to be stored within the unit, thus becoming accessible
to an attacker. Leveraging the extraction of network credentials allows for the in-
troduction of extraneous devices into the local network, granting for new methods
of exploitation against other nodes. In the case of the Nest Thermostat, the network
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credentials are stored in regular text files, and even if these were encrypted, the algo-
rithms necessary to obtain the clear text would necessarily be present on the device,
granting the attacker the means to collect them.

7.2 Safety Concerns

Safety concerns arise when compromised IoT and wearable devices see on-field
deployment. Due to the services these units provide, from communications to med-
ical applications, a compromised device could then be used to cause physical harm
to its user [41]. The Nest Thermostat could be employed to overstress the HVAC
unit it is connected to, causing it to malfunction. Furthermore, all the information
stored within the device can be utilized by the attacker to build a profile of the vic-
tim, aiding on the determination of a daily routine, the usage of which can result in
facilitating the burglarizing of the victim’s property.

7.3 Privacy Concerns

Almost all IoT and wearable devices, upon setup, will start collecting user informa-
tion. For example, the Nest Thermostat will collect information such as the location
of the thermostat, whether it is being used in a home or business, the postal code of
the area and device information from the HVAC system to determine its capabilities.
The on-board sensors on the thermostat will also collect temperature data, humidity
and ambient light data, and by means of the onboard passive infrared sensor, whether
somebody is moving in the room. Any direct temperature adjustments to the device
are also recorded and utilized in algorithms to learn and compute comfort levels
under different situations. Whenever the HVAC unit is activated, the thermostat will
record the time and duration for which this happened. Using this information, the
thermostat builds a profile for the users in order to help them feel comfortable whilst
also providing energy savings. The Nike+ Fuelband will store the user’s heartbeat
and sleeping patterns, which can then be learned by the attacker. The information
could potentially be used against the user, or against any entity the user is part of.

Although there are laws and standards defining data collection policies, some
of these have proven to be ineffective and often antiquated, as demonstrated by
information leaks from companies [43–45]. User information collected by the Nest
Thermostat is stored within the unit and uploaded to the Nest Cloud. Local log
files are sent to Nest as well and removed from the unit as to save space. System
and software logs contain information such as the user’s Zip code, device settings,
HVAC settings and wiring configuration. Forensic analysis of the unit yields that
the Nest Thermostat has code to prompt the user for information about their place
of residence or office. Reports indicate that Nest plans to share this information
with energy providers in order to aid with efficient power generation [46]. As for
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the Nike+ Fuelband, the information collected and stored by the unit is then sent
to a personal computer or mobile device, from where it can be publically shared
with other users. Even if the information is not shared, an unauthorized third party
still has access to the data from a compromised device and can use it for their own
purposes. Although IoT manufacturers have gone through considerable efforts to
ensure the secure transmission of this data, it is all for naught if it can be leaked at
the source.

8 Related Work

Current IoT and wearable device literature often treats IoT from a network perspec-
tive or provide solutions that are inherently incompatible with the needs of a man-
ufacturer. Few works have been published discussing the security of IoT devices
themselves [47, 48]. In the ensuing sections, we summarize some of the previous
work that has been presented in this area.

8.1 IoT Secure Protocols and Network Protection

An early survey about the IoT has shown that security and privacy are the main
concerns that need to be addressed before IoT devices are widely adopted [49].
Proposed solutions for security rely on network protocols to ensure IoT security.
Meanwhile, encrypted communication is treated as the effective solution for privacy
protection. However, these proposed approaches do not consider the unique proper-
ties of IoT devices. The authors in [50] summarized all current security threats to the
IoT network but these threat models are mostly derived from network security. They
claim that hardware level attacks, such as differential power analysis (DPA) [51],
are of high cost and therefore less harmful. Similarly, the authors in [4] treat IoT as
an extremely interconnected network and list possible solutions to secure the IoT
network including protocol and network security, data and privacy, identity man-
agement, trust and governance, fault tolerance, cryptography and protocols, identity
and ownership, and privacy protection. All these methods try to regulate the com-
munication between IoT devices under the assumption that all IoT devices are op-
erating properly. The authors in [5] tried to solve IoT security through different IoT
topologies: centralized architectures [6] and distributed architectures [7, 8]. Again,
the network based solutions only emphasize high level structures without consider-
ing whether the available resources in IoT devices can afford these topologies.

