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A B S T R A C T

In modern Integrated Circuits (IC) design flow, from specification to chip fabrication, various security threats
are emergent. These range from malicious modifications in the design, to the Electronic Design Automation
(EDA) tools, during layout or fabrication, or to the packaging. Of particular concern are modifications made to
third-party IP cores and commercial off-the-shelf (COTS) chips where no Register Transfer Level (RTL) code or
golden models are available. While chip level reverse engineering techniques can help rebuild circuit gate-level
netlist from fabricated chips, there still lacks a netlist reverse engineering tool which can recover the full
functionality of the rebuilt netlist. Toward this direction, we develop a tool, named Reverse Engineering Finite
State Machine (REFSM), that helps end-users reconstruct a high-level description of the control logic from a
flattened netlist. We demonstrate that REFSM effectively recovers circuit control logic from netlists with varying
degrees of complexity. Experimental results also show that the REFSM can easily identify malicious logic from a
flattened (or even obfuscated) netlist. Supported by REFSM, another tool, called Reverse Engineering Hardware
Obfuscation for Protection (REHOP), is developed to enhance gate-level netlist security without learning the
RTL code.

1. Introduction

Third-party resources in hardware circuit designs, mostly in the
format of third-party fabrication services and third-party soft/hard
Intellectual Property (IP) cores for System on Chip (SoC) development,
are prevalently used in modern circuit designs and fabrications. The
availability of third-party soft/hard IP core resources largely alleviates
the design workload, lowers the fabrication cost, and shortens the time-
to-market (TTM). However, the heavy reliance on third-party re-
sources/services also breeds security concerns. For example, a third-
party IP core may contain malicious logic and/or design flaws which
will be exploited by attackers after the IP cores are integrated into SoC
platforms. In addition, a malicious foundry may insert hardware
Trojans into the fabricated chips. The impact of malicious logic and
design flaws in IP cores or fabricated chips threatens to ruin the
credibility of third-party vendors and places unnecessary security risks
on the users.

To counter the threat of untrusted third-party resources/services,
both pre-silicon and post-silicon trust evaluation approaches have been
proposed. During the pre-silicon stage, researchers mostly focus on
verification and validation methods on RT-level code. UCI [1] analyzes
the RTL code to find lines of code that are never used in order to
identify suspicious circuitry; however, hardware Trojans have been

designed that successfully defeated UCI [2]. Other approaches for pre-
silicon trust evaluation rely on formal methods, either to ensure the
consistency between RTL code and high level specifications [3], or to
ensure that the delivered IP cores fulfill pre-specified security proper-
ties [4–7]. At the post-silicon stage, the majority of the trust evaluation
and hardware Trojan detection methods rely on on-chip equivalence
checking [8] or side-channel fingerprinting [9,10]. Large design over-
head and high testing cost is associated with these methods. While
most of these methods try to enhance the testing methods for security
validation, there is a lack of reverse engineering tools which can rebuild
the full functionality of the netlist for further analysis. Upon this
request, DARPA initiated the Integrity and Reliability of Integrated
Circuits (IRIS) program. The program emphasizes that the security
challenges associated with third-party resources/services are coupled
with the inability to guarantee the generation of comprehensive test
vectors to test functions not in the specification [11]. In response to
this program, various solutions and algorithms have been proposed
trying to recover the data-path as well as the functionality of each
circuit module in the data-path from a gate-level netlist, such as
behavioral pattern mining [12,13], word-level structure reconstruction
[13,14], and structural and functional analysis on individual gates and
sub-modules [15]. Many of these methods although formal lack the
ability to extract control logic. Worse even, these methods tend to be
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limited by the fact that they require prior knowledge of the design sub-
modules to be effective, and thus although these methods are formally
defined they can still suffer from inaccuracies.

