
Towards Hardware-Assisted Security for IoT
Systems

(Invited)

Yier Jin

Department of Electrical and Computer Engineering

University of Florida

yier.jin@ece.ufl.edu

Abstract—As computing devices become more commonplace
in every day life, we have seen an increase of possible attacks
on commercial devices and critical infrastructure. As a result,
both academia and industry have proposed solutions to mitigate
or outright eliminate the ever expanding set of viable targets.
Initially, this resulted in an influx of software-based defenses
against these emerging threats. Unfortunately, it was found
that software solutions could be bypassed with more advanced
attacks and often resulted in high performance overhead. As
such, hardware-assisted security defenses have been developed to
provide improved security while keeping performance overhead
to manageable levels, especially for IoT devices. In this paper,
we will provide a survey of prominent hardware-assisted security
defenses. We will enumerate the attacks these defenses aim
to protect, as well as their effectiveness. We will also discuss
the implications in both performance and system design. A
comparison between approaches that target the same set of issues,
and possible directions for future research will be presented.

I. INTRODUCTION

With the advent of inexpensive and low-power processors,

we have seen an explosive growth in interconnected embedded

devices. These devices are categorized under the umbrella

term Internet of Things (IoT). The rate of penetration of

these devices in the market has exhibited accelerated growth,

with Gartner predicting over 20 billion devices by 2020 [1].

This popular trend has made IoT devices a viable target

for attackers. For example, the Mirai botnet exploits weak

credentials in IoT devices to install malicious payloads [2].

However, we have found that security issues in IoT go beyond

weak credentials and software vulnerabilities.

As the complexity of emerging devices increases, new attack

surfaces are exposed. A wide array of vulnerabilities, such as

improper data validation [3], [4], [5], memory corruption [6],

[7], [8], and improper permission checks [9] are surfacing as

a result. Responding to this, both industry and academia have

developed new and novel defenses to protect newly developed

devices against these emerging attack vectors.

To help researchers better understand the challenges and

the state-of-the-art of IoT security, in this paper, we will

summarize popular IoT attack categories, as well as present

some of the defenses that have been developed as a result.

We also discuss a few security primitives provided by the

industry to ameliorate the security burden placed in IoT device

manufacturers and their developers. We will describe the

functionality of the defense as well as a discussion on the

applicability of these defenses to modern devices and their

deployment requirements.

The remainder of this paper is structured as follows: Section

II introduces popular attack categories which have been used

in the wild to compromise devices. Section III presents a

series of hardware primitives which offer the means of building

secure systems. We follow this with a discussion of defenses in

Section IV, then present a discussion of their applicability and

deployment issues in Section V. Lastly, we present concluding

remarks in Section VI.

II. ATTACKS

In this section, we will introduce the emerging attacks

on IoT devices. Some of these attacks are derived from

general purpose computing platforms due to the increasing

complexities of IoT systems.

A. Code-Reuse Attacks

Code-reuse attacks are attacks that utilize code already

existing in the device to deploy a malicious payload [10]. To

deploy this kind of attack, possibly remote attacker corrupts

and injects code pointers in a device to alter control-flow in a

running application. For example, in most architectures when a

function calls another function, the return address for the caller

is stored in the stack. An attacker with access to a memory

vulnerability that allows for corrupting stack values can change

the stored return address. When the function returns, it no

longer goes back to the caller, but to an attacker controlled

program location.

Snippets of code targeted this way are called gadgets.

Gadgets end in indirect call or jump instructions. An attacker

needs a way to control the value used by the indirect control-

flow instructions, otherwise the attack is much harder to pull

off. Some popular IoT architectures, such as ARM and MIPS,

store the return address to the caller in a register rather than

the stack. However, the contents of the register must be spilled

to the stack before the called function calls another function.

In these architectures even though the return address is stored

in a register, non-leaf functions spill this value into the stack,

where it can be subject for corruption.

Another common technique for attackers to utilize are use

after free allocation errors. In this case, the attacker has the

program allocate an object over a previously allocated object.

Due to an error in the program, the previously deallocated

632

2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978-1-7281-3391-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ISVLSI.2019.00118



object is reused. The program utilizes the contents of the newly

allocated object as part of the old one. An attacker can utilize

this method to, for example inject virtual pointer tables to

perform code reuse attacks.

