
Chapter 4
IP Trust: The Problem
and Design/Validation-Based Solution

Raj Gautam Dutta, Xiaolong Guo and Yier Jin

4.1 Introduction

A rapidly growing third-party intellectual property (IP) market provides IP con-

sumers with more options for designing electronic systems. It also reduces the devel-

opment time and expertise needed to compete in a market where profit windows

are very narrow. However, one key issue that has been neglected is the security of

electronic systems built upon third-party IP cores. Historically, IP consumers have

focused on IP functionality and performance than security. The prejudice against

the development of robust security policies is reflected in the IP design flow (see

Fig. 4.1), where IP core specification usually includes functionality and performance

measurements.

This lack of security assurance on third-party IPs is a major threat for the semi-

conductor industry. For example, a large number of side-channel-based attacks have

been reported, which extract sensitive information from systems that were purport-

edly mathematically unbreakable [1–7]. The emergence of hardware Trojans (mali-

cious logic) embedded in third-party IP cores has largely re-shaped the IP transaction

market and there are currently no comprehensive detection schemes for identifying

these Trojans. Some Trojan detection methods such as side-channel fingerprinting

combined with statistical analysis have shown promising results, but most of the

post-silicon stage Trojan detection methods rely on golden models which may not

be available given the existence of untrusted IP cores.

R.G. Dutta ⋅ X. Guo ⋅ Y. Jin (✉)

University of Central Florida, Orlando, FL, USA

e-mail: rajgautamdutta@knights.ucf.edu

X. Guo

e-mail: guoxiaolong@knights.ucf.edu

Y. Jin

e-mail: yier.jin@eecs.ucf.edu

© Springer International Publishing AG 2017

S. Bhunia et al. (eds.), Fundamentals of IP and SoC Security,

DOI 10.1007/978-3-319-50057-7_4

49

yier.jin@eecs.ucf.edu

50 R.G. Dutta et al.

Fig. 4.1 Semiconductor supply chain: IC design flow

Upon the request for trusted IP cores, various IP protection and certification meth-

ods at the pre-silicon stage have been recently developed. In this chapter, most of

these approaches will be introduced including hardware locking/encryption, FPGA

bitstream protection, theorem proving, and equivalence checking.

The rest of the chapter is organized as follows: Sect. 4.2 discusses various hard-

ware locking/encryption methods for preventing various threats to IP cores. For a

better explanation, we divide these methods into three categories (i) combinational

logic locking/encryption, (ii) finite state machine locking/encryption, and (iii) lock-

ing using reconfigurable components. In this section, we also discuss FPGA bit-

stream protection methods. Section 4.3 primarily discusses the existing equivalence

checking and theorem proving methods for ensuring trustworthiness of soft IP cores.

Finally, Sect. 4.4 concludes the chapter.

4.2 Design for IP Protection

Design for IP protection encompasses methods for authentication and prevention

of IP from piracy, reverse engineering, overbuilding, cloning, and malicious tam-

pering. Authentication approaches include IP watermarking [8–10] and IP finger-

printing [11–13], which can be used by IP owners for detecting and tracking both

legal and illegal usages of their designs. However, these methods cannot prevent

reverse engineering of designs and insertion of malicious logic. These limitations

are overcome by the prevention methods. Most of the currently existing prevention

approaches can be grouped under hardware locking/encryption (see Fig. 4.2). Hard-

ware locking/encryption methods can be further divided into (i) combinational logic

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 51

Fig. 4.2 Different stages at which hardware locking/encryption methods are applied

locking [14–18], (ii) finite state machine (FSM) locking [19–28], and (iii) locking

using reconfigurable components [29–31]. The combinational logic locking method

includes cryptographic algorithm for locking and logic encryption. The FSM lock-

ing methods include hardware obfuscation techniques and active hardware metering.

The FPGA protection methods focus on securing the bitstream. In the rest of this

section we will describe the threat model and each prevention method in details.

4.2.1 Threat Model

Security threats to an IP/IC vary depending on the location of the adversary in the

supply chain (see Fig. 4.3). Below we briefly explain these threats to an IP/IC:

∙ Cloning: Adversary creates an exact copy or clone of the original product and

sell it under a different label. To carry out cloning of ICs, an attacker should be

either a manufacturer, system integrator, or a competing company equipped with

necessary tools.

∙ Counterfeiting: When cloned products are sold under the label of the original ven-

dor, without their authorization, it is called counterfeiting. This can be performed

by an attacker in a manufacturing facility or by companies having capability to

manufacture replicas of the original chip.