While these proposed methods help recover the functional blocks in
the data-path and reconstruct part of the functionality of arbitrary gate-
level netlists, the control logic, a less-regulated circuit component, is
rarely discussed. The previously presented data-path functionality
recovering methods cannot be used in control logic analysis for various
reasons: 1) Signals are often in the format of multi-bit buses in a data-
path, whereas they often act individually in control logic; 2) The full
functionality of a data-path may be rebuilt through the analysis of
separate gates and sub-modules. However, we have to recover the
entire control logic, often in the form of finite state machines (FSMs),
in order to understand the control logic functionality; 3) Due to the
flexibility of FSM structures it is difficult to build a module library with
all possible control circuit components. As a result, a control logic
recovery method is required which, if combined with data-path analysis
methods can help consumers to reconstruct the full functionality of the
third-party IP cores (or fabricated chips) where RTL descriptions are
not available.

Orthogonal to the above mentioned IP validation methods, re-
searchers are also investigating defensive solutions among which
netlist obfuscation for IP protection serves as a leading example [16].
Due to the uncertainty of de-obfuscation tools and assumptions about
the behavior of adversaries these methods appear to be effective. These
methods insert a small FSM, which requires traversal before access to
the real functional FSM is granted. Adversaries attempting to directly
rip off the IP without concern to the unlocking sequence encounter
issues. In practice, the infrequency with which the edges are traversed
(2 I| | per edge, where I is the set of input wires that are used to unlock the
functional mode of the FSM) prevents an adversary from accessing the
real FSM.

However, with the use of something as simple as a scan chain the
adversary gains a tremendous amount of Reverse Engineering cap-
ability. An adversary can determine the required input for an edge
traversal in roughly 1000 vectors, but can then remember this required
key, which reduces the expected number of test vectors from 1012 to
4000. The protection provided by these methods deteriorates even
faster when the adversary knows the gate-level netlist, even if the
designed is flattened [16].

Upon these challenges in IP protection, the goal of this paper is of
two-fold. First, an automated netlist analysis tool is developed to help
users fully understand the circuit control logic without the need for
consulting the RTL description. The automation tool is named Reverse
Engineering Finite State Machine (REFSM) to emphasize its usage in
rebuilding circuit control logic. As opposed to previous methods for
FSM reverse engineering in [17–19], REFSM builds a Boolean expres-
sion based on the gate-level netlist related to the FSM registers and
employs a 3-SAT solver to construct the FSM registers transition graph
(3-SAT solvers have been used to check equivalence of FSMs [20]).
Second, leveraging the REFSM tool, a new gate-level netlist security
enhancement framework is developed to protect a third-party netlist
without the assistance of an RTL description, nor its high level
specification. The new framework, called Reverse Engineering
Hardware Obfuscation for Protection (REHOP), is demonstrated here-
in to outperform existing netlist obfuscation methods [21,22]. The
main contributions of this paper include:

• We present REFSM, a reverse engineering tool that can fully recover
the control logic from a gate-level netlist. REFSM produces a
readable, high-level description of the gate-level netlist making
maliciously inserted logic easily identifiable.

• We produce and demonstrate an automated REFSM toolchain.

• We present REHOP, a gate-level netlist control logic obfuscation
tool. We demonstrate it is resilient to existing de-obfuscation
techniques.

• We produce and demonstrate an automated REHOP toolchain
integrated with REFSM.

The rest of the paper is organized as follows: Section 2 introduces
the basic working flow and supporting algorithms of REFSM. Case
studies of REFSM on various circuit designs are presented in Section 3.
Further experimentation results are elaborated in Section 4 demon-
strating the effectiveness and efficiency of REFSM in automatically
detecting stealthy hardware Trojans. Section 5 introduces the REHOP
tool for netlist security enhancement and its effectiveness in IP
protection. Concluding remarks are in Section 6.