B. Firmware Modifications

Firmware modification attacks are more invasive than code-

reuse attacks. This style of attack involves physically changing

the software being run in the device. Firmware modifications

can utilize vulnerable update facilities, exposed debug inter-

faces, fault injections, etc. Through firmware modification an

attacker can run arbitrary code on the device without the

limitations present in a code reuse attack. No longer does

the attacker need to find a gadget catalog to utilize, nor an

exploitable memory vulnerability to launch the attack itself.

Cui et al demonstrate the ability and effects of remotely

modifying the firmware of an HP printer by exploiting the

firmware update procedure [11]. The update process utilizes

a specially crafted print job containing the update image.

Unfortunately, insufficient checks were done on the update

image, allowing anything to be written as device firmware.

This allows an attacker capable of sending a print job to

the device to replace the firmware with a malicious one,

for example allowing to transmit the documents printed to a

remote location.

Ronen et al discovered a flaw on the update procedure used

in the Phillips Hue smart bulb [12]. The flaw was caused

by a vulnerability in the ZigBee stack provided by Atmel

Corporation, one of the main vendors behind the technologies

used in the bulb. The authors demonstrate how a single device

can be compromised and the malware spread to its neighbors

by only requiring being physically near the first victim.

C. Brute Forcing

Brute forcing is a relatively uncommon type of attack where

the attacker will try random combinations to bypass a security

mechanism. This attack is often impractical, in the sense

that its theoretical computational runtime is O(n). However,

popular IoT devices often ship with a default username and

password for remote management purposes. These default

credentials for different devices are enumerated and stored in

a database. To launch the attack against a device, the attacker

continuously tries the stored credentials until a valid login is

achieved. At this point, the attacker has local access to the

device, often with administrator privileges.

This style of attack is centerpiece in the popular Mirai

botnet [2]. The Mirai botnet targets exclusively IoT devices.

Infected devices scan the IPv4 address space for possible

attack targets. Once a device is found, it is scanned for known

administrator interfaces by looking at common ports. If known

ports are found, then the target device is bombarded with

credentials until valid credentials are found. The attacking

device then commands the victim device to download and

execute a payload, resulting in a firmware modification attack.

The payload has two major functions. First, it integrates

the device into the Mirai botnet which makes it capable of

receiving remote commands from the botnet operator. Second,

it makes the device scan for new targets as means to further

expand the botnet.

III. SECURE HARDWARE PRIMITIVES

In this section we describe a few commercialized security

hardware primitive designs that system-on-chip (SoC) vendors

have been including in their devices. Device manufacturers are

given the option of utilizing them to build defenses.

A. ARM TrustZone

The ARM Security Extensions, popularly known as Trust-

Zone, is a mechanism that provides hardware-backed isolation

of program data and code [13]. This is accomplished by

defining a new operation mode, or world, in the CPU: secure
mode, or secure world. The fabric of the AMBA/AXI bus

is also extended to allow for bus peripherals to properly

respond to requests depending on the mode the CPU is in. SoC

vendors licensing the Security Extension have the option of

gating certain peripherals to be accessible only when the CPU

is executing in secure mode. Accesses to these pre-defined

regions of memory result in an access violation and trigger an

interrupt.

When a TrustZone-enabled SoC starts up, the CPU begins

executing code in secure mode. The CPU can then set up

attributes for a few regions of memory, gating them from non-

secure mode, or normal world, access. The size and number

of regions that can be defined are dependent on the memory

controller present in the platform. The software must also

create an interrupt vector table for the secure world. Then,

the software drops privileges to normal mode and continues

to execute. Requests done by the normal world to the secure

world are done through the secure monitor call instruction,

smc.

In effect, platforms that make use of TrustZone can be

seen as having two operating systems running in parallel: the

normal world and the secure world operating systems. The

secure world operating system is often smaller, and provides

a limited number of security-related services. This is done to

reduce the potential attack surface. In contrast, the normal

world operating system is much larger and feature-rich. A

popular example that makes use of this technology is the

Android operating system. The secure world software manages

operations such as storing fingerprints, performing fingerprint

verification, and digital rights management (DRM) related

tasks.

