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Abstract—The rising of cyber-physical systems (CPS) and
Internet of Things (IoT) has significantly increase the industrial
productivities and customer convenience. However, the widely
distributed CPS and IoT systems also breeds new challenges
among which security is a major concern. In order to help build
secure and resilient CPS/IoT systems, systematic analyses are
performed on CPS and IoT from individual smart devices which
serve as the end nodes to the entire system. The analysis results
will help identify the vulnerabilities of CPS/IoT systems and/or
provide guidance on how to build security into these systems.
Security mitigation methods will also be discussed which can
help balance security with other criteria such as safety and
performance.

I. INTRODUCTION

As it stands now, the Internet of Things is suffering from

many widespread security flaws. Most if not all systems suffer

from security vulnerabilities, ranging the full gamut of faults,

from an attacker being able to leak private information to

attaining complete remote control over the system. A 2015

HP report determined that 8 out of the 10 devices they tested

had privacy concerns [1]. Along with high impact exploits

that are discovered on a roughly yearly basis, such as the

recent exploits that allowed complete remote control of various

vehicle models, there are many reports released monthly or

even weekly revealing flaws in new IoT or CPS systems [2]–

[4].

Cyber physical systems have been shown to suffer similar

flaws, with even greater consequences because of infras-

tructure’s growing reliance on cyber physical systems. CPSs

traditionally have their network separate from the Internet to

ensure their security. In their original context, CPS devices

would be physically secured by simply being out of reach

of any attackers, and could rely on this physical isolation

for protection, resulting in standards that were design with

this sort of scenario in mind. More recent CPSs have been

deployed in places where they rely on direct connection to

the Internet, or in places where an attacker could potentially

have physical access to the device, vastly changing the threat

model and undermining existing CPS standards that were

not designed with these possibilities in mind. For instance,

Modbus, a common CPS protocol standard, by itself does

not include any authentication in its protocol, and relies on

plaintext communication across all connections [5].

A lack of awareness of security during the design of the

devices is one of the main causes of these vulnerabilities,

as IoT/CPS devices tend to have a very large surface area

that can be attacked, and consequently suffer many security

flaws if security was not a primary concern during their

development. Many flaws in security may be resolved through

patches sent after its release, but some, such as inadequate

hardware security, cannot. Similarly, a lack of understanding

and knowledge of security and proper security practices is

considered a potential cause for these flaws, as many of

the problems found were caused by simple design mistakes,

such as not validating firmware at booting process, exposing

debugging ports on deployed devices, and communicating

across plaintext channels.

IoT/CPS systems will continue to grow in complexity and

ubiquity, as they become smarter and find more applications

in industry. Consequently, if no work is done to improve their

security, the problems facing IoT/CPS systems now will only

grow in severity. Thus, a systematic approach towards exam-

ining IoT/CPS devices is needed, and one potential system for

doing this is outlined in the rest of the paper. This systematic

approach was developed in two steps, the first of which was

gathering data on existing IoT/CPS security vulnerabilities into

a database for better analysis, and the second of which was a

case study of developing a IoT/CPS system (which will serve

as a testbed for future endeavours) and recording how security

fit into the development process.

II. RELATED WORK

Babar et al provided a taxonomy to classify threats to

IoT systems [6]. Their model divides threats into six cat-

egories, storage management, embedded security, physical

threat, dynamic binding, communication threat, and identity

management. They try to model security in IoT devices as

a cube, where security, privacy, and trust forming the three

dimensions of the cube. While this model may be useful for

potentially scoring the quality and thoroughness of security

in IoT devices, it does not provide an intuitive system or

methodology for examining security during the development

and design of IoT/CPS devices or systems.

A security framework for IoT is then developed in [7]. The

authors first described another categorization of IoT vulner-

abilities, dividing threats into physical attacks, side channel

attacks, environmental attacks, cryptanalysis attacks, software

attacks, and network attacks. From these attacks a set of

requirements were created to ensure security of an IoT device,

and from these requirements the framework was developed.

Their framework outlines the main components that need

to be present in an IoT device to ensure its security. The

framework details the different parts of an IoT system, and
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how each one contributes to the overall security of the device.

However, their framework is very high level and does not

actually provide recommendation on the kinds of technologies

that should be used. This framework could potentially be

used as the foundation for a more detailed framework, but

as it is described here it cannot be applied in practice during

development to improve security.