2. REFSM working flow

REFSM attempts to recover the control logic from a gate-level
netlist and present to the user a higher-level description. A general
outline of REFSM is shown in Fig. 1. The netlist is first collected either
from chip level reverse engineering or from the IP provider. The end
user is then required to initiate the process and modify the recursion
depth if run-time becomes an issue. Since designs can contain
hundreds of thousands of gates or more, the first step is to reduce
the number of gates to be analyzed by identifying and isolating FSM
registers. Once identified, REFSM explores the complete state space of
the FSM registers using a 3-SAT solver and determines all FSM register
states that can be achieved from a starting state. Performing the 3-SAT
solver multiple times enables the user to construct a FSM state register
transition graph from which the general topology of the finite state
machine is gathered. To do this, the end user may need to adjust the
recursion depth as desired, or keep on running the solver until the
desired results are obtained. The selection of the recursion depth may
vary depending on the specification of the circuit-under-test. Using the
reset state of the FSM as a starting point, the FSM graph is then
explored to provide an order of the state transitions so that generating
a higher level description of the FSM can be done more easily. To
elaborate the details of the REFSM working flow in Fig. 1, we will first
address the key ideas behind each stage of the REFSM working flow.
Technical details which are essential to accurate FSM control logic
recovery will be introduced later.

REFSM was constructed based on the following three key ideas.

Find non-State Registers

Large Search
Space?

Netlist

Prune unimportant 
Registers

Simplified FSM(s)

Evaluate (3-SAT)

Modify Recursion Depth

Split FSM(s)

No

Yes

Construct FSM

Fig. 1. REFSM working flow diagram.
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First, since storing all possible circuit states and transitions among all
states will cause a massive memory overhead, as a preliminary step, a
subset of registers is selected to represent the achievable states.
Selecting the subset of registers has proved to be difficult. We will
leverage existing methods to identify state registers. Meanwhile, in
order to gain a better understanding of the behavior of the whole
netlist, an expanded set of registers may be needed. This expanded set
will then be determined based on the desired accuracy as well as
consideration of the runtime and memory usage.

After we get the state registers, the second step is to derive all
transitions between each circuit state. In this case, since a netlist can be
directly represented by 3-SAT expressions, solving the transition graph
of the netlist can be converted into a 3-SAT problem. Therefore, an
efficient 3-SAT algorithm will be sufficient for extracting the transition
graph from a netlist.

Third, the recovered global FSM may not be the one users are
looking for since the combination of different FSMs from submodules
will make it difficult to explain the overall functionality. That is, a target
netlist may have multiple independent modules combined together
with each module containing their own control logic in the form of
FSMs. As the result, the third step is to decompose the global FSM into
sub-FSMs for each submodule. To achieve this goal, a straightforward
heuristic algorithm is applied which can help decompose the global
FSM with high computing efficiency and reduced runtime.

2.1. Create logic graph and identify state registers

REFSM starts by creating the logical graph from a flattened netlist.
The graph contains edges from inputs/registers to registers/outputs.
Since REFSM determines the potential states of the registers, the
outputs will not be considered. Any logic that is output exclusive
(registers whose fan-out contains no registers) is removed from the
graph. What remains is logic from inputs and registers that can affect
other registers either directly (register at time t can vary from register
state/input at time t − 1) or indirectly (register at time tmay vary based
on register state/input at time t k− , where k> 1). REFSM then
identifies the potential state registers following the heuristic algorithms
proposed in [19].

Algorithm 1. Find an FSM graph given a set of expressions EXPS
from a flattened netlist and a starting expression set resetState.

1: functionGETREGISTERSTATES EXPS resetState,
2: Let FSM be an empty graph G N E( , )
3: Add the resetState to the Queue; Set N to resetState{ }
4: while Queue ≠ ∅ do
5: Get a currentState from Queue
6: currentExp EXPS LastState currentState← . ( )
7: F← FETCH currentExp( )
8: for nextState F∈ do
9: if nextState N∉ then
10: Queue add nextState. ( )
11: N N nextState← ∪ { }
12: end if
13: E E currentState nextState← ∪ {( , )}
14: end for
15: end while
16: returnFSM
17: end function
18: function FETCHexps
19: ifexps contains no variablesthen
20: return exps{ }
21: end if
22: x← first variable in exps
23: newExps exps set x false← . ( , )
24: F Fetch newExps← ( )

25: newExps exps set x true← . ( , )
26: F Fetch newExps F← ( ) ∪
27: return F
28: end function

2.2. Prune graph

Next, using the netlist and the set of state registers, REFSM prunes
out potentially unimportant registers. The process involves a Breadth
First Search (BFS) through the netlist up to a maximum distance of δ
from the set of state registers.1 This precomputation is used to produce
a smaller subset of the netlist, which allows for an estimated register
state graph in a reasonable amount of time and memory usage.
However, in case that the current δ still causes the program problems,
δ will be decreased by users and the algorithm will be run again. The δ
reduction process is performed until a state register graph is produced.