Other research focuses on the secure communication between IoT nodes. For ex-
ample, the authors in [9] focus on secure communication between IoT devices and
present an Identity Authentication and Capability based Access Control (IACAC)
model to protect IoT from man-in-the-middle, replay and denial of service (DoS)
attacks. The authors in [10, 11] expand the definition of IoT to include four nodes
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in a typical IoT network: person, intelligent object, technological ecosystem, and
process. The authors claim that IoT security cannot be solved at a single-layer, but
should require the analysis of the interactions between these nodes. A 2D version of
the systemic approach was developed, which was expanded to a 3D version high-
lighting new functional plans of security [12].

Following this route, communication protocols were then developed to secure
the interactions between IoT nodes such as 6LoWPAN [52] and Constrained Ap-
plication Protocol (CoAP) [53]. The CoAP was constructed based on Datagram
Transport Layer Security (DTLS) [54] and IPsec [55]. To counter the attacks at the
transport layer, protocols were enhanced to use either HTTP/TLS or CoAP/DTLS
by proposing a mapping between TLS and DTLS [56] or using secure tunneling on
the transport layer [57]. However, these communication layer security analyses and
protection methods ignore device level vulnerabilities and often impose unrealistic
constraints on device deployment.

8.2 Hardware Based Protection

Besides network level protection, researchers from the industry have also tried to
develop highly secure processor/SoC architectures for IoT protection. ARM Trust-
Zone is an industry landmark in providing a basis of trust for various applications
such as secure payment, digital rights management (DRM), enterprise and web-
based services. TrustZone technology provides infrastructure foundations that al-
low a SoC designer to choose from a range of components that can perform specific
functions within the security environment [58]. Intel proposed the concept of en-
claves recently [59, 60]. An enclave contains software code, data, and a stack that
are protected by hardware enforced access control policies. Samsung KNOX has
also been developed with protection in mind [61]. KNOX provides a safe execution
environment in a KNOX-enabled device where the userland is verified and a KNOX
container holds sensitive data, such as corporate contacts and e-mails in a cellphone.
If the device is deemed to be compromised by altering the bootloader, an e-fuse
is blown inside the SoC driving the unit, thus branding it as untrusted. However,
these hardware-based secure architectures are developed with passive protection in
mind, whereas they do not detect and mitigate hardware and software level attacks.
Samsung KNOX is possibly an exception to this, however, it remains to be proven
whether or not it is possible to bypass any checks to the e-fuse protection in the
bootloader. TrustZone environments have been proven to be compromised as shown
in [62–64] by exploiting bugs in the software stack. Furthermore, these solutions do
not transfer well to low power embedded units. For example, at the time of writ-
ing, Samsung KNOX is only available in select Android-based cellular phones and
tablets.
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9 Device Security Enhancement

9.1 Security Solutions Common to IoT and Wearable Devices

Verifying the firmware at update time is a step towards securing IoT devices, how-
ever, this is often done by the on-board software. As with the Nest Thermostat and
the Nike+ Fuelband, the on-board software is trusted to be authentic. The imple-
mentation of this check, however, must be sound. For example, schemes that utilize
random numbers must ensure the usage of a cryptographically secure random num-
ber generator, any used cryptographic certificates must be validated by a trusted
Certificate Authority [22]. A weakly implemented cryptographic algorithm is no
better than a lack of a cryptographic algorithm.

However, as we have demonstrated with our case studies, it is insufficient to
authenticate an update image. The software stack must also be authenticated before
it can reliably determine if an update is valid or not. With the devices compromised,
we are free to bypass any checks on the update image, thus rendering the protection
mechanism ineffective. A proper chain of trust in the hardware infrastructure of the
device can aid the process of determining an authentic software stack [65].