IoT security has even been the topic of an IETF draft

[8]. This divided device operation into three main phases:

1) bootstrapping where the security parameters are added to

all the devices in the system through a trusted authority;

2) operation where the device is operating normally; and 3)

maintenance where the device, and potentially its security

parameters, are updated, or the device is removed from the

system. This draft divides threats along the layers of the

network on which the device is operating. It also describes the

constraints that IoT devices face, with respect to their limited

computational resources, and provides recommendations on

the types of communication protocols that should be used in

the the system during each devices’ different phases, as well

as listing the security requirements for operation during each

phase. The authors provide a very comprehensive overview of

many of the problems faced in IoT security from a network

perspective, with each decision and idea carefully backed with

technical details that allow this work to stand as a good starting

point for designing security in IoT architectures. They also

provide different security profiles that may be used in different

situations depending on the importance of the system, from

home use to advanced industrial use.

There are a few minor flaws in this work with respect to

acting as a guide for developing IoT, however, due to its

focus mainly on the communication side of IoT/CPS security.

The draft fails to acknowledge the importance of securing the

hardware and software in the device, and more importantly

does not acknowledge that these are also important aspects

to secure in an IoT device. Thus, using only this draft as a

reference, an IoT designer may fail to notice the importance

of securing other aspects of their devices, such as securing the

bootloader, signing firmware updates, and using appropriately

secure web interfaces.

One thing to note about all the works listed here is that they

approach the problem of IoT primarily from the perspective

of a defender rather than an attacker. This paper will discuss

security from an offensive point of view, allowing the design

to be more resilient against attacks by requiring the designer

to attack their own design in the same ways an attacker might.

III. IOT AND CPS SECURITY DATABASE

A database has been developed that has been aggregating

data on IoT/CPS device vulnerabilities as they are disclosed.

The database summarizes existing IoT/CPS device security

and vulnerabilities from three perspectives: IoT/CPS device

vulnerabilities, case studies, and design rules for trusted

IoT/CPS construction.

Device vulnerabilities are exploits that have been discovered

and applied to existing COTS IoT devices. These form the bulk

of the data collected by the database, and will continue to grow

as more exploits are found and added. The vulnerabilities can

be statistically analyzed to determine what the most commonly

found flaws in IoT devices are, and, given more time to collect

data, perhaps trends in exploits over time may be found.

Design rules are then developed from the classes of vulner-

abilities discovered in the last step. These are not amended

as often as vulnerabilities are added because a single design

rule can rule out an entire class of vulnerabilities. New design

rules could potentially be developed when there are exploits

that fail to be patched through the application of the design

rules, but this has yet to happen.

Case studies attempt to study how difficult it is to apply

the design rules developed in the preceding step to actual

IoT device development, and places where adhering to the

design rules proved to be difficult can be ameliorated with the

modification of the development framework to make secure

development in those areas easier. There is also room here

to experiment with automating the verification of design rules

during the design process. Currently there has been a single

design study, done during the development of a robotic arm

CPS security testing platform, that will be discussed in greater

detail below.

A. Security Vulnerabilities and Case Studies

This database categorizes attacks into different categories,

related to the different stages of device operation that could

have vulnerabilities [9]. This is visualized in Figure 1.

Fig. 1: The threat taxonomy used in the IoT database.

Boot Process Vulnerabilities. The boot sequence is a

common component to target in attacks. This is primarily

because the boot process is the root of trust as well as the

starting point of the device’s operation, and consequently

any attacks that compromise this component are capable of

controlling anything that occurs in a subsequent stage of

operation. The compromise of the Google Nest Thermostat

is one recent example of this type of vulnerability [10], [11].

In this compromise the attacker modified the first stage boot

loader (x-loader), allowing them to replace the second

stage boot-loader (u-boot) that would let them set custom

parameters for the kernel. This attack is trivially extended to
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allow for arbitrary payloads using the custom second stage

boot loader [11]. Mitigation methods to defend against this

were discussed in [12], [13].

Hardware Exploitation. Hardware level exploitation is

critical as it is often overlooked by designers, who focus

more on security at the software or firmware levels. These

attacks rely on the hardware itself, often including tactics

such as looking for debugging ports the designer has left

exposed, modifying external Flash memories, glitching address

lines, etc. For instance, the Xbox 360 was exploited by

using a timing attack a bypass a security check that would

prevent downgrading the kernel to an older one with known

vulnerabilities [14].

Chip-Level Exploitation. Chip-level exploitation involves

semi-invasive and invasive attacks on the chip itself. These

are a serious threat to smart devices, which rely on trust

boot sequences which rely on hardware chip assets for their

security. Previously security information such as encryption

and decryption keys, along with other sensitive information,

was considered secure if it was stored on-chip. However, newly

developed methods can extract this information, and conse-

quently disrupt the security claims based on the assumption

of on-chip security. For example, researchers were able to

extract a stored AES key from the internal memory of an Actel

ProASIC3 FPGA by “bumping” the internal memory [15].