The justification for graph pruning is as follows. Some data registers
are required for determining which states are visited. Even though they
might not affect the state registers immediately, they can cause
significant changes to state register values in the future. Conversely,
some of the registers might not be pertinent to what state the circuit is
in or can visit. As an example, a register only affects outputs and, unless
considered a state register, can be removed since it does not affect state
registers. The call to remove registers is tough, so all registers are
considered important. Only if the amount of possible states becomes
too large, REFSM will prune some potentially less important registers.
Our implementation considers both ‘0′ and ‘1′ as potential values for
each “unimportant” register. If there are 10 registers that are not
considered important by the pruning step, then each state actually
corresponds to over 1000 states. Checking and storing each one of
these can take time, but certain assumptions about the graph can also
reduce the number of states that need to be considered. The process of
checking and pruning is performed until the number of states is small
enough that the state graph can be fully constructed. Analysis can then
be performed on the resulting graph to recover control flow and/or to
detect malicious logic.

2.3. Evaluate state space

After generating a pruned graph, REFSM searches for all possible
states of registers that are achievable by using the function
GETREGISTERSTATES (see Algorithm 1). The given netlist is represented
by a set of Boolean logical expressions, EXPS, and a set of false and true
values (‘0′ and ‘1′) to represent each state that the registers can take on.
The only registers that are listed in each state are those which were
determined to be important in the prune step. The Queue is initialized
with the reset state (resetState). Meanwhile, the set of seen states (N)
also contains the reset state to prevent reusing it again. By looping
through all elements in the Queue all possible register states are
generated. A single iteration starts by pulling out the first element in
the Queue. A new set of expressions is generated by filling in all the
values currently in the register state. As an example, if the register is set
to be true (value ‘1′) in the current state, then when making the new
expressions from the netlist all variables relying on the register's output
will be recalculated accordingly. This new expression is sent into the 3-
SAT function, FETCH, for evaluation and returns the set of all achievable
register states using the given expression. The GETREGISTERSTATES func-
tion constructs an FSM graph by searching for any states not included
in the graph, and then evaluating which states they can reach. Each
new state is added both into the Queue and into N. The overall run-
time is N N(O| | + | | × 2 )inputs2 (# ) .

1 Similar to the step of deciding which registers are state registers, the register pruning
is a heuristic approach.
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As a key part of the function GETREGISTERSTATES, the FETCH function
starts by checking the expression for unassigned variables. If there is a
variable that has yet to be assigned and the variable can affect the
outcome of the expression, the FETCH function will need to decide what
value to use. Otherwise, it will return the expression as it is. If there
were unassigned variables, the FETCH function will randomly pick one of
them, set its value to ‘0′, check the outcome recursively and add it into
the resulting expressions. The FETCH function will then set the variable
to ‘1′, check the outcome, and add the resulting expression into the
function output. After we go through all of the variables, the function
will then return all identified states.

The complexity of the FETCH function operation is O (2 )n in the worst
case, where n is the number of variables that can change. In practice,
due to the structure that many netlists follow, there are few variables
that have an effect on the outcome of the next state. Most of the states
terminate at a depth of 8 or less in our experimentation (See Section 3).
This makes the number of visited states less than 256. Further, many of
the inputs perform a similar function so if one is set to ‘1′, the others no
longer need to be checked. For example given 20 variables ANDed or
ORed together, the number of decisions that need to be made becomes
21. Although the computational complexity of the FETCH function
appears daunting, it normally can be run in a reasonable amount of
time such that the total run-time for REFSM becomes very low (See
Table 1).

2.4. Post-processing on reconstructed FSM

After deriving the global FSM, some extra steps for further analysis
of the recovered control logic may be required. Determining simple
transition conditions is one task that REFSM performs. This enables
users to find suspicious transitions. A more important task is separat-
ing local FSMs from the global FSM, which is referred as FSM
decomposition and is described below.