∙ ICOverbuilding: Another threat to an IC designer is overbuilding. In overbuilding,

manufacturer or system integrator fabricates more IC than authorized.

∙ IP Piracy: In IP piracy, a system integrator steals the IP to claim its ownership or

sell it illegally.

∙ Reverse Engineering: By analyzing an existing IC, manufacturers, system integra-

tors, or companies having reverse engineering capabilities, can bypass security

yier.jin@eecs.ucf.edu

52 R.G. Dutta et al.

Fig. 4.3 Security threats at different stages of the supply chain

measures to learn and reuse the elements of IP blocks, such as implementation

strategies, optimization algorithms, and design details. Consequently, adversaries

can recreate the IP cores and sell them at much lower cost. Note that reverse engi-

neering can also be used for IP piracy detection but it is out of the scope of this

chapter.

∙ Malicious Tampering: Third-party IP providers can perform malicious tampering

of IP by inserting hardware Trojans into the IP cores. Such attacks can also be

performed by system integrators who have access to the IP core, or by manufac-

turer who can manipulate the lithographic masks by adding, deleting, or modifying

gates/wires.

To protect an IP/IC from such threats, many prevention methods have been proposed,

which are described in Sects. 4.2.2 and 4.2.3.

4.2.2 Combinational Logic Locking/Encryption

Combinational logic locking augments a combinational logic network by adding a

group of lock inputs. Only if the correct key (generated at random) to the lock inputs

is applied, the augmented network can produce the correct functionality [14, 15]. The

locking mechanism is carried out by adding XOR gates on non-critical paths of the

IC and by providing control to the key registers. Combinational locking and public-

key cryptography was used in [14] for protecting the IC design. In [15], an attack

was demonstrated to break the IP/IC protection method of [14] by “sensitizing” the

key values to the output. The attacker on obtaining the modified netlist identified the

unknown key by observing the output, provided the other key bits did not interfere

with the “sensitized” path. In order to prevent key-leakage by “key-sensitization,”

key gates were inserted in such a way that propagation of a key value was possible

only if certain conditions were forced on other key inputs. As these key inputs were

not accessible to an attacker, they could not “sensitize” key values, thereby leaving

the attacker the only option of brute force attacks. An algorithm was presented in

[15], which used key gates interference graphs for insertion of key gates in such a

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 53

way that attackers needed exponential number of brute force attempts to decipher

the key. Compared to random insertion, this procedure incurred less area overhead

as it required less number of XOR/XNOR as key gate. Another limitation of the

combinational logic locking method of [14] was that inappropriate key input did not

affect the output of the circuit.

Logic encryption was proposed in [16, 17], which used conventional fault simu-

lation techniques and tools to guide the XOR/XNOR gate insertions and produced

wrong output with 50 % Hamming distance between the correct and wrong outputs

for an invalid key. This method masked the functionality and the implementation of

a design by inserting key gates into the original design. To prevent collusion attack,

physical unclonable functions (PUFs) were used to produce unique user keys for

encrypting each IC. Instead of encrypting the design file by a cryptographic algo-

rithm, the logic encryptionmethod encrypted the hardware functionality. The perfor-

mance overhead of this method was smaller than random key gate insertion method

as it used smaller number of XOR/XNOR gates to achieve the 50 % Hamming dis-

tance.

Another combinational locking method was proposed in [18], which protected

ICs from illegal overproduction and potential hardware Trojans insertion by mini-

mizing rare signals of a circuit. The method made it harder for an attacker to exploit

rare signals of a circuit to incorporate a hardware Trojan. An encryption algorithm

modified the circuit, but preserved its functionality. The algorithm uses a probability-

based method [32] to identify signals with low controllability. Among the identified

signals, candidate signals for encryption were the ones with an unbalanced proba-

bility (signals with probability below 0.1 or above 0.9). For encryption, AND/OR

gates were inserted in paths with large slack time and unbalanced probability. The

type of gates to be inserted depended on the value of probability on the signal. When

the probability of the signal was close to 0, an OR gate was included and the cor-

responding key value was 0 and when the probability was close to 1, an AND gate

was included and the corresponding key value was 1. However, this method could

not create multiple encryption key for the same design and hence, all the IP con-

sumers of the design used the same key. Due to this limitation, it was not effective

for preventing IP piracy.

4.2.3 Finite State Machine Locking/Encryption

Finite state machine (FSM) locking obfuscates a design by augmenting its state

machine with a set of states. The modified FSM transit from the obfuscated states to

the normal operating states after applying the specific input sequence (aka obfusca-

tion key). The obfuscation method approximately transform the hardware design by

preserving its functionality.