B. ARM TrustZone-M

The often called ARM TrustZone-M, is the version of the

security extension present in the ARMv8-M profile [14]. Al-

though the bus matrix in the SoC is subject to changes similar

to those in regular TrustZone, the overall mode of operation

is different. The ARMv8-M security extension makes use of a

Secure Attribute Unit (SAU) and an optional, implementation

defined attribute unit (IDAU). The SAU and IDAU define

a set of regions in the address space an ARMv8-M based

microcontroller, flagging them as secure, non-secure, and

633



secure and non-secure callable. As their name imply, the

secure region can only be accessed by secure software, the

non-secure region can only be executed from by non-secure

software, whereas the secure and non-secure callable region

can be executed with the CPU in either mode.

When software starts up, it begins executing with the CPU

in secure mode. Software is then responsible for setting up

the SAU, and if present, the IDAU. The software then sets

up the stack pointer for the non-secure program, and uses

a veneer trampoline to jump to it. This region is flagged

as secure and non-secure callable. Non-secure software can

request services from the secure software by trampolining to

it using the veneer region. These trampolines contain a secure

gate instruction, sg, which changes the CPU mode and allows

transitions between states. The sg instruction also serves as a

basic protection against unintended use of secure software, as

it also acts as the entry point to all secure software.

C. Trusted Platform Modules

The Trusted Platform Module (TPM) is a series of specifi-

cations which establish the working mechanisms of a stan-

dalone integrated circuit which provides cryptographic and

secure storage services to applications [15]. TPM-provided

services include facilities to generate random numbers, secure

generation of cryptogrpahic keys, remote attestation, and the

binding and sealing of keys. Software must be made aware of

the TPM in order to utilize it.

TPMs expose a series of registers that can be modified

by software through calls to TPM routines. This is usually

done through a concatenate-hash-store primitive. At first, the

software resets the contents of the TPM registers to zero.

Then, the software computes a hash which is then sent to the

TPM. The TPM concatenates this hash to one of its internal

registers, then performs a hash of the concatenation, and stores

the results. As more code is loaded and executed, hashes are

sent to the TPM, which proceeds to process them in the same

fashion. When software requests a key from the TPM, the

contents of the registers must be the same as they were when

the key was generated. If not, the key can not be unlocked and

sent out by the TPM. The idea behind this process is not to

release secrets from the TPM if the software is in an unknown

execution state.

IV. DEFENSES

In this section we describe a few defense approaches that

have been proposed to defend against attacks in IoT devices.

These defense approaches target different style of attacks, and

should be viewed orthogonal to each other.

A. Control-Flow Integrity

Control-flow integrity (CFI) is a powerful defense mecha-

nism that aims to prevent code-reuse attacks by enforcing an

application’s control-flow graph (CFG). Under a CFI policy,

deviations from the intended CFG results in an error that

can be handled by either the hardware or some supervisor

software. The major CFI implementations can be categorized

in heuristic-based and instrumentation-based. Heuristic-based

CFI policies examine the behavior of the software to determine

whether a CRA is under progress. Instrumentation-based CFI

policies add checkpoints or instructions to program code to

signal the CPU or some form of supervisor of control-flow

transfers that need to be tracked. Both types of policies may

require specialized hardware support to gather the necessary

runtime information. We now describe a few CFI policies.

1) HAFIX and derivatives: HAFIX [16] and its successors

[17], [18] modify an embedded LEON3 SPARC CPU, and

Intel Siskiyou Peak core in the case of HAFIX. These ap-

proaches add new instructions and a dedicated subsystem to

dynamically track a properly instrumented program’s control-

flow while keeping state metadata in a secure memory loca-

tion. We enumerate the added instructions for the approach

in [18] in Table I. Hereafter we refer to this approach as

HAFIX++.

The HAFIX++ model also requires the introduction of

a label shadow stack and a label state register. These are

directly accessible to the operating system, but not to a running

process. That is, non-privileged code can only modify the

contents of the label shadow stack and label state register

through the CFI instructions, whereas the operating system

can use move and load/store instructions to change state in

these two components.