Encryption, Hash Function and Authentication Imple-
mentations. Similarly, many attacks today result from weak

authentication mechanisms. While system designs will impose

strong authentication mechanisms, e.g. x.509 certificate based

TLS [16], unless the credentials (e.g., keys) are securely stored

they can be subject to attack. As IoT devices are now exposed

in open and public spaces, the ability for any attacker to

recover such credentials becomes a trivial attack; once the

keys are recovered, those identities are then compromised

obviating the security properties afforded by any encryption

mechanism. For example, the Sony PlayStation 3 firmware

was downgraded due to a series of vulnerabilities in weak

cryptographic applications [17], [18].

Backdoors in Remote Access Channels. For the sake of

convenience, smart devices now commonly come equipped

with channels that allow for remote communication and de-

bugging after manufacture. These channels are often used

for over-the-air (OTA) firmware upgrades. Any insecurities

in the protocol used for the OTA firmware upgrade would

allow an attacker control over the firmware of a device, and

consequently complete control over the device. Additionally,

manufacturers may leave in APIs used during development

that would allow arbitrary command execution, or they may

not properly secure some communication channels. One recent

example of this type of vulnerability is in the Summer Baby

Zoom WiFi camera, which used hardcoded credentials for

securing administrator access [19]. These types of attacks can

be mitigated through requiring the user to change the default

credentials, sanitizing input strings to avoid code injection, etc.

Software Exploitation. As with traditional general purpose

computing platforms, smart devices are also vulnerable to

software-level vulnerabilities in much the same way. Code

from general purpose computing software is often reused in

smart device software stacks, passing along any vulnerabilities

in the process. Similarly, software patches must be applied to

prevent these attacks. Recent examples of this type of attack

include stack overflow attacks in glibc and elsewhere in the

code base that affected multiple smart house devices [20], [21].

The approaches to prevent software exploitation in traditional

computing platforms can be applied to smart devices, but

many of these solutions are impractical due to the resource

constraints [11], [22], [23].

B. Design Rules for IoT/CPS Security

An IoT/CPS device is then vulnerable to attacks through

the vectors described above. Consequently, defending against

an attack can be accomplished by simply ensuring that the

above vectors are defended. For example, to defend against

boot process vulnerabilities, the boot process must be made

secure through the following countermeasures.

• Ensuring the integrity of the bootloader (i.e., through the

use of a checksum or preferably a signature);

• Protecting the bootloading chain through verifying the

bootloader at boot and using encrypted data streams

during firmware updates;

• Disabling the device’s debug mode so that the attacker

cannot modify the bootloader after the device has been

shipped.

These rules match directly with the properties of the boot

loader that can be exploited, and thus all the vulnerabilities are

directly countered with protection methods. This avoids adding

security features that do not match existing and common

security threats, avoiding adding too much overhead while

providing security where it is needed.

Similar design rules were developed for all the other cate-

gories described above.

IV. CASE STUDY ON ROBOTIC ARM SYSTEM

Fig. 2: Robotic arm designed for CPS testing platform.
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A robotic arm platform is being developed that is designed

to model a CPS/IoT system, displayed in Figure 2. It consists

of two robot arms that can be accessed using a web based

interface, and are also capable of machine-to-machine commu-

nication to allow for automated cooperation. This system tries

to match features found in IoT/CPS systems, such as relying

on wireless communication between two different units and a

user, being powered by batteries, using a low-power, low-cost

computation unit, requiring a real-time feedback loop between

its sensors and actuators, and allowing for remote firmware

updates.

Similar to how the platform itself is a model of a CPS/IoT

system, the development of the platform can be used as

a model of IoT development. It can be expected that the

technical challenges and decisions made during development

would be representative of those found and made by other IoT

designers. Consequently, the analysis developed from the data

from the IoT database can be applied here to see how well it

would apply during the development of a real IoT system.

The development process can be divided into three major

stages: 1) hardware design, where the custom printed circuit

board that would control the robot arms was designed; 2)

software design, where the major details of the system’s

communication were decided; and 3) software development,

where the firmware that implements all of the desired features

was developed.

A. Hardware Design

Fig. 3: Printed circuit board designed and fabricated for the robotic arm
control.