For demonstration purpose, we consider the case that two inde-
pendent FSMs were merged. This results a pair of states (αi, βj) of the
merged FSM, where αi is from the first FSM and βj is from the second
FSM. Each pair of transitions that originate from the individual states
should be traversable. In this case, the edges leaving the state (αi, βj)
will contain at least the Cartesian product of the reachable states from
state αi and βj. More formally

α β α E α β E β E α β{( , ) | ∈ [ ] ∧ ∈ [ ]} ⊆ [( , )]i j i i j j i j′ ′ ′ 1 ′ 2 (1×2)

where E α[ ]F is the state set that can be reached from state α in an FSM
F. This infers that the merged FSM will be the tensor product of the
original FSMs.

It should be noted that there have been algorithms which can
decompose the tensor products on undirected, unlabeled, connected
graphs into unique prime factor decompositions (UPFD) in polynomial
time [23]. However, to decompose a merged FSM involves directed
graphs and appears to be a harder problem. Therefore a heuristic-
based approach is used to take advantage of the register labeling to
split the graph into UPFD. The bottom part of Fig. 1 presents an
overview of the decomposition heuristic used in REFSM. The basic idea
is to assume that each pair of registers is originally independent. Then

look for contradicting sets of independent registers (either by vertex
label or transition topology) and merge the found sets together until all
register sets can properly construct the original FSM using their tensor
product. Algorithm 2 lists the detailed description of the used
algorithm.

Algorithm 2 (! ht). Returns a partition of an FSM given a set of
registers, R, and an FSM graph G N E( , ).

1: functionSPLITFSM R, G N E( , )
2: Let  P P= { |i i is the Partition containing register i}
3: Assume no register depends on a register other than itself.
4: for i j R, ∈ such that P P≠i jdo

5: Let G N E( , )i i i be the FSM with registers dependent on i
6: Let G N E( , )j j j be the FSM with registers dependent on j

7: LetG N E′( ′, ′) be the FSM with registers dependent on i and j
8: If there exists u N∈ i and v N∈ j and u v N( , ) ∉ ′then
9: P P P← ∪ ;i i j P P←j i

10: else
11: If there exists e E∈ i and l E∈ j and e l E( , ) ∉ ′then
12: P P P← ∪ ;i i j P P←j i

13: end if
14: end if
15: end for
16: return 

17: end function

3. Experimental results

In order to verify the effectiveness and the scalability of the
developed REFSM tool, we applied the tool on various circuit designs
ranging from small-scale ASIC designs to medium- and large-scale
microprocessors. As we will demonstrate shortly, the control logic
within all these testing circuits are recovered successfully in the format
of finite state machines. The experimental tests are run on a desktop
with Intel i7 quad-core and 16 GB memory. The average run-time for
different circuits are listed in Table 1. For small-scale and medium-
scale circuits, our algorithm can reconstruct the circuit control logic
from a flattened netlist in less than 1 min (less than 1 s in most cases).
The run-time is below 10 min even for large-scale circuits. From
Table 1, we can also find that in general the REFSM would have a
larger computation time for larger circuits. However, the complexity of
the control logic will affect the computation time. For example, 32-bit
RSA Encryption [24] circuit finishes faster than the smaller RS232
transceiver due to the RSA circuit's more regular circuit structure.

3.1. RS232 transceiver

The RS232 transceiver includes two sub-modules for data transmit-
ting and data receiving. The sub-modules including the transmitter and
the receiver work independently without interfering with each other. In
addition, they have their own input/output pins at the top module.
However, the flattened netlist does not maintain the circuit hierarchical
structure and there is no clear boundary between them. Therefore, the
selection of an RS232 circuit is ideal for verifying the capability of
REFSM in isolating different FSMs from a flattened netlist.