TABLE I
BASIC HAFIX++ INSTRUCTION SET. INSTRUCTION ENCODINGS ARE

HARDWARE DEPENDENT AND TO BE DECIDED BY THE IMPLEMENTATION.
IMMEDIATE FIELDS MUST BE AT LEAST 16bit WIDE AND MUST MATCH

THE SIZE OF THE ENTRIES IN THE LABEL SHADOW STACK.

Mnemonic Action

cfibr Pushes an immediate value into the label shadow stack.
Must be issued by a compiler two instructions before an
indrect call. Hardware must enforce this instruction order.

cfiret Pops from the label shadow stack and compares obtained
value with an immediate value. Raises interrupt if values
are not equal. Must be issued by compiler after a call
instructions. Hardware must enforce this instruction is
executed after a return.

cfijmp Set the label state register to an immediate value, discarding
any previous value. Instruction must be issued prior to an
indirect jump instruction. The hardware must enforce this
execution order.

cficall Set the label state register to an immediate value, discarding
any previous value. Instruction must be issued prior to an
indirect call and after a cfibr. The hardware must enforce
this execution order.

cfichk Compare an immediate value to the value stored in the
label state register. Raises an interrupt if values are not
equal. Must be issued by compiler at the prologue of every
function. Instruction must be executed after an indirect call.
The hardware must enforce this execution order.

HAFIX++ instrumentation requires compiler support, in

that compiled binaries must be generated with instructions

in proper places. Figure 1 shows how instrumentation for

HAFIX++ proceeds. After linking binaries, a tool is run to

instrument labels. Function returns are trivially instrumented,

but indirect calls and jumps require extra work.

In the example in Figure 1, the program starts executing

on the main() function. The function is instrumented. The

values for labels are arbitrarily assigned, with the exception

634



int fn_a(void) {
int a, b;
scanf("%d %d", ←↩

&a, &b);
return a + b;

}

int main(void) {
int i = fn_a();
return i + 1;

}

fn_a:
cfichk 3 ;; �
save %sp, -96, ←↩

%sp
;; ...
ret
restore

main:
cfichk 2 ;; �
save %sp, -96, ←↩

%sp
cficall 3 ;; �
cfibr 4 ;; �
call fn_a
nop
cfiret 4 ;; �
;; ...
ret
restore

Fig. 1. HAFIX++ instrumentation. The compiler inserts new instructions
before and after call/jump instructions, as well as in function entries and
targets for indirect jumps.

being for the entry point in main(). This is represented by �.

The runtime expects the entry point to be instrumented with

the value of 2. This instruction causes the immediate label to

be checked against the contents of the label state register. As

the softare continues to execute we prepare to make a function

call. First, the cficall instruction is executed, �, storing

the value 3 in the label state register. Then, the instruction

cfibr is executed pushing the value 4 into the label shadow

stack, �. The call is then executed. Upon entering fn_a(),

the cfichk instruction is executed, �. Its immediate label,

3, is checked against the contents of the label state register.

After the function returns, we execute the cfiret in �.

This instruction pops the last value in the label shadow stack

and compares it to the immediate value of 4. A successful

comparison indicates that we are at the proper return site.

Comparison failures in the HAFIX++ model indicates that a

code-reuse attack is underway. For this reason, it is imperative

that software instrumentation is properly done, with unique

labels for call-return pairs, and for function entries jump

targets. To deal with the situation where multiple callers

target the same function, HAFIX++ suggests the usage of

trampolines, where trampolines can be uniquely instrumented

for each function.

2) CFI CaRE: Nyman et al. propose CFI CaRE [19] as

means of providing an interrupt-aware CFI policy for ARM

microcontrollers without the need for any hardware modifica-

tions. CFI CaRE requires code to be instrumented, replacing

all control-flow instructions with calls to a Branch Monitor.

Furthermore, it leverages the security extensions introduced in

the ARMv8-M architecture as means of storing control-flow

metadata.

B. Firmware Attestation

Firmware attestation is a technique that is utilized to make

a claim about the properties of a device’s software. In an

attestation scheme, two mutually exclusive parties are in-

volved. The verifier in an attestation scheme is a trusted party

which can determine whether a device is operational or not

given information received about a device. The information is

collected by a prover, which usually resides on the device

itself. The main challenge in attestation approaches is the

design and implementation of the prover. The prover must

collect enough information about a device, as well as provide

it to a verifier in a way so that the provided information can

not be forged by an attacker. In this section, we summarize

previous attestation works.