The first important decision during this phase was deter-

mining the form of wireless communication would use. This

decision would substantially affect the device’s vulnerabilities

to cryptanalysis and remote access. The choice here would

greatly affect the design, as different chipsets would be needed

for different communication channels. Many low power wire-

less communications options have become available, such as

Zigbee, low-power Bluetooth, 6LoWPAN, but standard WiFi

was chosen because it would be easy to work with, with

respects to interacting with the IoT network, and it has a

mature security scheme. Additionally, some of the low power

options listed above were not designed with security in mind,

resulting in vulnerabilities. For example, Bluetooth is known to

be vulnerable to eavesdropping and man-in-the-middle attacks.

Of course, additional security could be added at the application

layer, but the resulting complexity was deemed not worth the

effort, so the simpler choice of using an appropriately secured

Wifi connection was chosen instead.

The choice of microcontroller is vital in ensuring the

security of the entire system, because it affects many aspects

of the device’s overall design, from the availaility of GPIO to

the limits of the device’s computational abilities. During this

step a lot of effort was made to try to protect against boot

process attacks. It was decided that a low-performance, low-

power system-on-a-chip would be used, because the device did

not need to run a full OS to perform its duties, and using a

single device for both communication and processing reduced

the surface area for attacks. For the sake of easy development,

there were two main choices in terms of low-power WiFi-

enabled SoCs, the ESP8266 and the CC3200.

Both of these store the program data in an external Flash

chip, which means in both cases the firmware cannot be

made unwriteable with physical access. Both additionally have

some functions stored in ROM, which helps to reduce the

surface areas for attacks, as less of the code can potentially be

modified. The ESP8266, however, comes packaged as module

that has the ESP8266 chip and a Flash module contained

within an RF enclosure that would at least discourage an

attacker from attempting to gain access to the Flash module’s

SPI interface. The ESP8266’s bootloader is, however, stored

in the Flash, which means if it were programmed to verify

the firmware during boot, it could potentially be modified to

bypass the verification check.

The ESP8266 was chosen in the end because it had a more

mature community and documentation, and the additional

firmware security was an added benefit. This demonstrates

one facet of design where security was not the deciding factor

in a design decision, and also that there is a lack of popular,

wireless SoCs that meet all the requirements to prevent attacks

on the hardware level.

To ensure low latency and fast response in the device

overall, a second, smaller microcontroller was added to handle

the PWM and pulse counting used to control the motors in the

arm and sense the movement of the arms. This microcontroller

was chosen to be as small as possible, so an attacker gaining

control of this chip would have more difficulty in gaining con-

trol of the system through it. An Atmel ATtiny44A was used

here, because it provided enough GPIO to drive the actuators

and read data from all the sensors, and had the additional

benefit of having the program memory stored on chip. The

chip has fuses that can be blown to prevent reprogramming, a

very important security feature that could be used in deployed

chips to reduce attack surface area.

SPI is used to communicate between the two microcon-
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trollers. This communication is unencrypted because the AT-

tiny44A would be unable to decrypt and then process the

request in a sufficiently fast matter. However, to improve

security, this trace could in theory be buried in a multilayer

PCB design to make it considerably harder to intercept and

modify. This was not done in this case to, as might be the case

in industry, avoid the extra cost of an additional PCB layer in

a relatively simple design.

There were two sets of programming ports that were left

exposed on the final PCB design, one for each microcontroller.

This may seem like a major design flaw, because this means

both the microcontrollers can be easily reprogrammed by

an attacker. However, the one for the Atmel chip may be

nonfunctional when deployed if the flash writing fuse on the

chip is blown after it is programmed during manufacture,

leaving the programming port for the ESP8266. The barrier to

reprogramming the ESP8266 can be increased using all sorts

of design tricks, such as tying the boot mode pins to pins on

the Atmel chip. The Atmel chip could be programmed to set

the boot mode pins to the correct levels for programming at

the factory, and then after the ESP8266 has been programmed,

the final program for the Atmel could keep the boot mode

pins at the levels that would only allow for normal operation.

However, neither blowing the fuses on the Atmel or using

this rather complicated programming mode were used on the

robotic arm due to the expectation that both will need to

be reprogrammed fairly often as development continues. The

finalized design can be seen in Figure 3.

B. Software Design

The use of an ESP8266 ruled out running a full Linux

environment, which had multiple effects on the software

design. In terms of security, it greatly improved security as

there were now no services that could accidentally be left

open, and no root shell that could be reached through the

mis-configured services. Given that about forty percent of the

vulnerabilities in the database involved reaching a root shell,

this potentially is a major improvement in security. However, it

also meant that most of the code would be written by hand at a

very low level, and would not receive the thoroughly auditing

and testing the code in the Linux environment has been put

through.