Using the flattened RS232 netlist as the input, our REFSM tools
recover the control logic in the format of FSM of the entire circuit.
Fig. 2 shows the recovered global FSM which contains 25 unique states
with quite complicated transmission conditions among these states.
This FSM, although containing the entire functionality of the RS232
circuit control logic, is almost meaningless to users and testers due to
its complexity. However, the FSM decomposition component of
REFSM can help simplify the FSM structure.

Table 1
Average run-time for sample circuits.

Testing circuits Registers Total gates Run-time

RS232 Transceiver 59 168 1 s
32-bit RSA 555 2139 <1 s
MC8051 μP 578 6590 39 s
SPARC μP 119911 232978 600 s
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Using the recovered FSM in Fig. 2, the developed FSM decomposi-
tion tool can isolate independent states from the entire FSM. In this
case, two independent FSMs, Fig. 3a and 3b, are separated from the
control logic in Fig. 2. To validate the correctness of the FSM
decomposition results, we build the real FSMs of the receiver and
transmitter submodules in the RS232 circuit which are identical to the
recovered FSMs both in available states and in all state transition
conditions.

3.2. 8051 microprocessor

The reason we used the 8051 microprocessor is to show the
potential of REFSM in dealing with a highly-complex circuit structure.
The source code of the 8051 microprocessor is written in VHDL, where
each instruction will take up to three clock cycles to complete [25].
Based on the RTL code, we first constructed the real FSM when dealing
with different instructions (see Fig. 4a). We then synthesize the circuit
and generate the flattened netlist of the 8051 microprocessor. The
flattened netlist is then used as the input of the REFSM, which then
recovers the control logic from the netlist. The recovered netlist is
shown in Fig. 4b. A comparison between Fig. 4a and 4b shows us that

these two FSMs are of the same structure. In fact, the transition
conditions are also identical.

4. REFSM in hardware trojan detection

The capability of REFSM for control logic recovery can also help
detect hardware Trojans which are triggered by a specific input
sequence, so-called sequential Trojans. Compared to the hardware
Trojans that rely on only combinational logic to be triggered, sequential
Trojans are much more difficult to activate and can evade many
hardware Trojan detection methods [26]. However, since the behavior
of the sequential Trojan triggering mechanism can be modeled as an
FSM with the specific input sequence serving as the transition
conditions, REFSM can help rebuild and isolate the Trojan FSM.
From this circuit users/testers can easily identify the Trojan logic as
well as the Trojan triggering conditions. For demonstration purposes, a
Trojan-infected cryptographic platform is used [27,28]. The platform is
an FPGA implementation designed to perform all necessary operations
for ciphertext transmissions through public channels. The user inputs
data via a keyboard attached to a PS2 interface. This text is displayed
through a VGA port onto an attached monitor. The user then initiates
the encryption of the data entered via a button on the FPGA board. The
encryption used is an 128-bit AES encryption core; the user also has
the ability to select up to 16 different encryption keys by changing a
combination of four switches on the FPGA before initiating the
encryption sequence. Once encryption is finished, the user can then
send the encrypted data through an on-board serial port.

In this design a Trojan was inserted in the top level module that
uses a finite state machine to read a specific input sequence from the
user, via the keyboard. Once the sequence is entered, the activated
hardware Trojan will leak the AES encryption key through the serial
port. The Trojan trigger seems simple but it can evade many hardware
Trojan detection methods [28].

However, if we can identify all states of the Trojan FSM, determin-
ing the actual behavior of the Trojan becomes apparent. Using the state
space exploration techniques presented, all FSM states and transitions
were correctly identified by the REFSM, as well as the correct
conditions of the inputs for each transition. State diagrams were
constructed of the edge-lists for the recovered FSMs. Fig. 5 shows
the recovered FSM of the inserted hardware Trojan and its triggering
conditions. The letter on each transition curve shows the keyboard
input which will enable the transition among these states. While the
REFSM tool will not tell us whether the recovered FSM is genuine or
malicious, users/testers can easily identify the suspicious logic and

Fig. 2. Recovered control logic of the entire RS232 netlist.

Fig. 3. The two FSMs recovered from the RS232 netlist (a) First decomposed FSM, (b)
Second decomposed FSM.