The attack in both the Nest Thermostat and the Nike+ Fuelband could have been
avoided had a proper chain of trust been implemented. Inherently, this needs the
type of hardware support which is not available in either the Sitara AM 3703 used
in the Nest Thermostat or the STM32 microcontroller used in the Nike+ Fuelband.

The exposure of debug interfaces in these devices further presents a risk. These
are often left as residues from development prototypes or as testpoints used during
manufacturing. These debug interfaces can also serve as the means to service IoT or
wearable devices on the field, as to ease repairs. As such, we can see why they may
be needed. However, these interfaces must be protected against attackers. For exam-
ple, FRAM devices in the MSP430 lines provide means to both secure JTAG access
and to protect certain memory segments from access using a built in IP Encapsula-
tion Module [66]. Other microcontrollers and microprocessors offer the same kind
of functionality, implementing means to restrict access to its debug units. As such,
manufacturers are able to still expose these interfaces for testing purposes and lock
them before they are deployed. Ideally, however, any debug interfaces should be
removed from production runs or have proper protections.

9.2 Specific Solutions for IoT and Wearable Devices

Often, IoT devices provide a full operating system in which binaries are loaded
into an userland. This simplifies the interface to the hardware and provides high
level Application Programming Interfaces (APIs). The Nest Thermostat, for exam-
ple, employs an embedded Linux stack which is used to launch the proprietary Nest
application which relays commands to the backplate of the unit and controls the
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communications channels. As we demonstrated in our case study, binaries can be in-
jected into the filesystem of the unit and executed in devices that utilize this model.
As such, extra protection must be added to devices that load binaries into a userland.
A possible approach is to only load and execute cryptographically signed binaries.
This requires the kernel to have a custom loader that verifies these binaries as they
are prepared for execution. If the signature verification fails, then the binary is not
run and the device is set into a failsafe mode, notifying the user of possible tamper-
ing.

In devices whose architecture is self contained, that is, microcontroller based sys-
tems, it becomes necessary to secure all update channels. External reprogrammabil-
ity of the microcontroller and any debug interfaces it may feature must be disabled.
The microcontroller must also be programmed before being placed in the circuit
board, as to avoid adding unnecessary interfaces which could expose functionality.

9.3 Overhead of Security Solutions

There is usually a certain degree of overhead associated with any protection mech-
anism. Cryptography necessarily adds computational overhead to any protection
scheme that utilizes it. It may be reasonable to expect then that any device which
utilizes encryption or any other cryptographic function to require binaries with func-
tions to include the necessary checks and have higher memory and CPU require-
ments in order to perform better. However, current industry solutions include parts
which are capable of accelerating these processes, much like the microcontroller uti-
lized in the Nike+ Fuelband which can accelerate CRC32 computations [42]. This
reduces the software overhead needed to perform these checks, but slightly increases
the area and power consumption of these parts. It should be noted, however that for
most parts, power can be gated to the SoC subsystems that are not being utilized,
thus reducing power consumption in the device.

10 Conclusion

As our case studies demonstrated, a non-secure hardware platform will inevitably
lead to a non-secure software stack. A vulnerability in the design of the unit can re-
sult in its compromise. Furthermore, without being able to authenticate the running
software, it can not be trusted to make decisions about its own validity. Due to the
short time to market engineers are given to finish a product, we believe that most of
the current IoT and wearable devices suffer from similar issues. Software protection
becomes ineffective if the hardware is vulnerable to attack. This raises safety and
privacy issues with users, is their information safe?

Moving forward, we will continue to probe other IoT devices for security, with
the goal of finding vulnerabilities in their hardware. Ultimately, this will lead us to
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a better understanding of design issues and how to correct them. We will attempt to
build prototypes of smart devices that utilize our proposed chain of trust to test for
their viability and ability to prevent malicious attacks.
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