The FSM-based obfuscation method protects an IP/IC from reverse engineering,

IP piracy, IC overproduction, and hardware Trojan insertion. Several variations of

this method have been proposed in the literature [14–31]. In this chapter, we discuss

yier.jin@eecs.ucf.edu

54 R.G. Dutta et al.

three of its variations: (i) obfuscation by modifying gate-level netlist, (ii) obfuscation

by modifying RTL code, and (iii) obfuscation using reconfigurable logic.

Obfuscation by Modifying Gate-Level Netlist

One of the methods for obfuscating a hardware design is to insert an FSM in the gate-

level netlist [19–23]. The method in [19] obfuscated and authenticated an IP core by

incorporating structural modification in the netlist. Along with the state transition

function, large fan-in and fan-out nodes of the netlist were modified such that the

design produces undesired output until a specific vector was given at the primary

inputs. The circuit was re-synthesized after the modification to hide the structural

changes. The FSM, which was inserted into the netlist to modify the state transition

graph (STG), was connected to the primary inputs of the circuit. Depending on an

initialization key sequence, the FSM operated the IP core in either the normal mode

or the obfuscated mode. The maximum number of unique fan-out nodes (Nmax) of

the netlist were identified using an iterative ranking algorithm. The output of the

FSM and the modified (Nmax) nodes were given to an XOR gate. When the FSM

output was 0, the design produced correct behavior. Although the method required

less area and power overheads, it did not analyze security of the design. New meth-

ods were proposed to overcome this limitation [20–22]. A metric was developed to

quantify the mismatch between the obfuscated design and the original design [20].

Also, the effect of obfuscation on security of the design was evaluated. Certain mod-

ifications were made to the methodology of [19] such as embedding “modification

kernel function” for modifying the nodes selected by the iterative ranking algorithm
and adding an authentication FSM, which acted as a digital watermark. These modi-

fications prevented attacks from untrusted parties in the design flow with knowledge

of the initialization sequence.

The obfuscation scheme of [20] was extended in [21, 22] to prevent insertion of

trigger-activated hardware Trojans. The new method also ensured that such Trojans,

when activated in the obfuscated mode, did not affect normal operation of the cir-

cuit. To incorporate these changes, the obfuscation state space was divided into (i)

initialization state space and (ii) isolation state space [21]. On applying the correct

key at power on, the circuit transitioned from the initialization state space to nor-

mal state space. However, an incorrect key transitioned the circuit to isolation state

space from which the circuit could not return to the normal state space. Due to the

extreme rareness of the transition condition for normal state space, it was assumed

that the attacker was stuck in the isolation state space. Also, the insertion of a Trojan

with wrong observability/controllability in the obfuscation mode would increase its

detection probability at post-manufacturing testing. To further increase the proba-

bility of Trojan detection, the state space of the obfuscated mode was made larger

than the normal mode. The proposed methodology was robust enough to prevent

reverse engineering of modified netlist with large sequential circuits. Also, the area

and power overheads of the method were relatively low.

However, the methodology of [20] could not protect an evaluation version of firm

IP core. In [23], this problem was overcome by embedding a FSM in the IP netlist.

The FSM disrupted normal functional behavior of the IP after its evaluation period.

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 55

The number of cycles required to activate the FSM depended on the number of bits in

the state machine. Also, the activation probability decreased if the number of trigger

nodes were increased. This method helped in putting an expiry date on the evaluation

copy of the hardware IP. To distinguish between legally sold version of an IP and its

evaluation version containing the FSM, IP vendors either (i) used disabling key to

deactivate the FSM or (ii) provided a FSM-free version. The method structurally

and functionally obfuscated the FSM to conceal it during reverse engineering. Area

overhead of this method was directly proportional to the size of the FSM. However,

the overhead decreased with an increase in size of the original IP.