Fig. 4. The FSM recovered from MC8051 netlist and RTL (a) The RTL FSM, (b) The
REFSM FSM.
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conclude that the special input sequence, ‘New Haven’ in this case, is
outside the design specification and therefore potentially a hardware
Trojan trigger. Users may further validate their findings by triggering
the suspicious circuit by inputting the special sequence.

Besides the elaborated example, we also applied our solutions to the
hardware Trojan benchmarks from Trust-Hub [24]. Table 2 shows
some of the testing results from which we can find that the REFSM tool
can help detect hardware Trojans with sequential trigger and/or
sequential payload in seconds.

5. REHOP for design obfuscation

Reverse Engineering Hardware Obfuscation Protocol (REHOP)
inserts additional gates to a gate level netlist with the intent to prevent
IP piracy. Previous methods for hardware protection via netlist
obfuscation have been proposed [16]. Such methods create additional
states within the netlist's logical FSM. These states comprise what is
commonly referred to as the obfuscation mode, while the original states
are called the normal mode. While the FSM is in obfuscation mode the
modules of the circuit have a sizable chance of not performing properly,
such that it becomes impossible to determine the actual function of the
IP.

Previous methods do not scale well; the method of adding each new
state caused the insertion of many gates, which is why re-synthesis was
required. This limited the desired number of inserted states. The case
studies covered in the previous methods can be bypassed by an
intelligent adversary, who is without access to the gate level netlist.
Determining the full FSM of a four register state machine with
transitions conditions relying upon ten input signals requires no more
than 16000 input vectors, assuming there is a scan chain [29].

5.1. Attack model

Attack models in previous work are often over-simplified. It has
been assumed that adversaries behave randomly when stealing IP. That
is, an attacker will only randomly select a subset of State Elements (SE
or registers), a subset of primary input, a subset of output, and an input
sequence to unlock the IP core [16]. This model is unrealistic and,
therefore, it becomes difficult to measure the protection level of an
obfuscation protocol using the attack model.

Instead, in this paper, we assume that an adversary has access to
the scan chain of the netlist. Moreover due to the trial and error, the
adversary has determined the SEs that belong to the FSM. This allows
the adversary to, within a finite amount of time, determine the FSM of
the netlist. This becomes the reason that one of REHOP's goal is to
make full FSM recovery infeasible.

5.2. Obfuscated FSM

Similar to previous methods, REHOP creates additional FSM states
by inserting a few SEs and other gates. The basic version of REHOP
inserts two SEs that determine the FSM's mode. These two SEs control
whether the FSM is one of 4 sub-modes, which can almost ensure that
key guessing will lock the chip until it is reset. Unlike other methods
the obfuscation mode is broken into 3 potential modes. The first mode
is also called the standard obfuscation mode that can reach the normal
mode with enough “correct” input, i.e., a particular subset of the
primary input meets a specified requirement, which has been in the
past determined by a PUF [16]. The second obfuscation mode is a
penalized obfuscation mode. This mode is reached by inputting an
incorrect sequence while in the standard obfuscation mode. With
enough correct input sequences the FSM can reach the obfuscation
mode. The second mode allows the user an additional chance to unlock
the circuit by potentially re-entering the first mode. The third mode is
the black hole mode. In this mode no other modes can be reached
(including the normal mode). The chip needs to be reset to enter the
function mode once in the blackhole mode. This mode can be reached
by inputting incorrectly in the penalized obfuscation mode (the second
mode). To bolster the size of each FSM a subset of the SEs already
within the netlist are utilized to store the state of the FSM.

Fig. 5. The recovered hardware Trojan trigger.

Table 2
Run-time and Trojan detection capability on Trust-Hub benchmark.