1) SMART: Eldefrawy et al. propose a small root of trust for

embedded devices in SMART [20], providing a static remote

attestation solution. It incorporates the prover into a small on-

chip ROM. This code cryptographically hashes and computes

an HMAC [21] over a range of code based on the attestation

request. The computed HMAC is sent to a remote verifier to

ensure correctness. The HMAC is computed using a pre-shared

attestation key that is securely stored in the device, as well as

a nonce that is sent by the verifier as part of the attestation

request with the objective of avoiding replay attacks. Leakage

of secrets is avoided by ensuring memory erasure whenever the

ROM code finishes executing. Further precautions are taken

to avoid indirect leakage by controlling execution within the

ROM, allowing only a single point of entry and a single exit

point. Since ROM code is formally verified to be memory safe,

no code reuse attacks are possible to leak the secret key.

Verifier Prover ROM program code
� �

�

Fig. 2. Flow of operations in SMART. A remote verifier sends a request
to a device, to which the prover responds by securely hashing the requested
portion of program code using a pre-shared key.

We show the basic flow of SMART in Figure 2. When the

prover receives an attestation request from the remote verifier

�, the prover suspends the currently running task and hashes

the requested portion of code memory, �. The result of the

hash operation is sent to the verifier, �. Using the returned

HMAC, the verifier can determine whether program code on

the device has been mutated.

2) C-FLAT: Abera et al demonstrated in [22] that it is insuf-

ficient to use only the device code as means for attestation as

code-reuse attacks are able to bypass attestation mechanisms

that use this type of system. They proposed Control-Flow

Attestation (C-FLAT) [22]. C-FLAT is a remote attestation

mechanism that statically aggregates the execution path of

a running program, including branches and function returns.

The prover collects control-flow information as code executes

and hashes it to compute a measure of the device. On an

attestation request, the verifier receives the hashed control-flow

information and compares to the expected behavior on its end.

The device passes attestation if the expected hash matches the

obtained one. Loops and conditional branches in C-FLAT are

treated and checked as subprograms. Doing otherwise causes

the possible number of valid measures that the verifier has to

635



compute to check device operation increase at an exponential

rate.

trampolines

C-FLAT

library

insn_a
bne lbl
insn_b
lbl: insn_c
insn_d

hash

TrustZone

Kernel

�
�

�

�

Normal World Secure World

Fig. 3. C-FLAT test implementation model. Trampolines are used to enter
the Secure World and perform control-flow attestation.

C-FLAT was implemented and tested in a Raspberry Pi 3

single board computer. We show a simplified view of the

implementation in Figure 3. Code is instrumented so that

control-flow instructions target a trampoline section which

belongs to a runtime tracer. The branch instruction in question

target the trampoline area �. The trampolines allow software

to transition to a BLAKE2 [23] Measurement Engine which

resides in a TrustZone environment, �. The Measurement

Engine is part of the device’s prover and is responsible for

hashing control-flow. When the hash engine finishes executing

it returns control to the trampolines, �, which ultimately

returns control flow to the program �. When the remote

verifier sends an attestation request to the device, the prover

replies with the collected information. The authors report

that as the number of control-flow events increase, overhead

increases linearly.
3) ATRIUM: Zeitouni et al demonstrated how Time of

Check Time of Use (TOCTOU) attacks can bypass attestation

schemes, compromising the attestation result. As a result, the

authors propse ATRIUM [24]. ATRIUM borrows concepts

from C-FLAT and SMART in that it utilizes control-flow and

code being executed as part of the information collected by the

prover to generate a measure of the device. However, unlike

C-FLAT and SMART, ATRIUM dynamically collects this

information by tapping into the processor’s pipeline to extract

both control-flow and instruction information. This allows live

analysis of the code being executed by the CPU. The obtained

information is hashed using a hardware implementation of the

BLAKE2b cryptographic algorithm.