Obfuscation by Modifying RTL Code of Design

Apart from netlist, obfuscation can also be carried out in RTL code of the design

[24–27]. A key-based obfuscation approach for protecting synthesizable RTL cores

was developed in [27]. The RTL design was first synthesized into a technology inde-

pendent gate-level netlist and then obfuscated using the method of [19]. Then, the

obfuscated netlist was decompiled into RTL in such a way that the modifications

made on the netlist were hidden and the high-level HDL constructs preserved. A sim-

ple metric was presented to quantify the level of such structural and semantic obfus-

cation. This approach incurred minimal design overhead and did not affect adversely

the automatic synthesis process of the resultant RTL code. However, decompilation

removed some preferred RTL constructs and hence made the design undesirable for

certain preferred design constraints. This limitation was overcome in [26], where the

RTL code was first converted into a control and data flow graph (CDFG) and then a

key-activated “Mode-Control FSM” was inserted to obfuscate the design. The CDFG

was built by parsing and transforming concurrent blocks of RTL code. Small CDFGs

were merged to build larger ones with more nodes. This helped in better obfuscation

of the “Mode-Control FSM,” which operated the design either in normal or obfus-

cated mode. This FSM was realized in the RTL by modifying a set of host registers.

To further increase the level of obfuscation, state elements of the FSM were dis-

tributed in a non-contiguous manner inside one or more registers. After hosting the

FSM in a set of selected host registers, several CDFG nodes were modified using the

control signals generated from the FSM. The nodes with large fan-out cones were

selected for modification, as they ensured maximum change in functional behavior

at minimal design overhead. At the end of modifications on the CDFG, the obfus-

cated RTL was generated, which on powering up, initialized the design at the obfus-

cated mode. Only on the application of a correct input key, the “mode-control” FSM

transited the system through a sequence of states to the normal mode. This method

incurred low area and power overheads.

Another approach obfuscates the RTL core by dividing the overall functionality

of the design into two modes, “Entry/Obfuscated mode” and “Functional mode,”

and encoding the path from the entry/obfuscated mode to the functional mode with a

“code-word” [24]. The functionality of the circuit was divided by modifying the FSM

representing the core logic. To modify the FSM, its states were extended and divided

into entry/obfuscated mode and functional mode states. Only on the application of

the right input sequence at the entry mode, the correctCode-Word was formed, which

yier.jin@eecs.ucf.edu

56 R.G. Dutta et al.

produced correct transitions in the functional mode. Unlike those methods where an

invalid key disallowed entry to the normal mode, this method always allowed entry

to the functional mode. However, the behavior in the functional mode depended on

the value of the Code-Word. This Code-Word was not stored anywhere on chip, but it

was formed dynamically during the entry mode. It was integrated into the transition

logic to make it invisible to the attacker. In this method, the length of the Code-Word
was directly related to the area overhead and security level required by the designer.

A longer Code-Word meant higher level of security against brute force attacks, but

at the cost of higher area overhead.

In [25], a key-based obfuscation method having two modes of operation, normal
mode and slow mode, was developed to prevent IP piracy on sequential circuits. This

method modified the state transition graph (STG) in such a way that the design oper-

ated in either mode depending on whether it was initialized with the correct key state.

The key state was embedded in the power-up states of the IC and was known only to

the IP owner. When the IP owner received the fabricated chip, power-up states were

reset from the fixed initial state to the key state. As the number of power-up states

was less in the design, chances of the IC being operational in the normal mode on

random initialization were significantly reduced. Moreover, powering up the design

with an incorrect initial state operated the IC in the slow mode, where it functioned

slower than the normal mode without causing significant performance difference.

This functionality prevented IP pirates from suspecting the performance degrada-

tion in the IC and the presence of key state in the design. To modify the STG, four

structural operations were performed: (i) retiming, (ii) resynthesis, (iii) sweep, and

(iv) conditional stuttering. In retiming, registers were moved in the sequential circuit

using any one of the two operations. These operations included (i) adding a regis-

ter to all outputs and deleting a register from each input of a combinational node

and (ii) deleting a register from all outputs and adding a register to each input of a

combinational node. Resynthesis restructured the netlist within the register bound-

aries whereas removal of redundant registers and logic that did not affect output

was done using sweep. Both the resynthesis and the retiming operations preserved

logical functionality of the design. Conditional stuttering involved addition of con-

trol logic to the circuit to stutter the registers under a given logic condition. On the

other hand, inverse conditional stuttering removed certain control logic. Stuttering
operations were done to obtain circuits which were cycle–accurate–equivalent. This

method mainly focused on those real-time applications which were very sensitive

to throughput. Unlike existing IC metering techniques, the secret key in this method

was implicit, thus making it act as a hidden watermark. However, the area and power

overheads of this method were higher than previous approaches.