The development environment around the ESP8266 API

is very mature, and consequently there were many frame-

works available to develop on. These include the proprietary

SDK Espressif offers, an open sourced version of the SDK,

nodemcu, which essentially runs a Lua interpreter on user-

provided code, and an implementation of the Arduino API

on the ESP8266. The open source version of the SDK was

chosen, as the design required access to many of the more

advanced features of the device which were not included the

last two frameworks. However, using the SDK requires using

C as the main development language rather than a newer, more

memory-safe language. This does reduce the potential area of

attack, however, as using the SDK natively does reduce the

overall amount of code being run. Thus, here some security

was sacrificed for performance.

It was decided that the device would support HTTP to

interact with the user, and MQTT for machine to machine

communication. These are both popular and commonly used,

making development fairly easy. In terms of security, both

of these can be used on across a TLS connection (which

the ESP8266 supports natively) to provide confidentiality, and

there are also well-known methods for adding authentication

to both protocols. TLS has been cryptanalyzed thoroughly, so

it should be sufficiently secure from most threats when it is

properly configured [24]. Additionally, in both of these cases it

is practical to write all the network code without authentication

and then add in the appropriate authentication cases after the

unauthenticated code has been adequately tested. Therefore,

security here was both convenient and easy to add to the

design, as it composes easily with the existing, unsecured

protocols.

An open source alternative bootloader was used, as this

provided more control over the bootloader that would allow

signature checking on boot, and additionally improved trans-

parency and allowed auditing of the bootloading code for

potential vulnerabilities.

C. Software Development

Software vulnerabilities comprise the majority of the vul-

nerabilities found in the IoT database. Consequently, during

attention was paid during development to reduce the likelihood

of adding bugs and vulnerabilities to the code, specifically with

respects to the most common sources of exploitable bugs.

There were existing open source projects that could have

provided code for the HTTP server and client, but it was

deemed easier to write by hand to avoid the request of adding

much code to the codebase. Adding all that code would

have used a large amount of the limited Flash on the device

for features that would not be used, and would expand the

potential area for software faults such as buffer overflows

to occur. Code written tailored for this purpose would be

much smaller, at the expense of being less thoroughly tested.

Preferably, a more memory-safe language would be used, but

none is available in this area yet. The continued prevalence

of C as the only language to program on embedded platforms

seems to be a potential source of security vulnerabilities, as

it requires much developer effort to ensure memory safety

compared to other languages available on more conventional

computing platforms.

Some notable issues were the difficulty of using tools to

improve security. For example, it was thought that using auto-

matically generated code to produce the finite state machines

for HTTP request/response parsing would reduce potential

bugs by offloading the tedious state tracking to a tool, but it

proved too difficult to debug, and consequently a less secure

hand-written finite state machine implementation was used

instead. Additionally, adding unit testing to the code was

not performed mainly because much of the code relies on
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accessing specific hardware registers that would be difficult to

emulate.

As the case study demonstrates, maintaining an under-

standing of vulnerabilities during systematically analyze the

device during design can improve security noticeably. This is

especially important during the hardware part of the design,

as the choice of components can affect the overall security

of the system substantially. Although security was not the

main driving force behind the design process, it still remained

in a sufficiently important role so that the most common

vulnerabilities were circumvented.

There were also some clear phases of the design process

where security could be made easier to implement to reduce

the possibility of vulnerabilities. Software tools and frame-

works on at least the ESP8266 still have not matured to where

they will by default produce secure implementations of web

servers, and the tooling still relies on primarily on developers’

mindfully choosing to write their firmware in a secure way.

There was also a lack of a clear choice for a low-cost wireless

SoC with hardware security features to allow for secure boot

and on-chip programming, although the current choices do

include hardware encryption modules.

V. CONCLUSION

Vulnerabilities from a large sample of IoT devices were

aggregated into database. The development of the database

produced a taxonomy for threats to IoT devices, and this tax-

onomy was used to create a set of design rules that would avoid

the major mistakes in device design. Additionally, the database

provides a better understanding of the severity and importance

of the different potential vulnerabilities, further supplementing

the design rules with a more intuitive understanding of the

severity of the vulnerabilities. This information was used to

augment the design process for a robotic arm CPS testbed, and

the information gathered from that experience was recorded in

this paper. The IoT database will continue to grow, and as more

information from existing large IoT/CPS systems is gathered,

a new set of design rules to improve security at a system

level will be developed from there. A similar case study will

be performed to examine the benefits of system-level design

rules after they have been developed.
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