A RISC-V PULPino core [25] was extended to include

ATRIUM. The modified core was synthesized and tested

targeting a Virtex-7 XC7Z020 FPGA with minimal hardware

overhead. Under the configured conditions, the authors report

a total resource utilization of 15% of the total slice registers,

20% of slice LUTs, and 18 kbit of BRAM. Performance

overhead ranged from 1.7% to 22.69%, depending on the

amount and frequency of control-flow instructions in the tested

algorithms.

C. More Defenses

ARM mbed uVisor is a self-contained software hypervisor

gives programmers the ability to create secure compartments

with the characteristic of being independent of each other [26].

ARM uVisor targets the popular Cortex-M3 and Cortex-M4

microcontrollers. Containers execute in non-privileged mode,

and with the use of the ARM Memory Protection Unit (MPU)

access to critical system resources is restricted. Resources are

exposed to containers through the service call interface.

In a similar vein, Minion [27] provides guarantees close to

those of uVisor. Minion ensures that the real-time constraints

of an embedded operating system are not violated. Much like

in uVisor, Minion dynamically reconfigures the ARM MPU

whenever a task switch occurs. This way, Minion creates a

separation between running processes. MPU information is

encoded in a bitmap-like data satructure, which is associated

to every task at compile time. As further precaution, only a

small codebase is executed with privileges.

Raj et al. propose fTPM as a software implementaiton of

a Trusted Platform Module utilizing ARM TrustZone in [28].

Authors note that portions of the TPM specification cannot

be fully implemented without contributing factors from the

SoC vendor. For example, authors note that a secure clock

cannot be properly made, nor the case with secure storage.

This is because in order to provide a secure clock or storage,

the SoC vendor must have designed their product with this

in mind: a real-time clock module and a non-volatile memory

must be gated inside the TrustZone environment. However,

authors were capable of implementing a large portion of

the TPM specification within the TrustZone environment,

demonstrating that even without full SoC support, advanced

security functions can still be provided with the ARM Security

Extension.

V. DISCUSSION

In this section we discuss the matter of deployability of

these defenses in terms of the requirements from device

manufacturers, SoC vendors, and IP core licensors.

Most of these defenses require some form of change to the

hardware platform they run on. CFI CaRE, as well as Minion

and uVisor are exceptions to this. Hardware changes are not

well within the scope of most vendors. For example, devices

built around ARM-based cores rely on SoC vendors for the

main component of their device. In turn, SoC vendors license

the CPU core in their integrated circuit from ARM. Device

manufacturers who wish to deploy defenses that require hard-

ware modifications need for ARM to implement the required

hardware primitives or additions to the instruction set into the

IP that is eventually licensed from SoC vendors.

We note that in the case of SMART [20], Texas Instruments

(TI) controls the processor core IP and also designs and sells

microcontrollers using this core. It is reasonable to believe that,

if there was interest on their side, a defense mechanism such as

SMART can be implemented1. We should mention that similar

primitives already exist in the MSP430 architecture. Some

microcontrollers offered by TI include the IP Encapsulation

option which is capable of isolating sensitive code with

different permissions [29]. This feature can be extended by TI

to provide the necessary functionality to implement SMART.

1Please be aware that ARM does not allow for any customized micropro-
cessor architecture modifications so far.

636



In contrast, mechanisms such as CFI CaRE, Minion, and

uVisor do not require currently unavailable hardware primi-

tives to be implemented. CFI CaRE makes use of the ARMv8-

M Security Extension, while Minion and uVisor make use of

the ARM Memory Protection Unit, which can be found in

popular embedded platforms such as the STM32F407.
Control-Flow Integrity approaches also require full knowl-

edge of the control-flow graph (CFG) of the program at hand.

Unfortunately, it is impossible to provide an algorithm to

compute the CFG in the general case, as this would involve

solving the halting problem. However, for individual cases,

with manual intervention, a CFG can be obtained for a

program. This, however, requires time and money in part of the

device’s manufacturer. Further compounding this issue is the

asynchronous nature of embedded devices. Interrupts generate

unexpected control-flow transfers which must be handled by

the CFI policy at hand. CFI CaRE addresses this to a degree,

but with a limitation: CFI CaRE’s policy does not allow for an

interrupt vector to return to a different position in code, as it

would be the case with schedulers on a Real-Time Operating

System (RTOS).
Moreover, the overhead of some of this approaches, such

as C-FLAT, prove to be prohibitive for performance critical

applications. C-FLAT reports an overhead of 72% to 80%

when testing performance with Open Syringe Pump. ATRIUM

halts the CPU whenever the prover needs time to finish the

hash process. This may be detrimental for systems that require

a 100% uptime.