An active hardware metering approach prevents overproduction of IC by equip-

ping designers with the ability to lock each IC and unlock it remotely [28]. In this

method, new states and transitions were added to the original finite state machine

(FSM) of the design to create a boosted finite state machine (BFSM). This structural

manipulation preserved the behavioral specification of the design. Upon activation,

the BFSM was placed in the power-up state using an unique ID which was generated

by the IC. To bring the BFSM into the functional initial state, the designer used an

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 57

input sequence generated from the transition table. Black hole states were integrated

with the BFSM to make the active metering method highly resilient against the brute

force attacks. This method incurred low overhead and was applicable to industrial-

size design.

Obfuscation Using Reconfigurable Logic

Reconfigurable logic was used in [29, 30] for obfuscation of ASIC design. In [29],

reconfigurable logic modules were embedded in the design and their final implemen-

tation was determined by the end user after the design and the manufacturing process.

This method assumed that the supply chain adversary has knowledge of the entire

design except the exact implementation of the function and the internal structure of

reconfigurable logic modules. The lack of knowledge prohibited an adversary from

tampering the logic blocks. Combining this method with other security techniques

provided data confidentiality, design obfuscation, and prevention from hardware Tro-

jans. In the demonstration, a code injection Trojan was considered which, when trig-

gered by a specific event, changed input–output behavior or leaked confidential infor-

mation. The Trojan was assumed to be injected at the instruction decoded unit (IDU)

of a processor during runtime and it was not detected by non-lock stepping concur-

rent checking methods, code integrity checker, and testing. To prevent such a Trojan

attack, instruction set randomization (ISR) was done by obfuscating the IDU. For

obfuscation, reconfigurable logic was used, which concealed opcode check logic,

instruction bit permutation, or XOR logic. This method prevented the Trojan from

monitoring an authentic computation. Moreover, Trojans which were designed to

circumvent this method no longer remained stealthy and those trying to duplicate

the IDU or modify it caused significant performance degradation. It was shown that

the minimum code injection Trojan with a 1 KB ROM resulted in an area increase

of 2.38 % for every 1 % increase in the area of the LEON2 processor.

To hide operations within the design and preserve its functionality, the original

circuit was replaced with PUF-based logic and FPGA in [30]. PUF was also used

to obfuscate signal paths of the circuit. The architecture for signal path obfuscation

was placed in a location where most flip-flops were affected most number of times.

To prevent this technique from affecting critical paths, wire swapping components

(MUX’es with PUF as select input) were placed between gates with positive slack.

The PUF-based logic and signal path obfuscation techniques were used simultane-

ously to minimize delay constraints of the circuit and maximize its security under

user-specified area and power overheads. Two types of attacks were considered: (i)

adversary can read all flip-flops, but can only write to primary inputs; (ii) adversary

can read and write to all flip-flops of the circuit [30]. It was assumed that the adver-

sary has complete knowledge of circuit netlist, but not of input–output mapping of

any PUFs. For preventing the first type of attack, FPGA was used after the PUF and

PUF were made large to accept a large challenge. To prevent the second attack, a PUF

was placed in a location that was difficult to control directly using the primary inputs

of the circuit. By preventing this attack, reverse engineering was made difficult for an

adversary. These two methods were demonstrated on ISCAS 89 and ITC 99 bench-

marks and functionality of circuits were obfuscated with area overhead upto 10 %.

yier.jin@eecs.ucf.edu

58 R.G. Dutta et al.

In [31], obfuscation of DSP circuit was done using high-level transformation, key-

based FSM, and a reconfigurator. High-level transformation does structural obfus-

cation of the DSP circuit at HDL or netlist level by preserving its functionality. This

transformation was chosen based on the DSP application and performance require-

ments (e.g., area, speed, power, or energy). For performing high-level transformation

on the circuit, reconfigurable secure switches were designed in [31]. These switches

were implemented as multiplexers, whose control signals were obtained from a FSM

designed using ring counters. Securities of these switches were directly related to the

design of the ring counters. Another FSM, called the obfuscated FSM, was incorpo-

rated in the DSP circuit along with the reconfigurator. A configuration key was given

to the obfuscated FSM for operating the circuit correctly. This key consisted of two

parts: an L-bit initialization key and a K-bit configure data. The initialization key was

used to activate reconfigurator via the obfuscated FSM, whereas configure data was

used by the reconfigurator to control the operation of the switches. As configuration

of the switches required correct initialization key and configure data, attacks target-

ing either of them could not affect the design. An adversary attempting to attack a

DSP circuit, obfuscated with this method, had to consider the length of the config-

uration key and the number of input vectors required for learning the functionality

of each variation mode. Structural obfuscation degree (SOD) and functional obfus-

cation degree (FOD) were used as metrics for measuring simulation-based attack

and manual attack (visual inspection and structural analysis). SOD was estimated

for manual attacks, whereas FOD estimated obfuscation degree of simulation-based

attacks. A higher value of SOD and FOD indicated a more secure design. The area

and the power overheads of this method were low.