Benchmark Trigger Payload Trojan recovered? Run-time

AES-T100 Always On CDMA Trojan Side Channel Recovered 18 s
AES-T400 Plaintext= RF Trojan Side Channel Recovered <1 s

128'hffffffffffffffffffffffffffffffff

AES-T800 Plaintext = CDMA Trojan Side Channel Recovered <1 s
1) 128'h3243f6a8885a308d313198a2e0370734
2) 128'h00112233445566778899aabbccddeeff
3) 128'h0
4) 128'h1

b15-T400 Address=8′hFF Denial of Service Recovered <1 s
s38584-T100 Scan Enable Mode Design Malfunction Recovered <1 s
MC8051-T200 pcon (control_mem)=1′b1 Reduced Design Reliability Recovered 90 s
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5.3. Key generation

A number of methods can be employed for creating the “correct”
sequence of keys. The latest version of the REHOP utilizes a look up
table whose input comes from the SEs of the obfuscated FSM. An
example of a look-up function could be XOR of random words
dependent on the SEs that are logic-1. The output of this look up
module is then XOR-ed with a subset of the primary inputs. The
resulting set of values are put into an AND tree. If the result is logic-1,
then the key is considered “correct”. Otherwise the state will suffer
some penalty, assuming the FSM is in some obfuscation mode. See
Fig. 6 for an example gate-level implementation of the look-up table.

This method does not necessarily use the whole state space, that is
there might be states unreachable from the FSM's start state. A
knowledgeable attacker only needs to try at most 3(2 )(2 )PI SE| | | | to
determine the correct sequence to unlock the Netlist, where PI is the
chosen subset of primary inputs and SE is the set of chosen state
elements that represents the obfuscated FSM. More complex (and
protective) methods can be generated utilizing random particular
combinations of SE as additional XORs.

5.4. Case study

To test our tool a simple FSM is run through our protocol. Fig. 7
shows the resulting graph representation of an FSM that has under-
gone the REHOP obfuscation process. The orange node represents the
starting state. The yellow nodes represent the states leading to the
normal FSM. States capable of reaching the black hole states with an
incorrect key are represented by the red nodes. The nodes that act as
the black hole states are colored black. Due to the small number of
registers used in the original Netlist the FSM (normal FSM and the
obfuscation FSM combined) is quite small. The number of test vectors
required to recover this was around 60,000,000, largely because the

number of inputs in the look up table was 20. Luckily as the number of
registers increases the required number of test vectors for design
recovery increases exponentially.

5.5. Discussions

The next step of REHOP is to improve itself to the point that the
adversary model can be strengthened. Many goals needs to be met to
achieve strengthen the adversary. First goal should be to improve the
design for the look-up. Currently the degrees of freedom (DOF) of the
look up table is the number of SEs used as input, that is the number of
vectors that the adversary needs to learn is SE| |. A simple method for
improving the DOF is to utilize combinations of SEs for updating the
return value, but this model only increases the DOF by the number of
inserted combinations. That is to utilize the full entropy of the system
the size of the look up module would (with the proposed method) have
to be exponential in size, which would defeat the purpose of the
compact design. The saving grace of the original method is that if the
gates of the table are camouflaged (which would need to be done in
either scenario due to the vulnerability of the look up table) it takes an
exponential amount of time to determine each word, with respect to the
amount of inputs.

A second goal that should be reached to extend the adversary model
to determine how to hide and complexify the FSM structure. If the
adversary understands that the AND tree needs to be logic-1, then the
IP pirate can easily extract the entire design by implementing the
netlist in software with the AND tree connect to 1. Additional SEs
might be inserted to allow the FSM to break to different realizable
normal mode FSM. the drawback being that the size of the sequential
logic increases which is undesirable due to its cost.

6. Conclusion

This paper proposed and evaluated a method for reverse engineer-
ing the control logic from a gate-level netlist. The algorithm designed
and implemented showed promising results with reasonable run time
on standard desktop computer hardware. For every test, all states were
successfully identified along with their correct state transitions and
conditions leading to near perfect FSM reconstruction. In addition, the
developed tool helps identify sequential hardware Trojans which,
otherwise, would be very difficult to detect through existing testing
methods. We expect that the developed tool will be widely implemen-
ted in other hardware security areas. Supported by the REFSM tool, an
automatic netlist security enhancing framework is also developed
which can help obfuscate the control logic without referring to the
RTL code. The new tool, REHOP, provides IP developers and IP
distributors an effective solution to protect third-party IP, especially
those in the format of gate-level netlist.
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