VI. CONCLUSION

In this paper, we briefly introduced the emerging threats

to IoT systems. While these attacks are not new to general

computing systems, the ever increasing complexities of IoT

systems makes these attacks applicable to IoT devices. A

series of hardware-assisted protection mechanisms were also

summarized which, compared to software-based solutions, are

more effective countering attacks and cause less performance

overhead. We expect that more hardware-oriented solutions

will be proposed. In parallel, we hope that microprocessor

and SoC providers will quickly adopt these hardware based

methods for IoT security.

ACKNOWLEDGEMENT

This work is partially supported by the Department of

Energy through the Early Career Award and the National

Science Foundation (CNS-1801599). Any opinions, findings,

conclusions, and recommendations expressed in this material

are those of the author and do not necessarily reflect the views

of the U.S. Department of Energy or the National Science

Foundation.

REFERENCES

[1] A. Nordrum, “Popular internet of things forecast of 50 billion devices
by 2020 is outdated,” 2016.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
1093–1110.

[3] D. Rosenberg, “Reflections on trusting trustzone,” BlackHat USA, 2014.
[4] Mitre Corporation, “CVE-2015-4421: Huawei tzdriver Module Vulner-

able checks,” 2015.
[5] ——, “CVE-2015-4422: Huawei TEEOS Vulnerable Checks,” 2015.
[6] ——, “CVE-2015-6639: QSEE - PRDiag* Commands Privilege Esca-

lation,” 2015.
[7] ——, “CVE-2018-16522: AWS secure connectivity modules – uninitial-

ized pointer free,” 2018.
[8] ——, “CVE-2018-16526: usGenerateProtocolChecksum memory cor-

ruption,” 2018.
[9] ——, “Cve-2017-13209: Insecure permissions check that allows hal

service change,” 2017.
[10] P. Larsen and A.-R. Sadeghi, Eds., The Continuing Arms Race: Code-

Reuse Attacks and Defenses. New York, NY, USA: Association for
Computing Machinery and Morgan & Claypool, 2018.

[11] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[12] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 2017, pp. 195–212.

[13] ARM, “Building a secure system using trustzone technology,” ARM
Limited, 2009.

[14] ARM Limited, ARMv8-M Architecture Reference Manual, 2019.
[15] ISO/IEC, ISO/IEC 11889:2015 Trusted Platform Module, 2015.
[16] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,

O. Arias, and Y. Jin, “Hafix: Hardware-assisted flow integrity extension,”
in Proceedings of the 52nd Annual Design Automation Conference.
ACM, 2015, p. 74.

[17] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“Hcfi: Hardware-enforced control-flow integrity,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy.
ACM, 2016, pp. 38–49.

[18] D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,
“Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[19] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259–284.

[20] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: Secure
and minimal architecture for (establishing dynamic) root of trust.” in
NDSS, vol. 12, 2012, pp. 1–15.

[21] M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using
hash functions: The hmac construction,” RSA Laboratories’ CryptoBytes,
vol. 2, no. 1, pp. 12–15, 1996.

[22] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 743–754.

[23] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“Blake2: simpler, smaller, fast as md5,” in International Conference on
Applied Cryptography and Network Security. Springer, 2013, pp. 119–
135.

[24] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under mem-
ory attacks,” in International Conference On Computer Aided Design
(ICCAD), 2017.

[25] E. Zurich and U. of Bologna, “PULP Platform,” http://www.pulp-
platform.org/.

[26] M. Meriac, “Practical real-time operating system seecurity for the
masses,” 2016, https://www.mbed.com/en/technologies/.

[27] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized mem-
ory view switching,” in Network and Distributed Systems Security
Symp.(NDSS), 2018.

[28] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon et al., “ftpm: A software-only
implementation of a TPM chip,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 841–856.

[29] Texas Instruments, MSP Code Protection Features, 2015, slaa685.

637