4.2.4 Protection Methods for FPGA IP

Field-programmable gate arrays (FPGAs) have been widely used for many applica-

tions since 1980s. They provide considerable advantage in regards to design cost

and flexibility. Due to accelerated time-to-market, designing a complete system on

FPGA is becoming a daunting task. To meet the demands, designers have started

using/reusing third-party intellectual property (IP) modules, rather than developing

a system from scratch. However, this has raised the risk of FPGA IP piracy. Protec-

tion methods [33–36] have been proposed to mitigate this issue. In [35], a protection

scheme was proposed which used both public-key and symmetric-key cryptography.

To reduce area overhead, the public-key functionality was moved to a temporary con-

figuration bitstream. Using five basic steps, the protection scheme enabled licensing

of FPGA IP to multiple IP customers. However, this scheme restricted system inte-

grators to the use of IP from a single vendor. The scope of the FPGA IP protection

method of [35] was extended in [36], where system integrators could use cores from

multiple sources. In [33], implementation of the protection methods of [35, 36] was

carried out on commercially available devices. For securely transporting the key,

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 59

Fig. 4.4 Different protection methods

[33] used symmetric cryptography and trusted third-party provider. Use of symmet-

ric cryptography also reduced the size of temporarily occupied reconfigurable logic

for building the IP decryption key.

A practical and feasible protection method for SRAM-based FPGA was given

in [34]. This approach allowed licensing of IP cores on a per-device basis and it

did not require contractual agreement with trusted third-parties, large bandwidth,

and complicated communication processes. The IP instance was encrypted for each

system integrator and decryption key was generated using the license for the chips.

This procedure ensured that the licensed IP core was used only on the contracted

devices. Moreover, it helped to prevent IP core counterfeiting by tracking the unique

fingerprint embedded in the licensed IP instance of the vendor. The proposed scheme

did not require an external trusted third-party (TTP) and was applicable on IP cores

designed for commercial purposes. It also helped in secure transaction of IP cores and

prevented sophisticated attackers from cloning, reverse engineering, or tampering

contents of the IP core.

A summary of all the above-described protection methods is shown in Fig. 4.4.

4.3 IP Certification

Recently, pre-silicon trust evaluation approaches have been developed to counter

the threat of untrusted third-party resources [37–39]. Most of these methods try to

trigger the malicious logic by enhancing functional testing with extra test vectors.

Toward this end, authors in [37] proposed a method for generating “Trojan Vectors”

to activate hardware Trojans during functional testing. To identify suspicious cir-

cuitry, unused circuit identification (UCI) [39] method analyzed the RTL code to

find lines of code that were never used. However, these methods assume that the

attacker uses rarely-occurring events as Trojan triggers. This assumption was voided

in [40], where hardware Trojans were designed using “less-rare” trigger events.

Due to the limitations of enhanced functional testing methods in security evalu-

ation, researchers started looking into formal solutions. Although at its early stage,

formal methods have already shown their benefits over testing methods in exhaus-

tive security verification [41–44]. A multi-stage approach was used in [41] for

yier.jin@eecs.ucf.edu

60 R.G. Dutta et al.

detection of hardware Trojans by identifying suspicious signals. The stages of this

method included assertion-based verification, code coverage analysis, redundant cir-

cuit removal, equivalence analysis, and use of sequential automatic test pattern gen-

eration (ATPG). In [42–44], the PCH framework ensured the trustworthiness of soft

IP cores by verifying security properties. With the help of the Coq proof assistant

[45], formal security properties were proved in PCH. A review of currently existing

formal methods for hardware security is given in [46].

Interactive Theorem Prover

Theorem provers are used to prove or disprove properties of systems expressed as

logical statements. Since 1960s, several automated and interactive theorem provers

have been developed and used for proving properties of hardware and software sys-

tems. However, verifying large and complex systems using theorem provers require

excessive effort and time. Moreover, automated theorem provers require more devel-

opmental effort than proof assistants. Despite these limitations, theorem provers have

currently drawn a lot of attentions in verification of security properties on hardware

designs. Among all the formal methods, they have emerged as the most prominent

solution for providing high-level protection of the underlying designs.

The proof-carrying hardware (PCH) framework uses interactive theorem prover

and SAT solvers for verifying security properties on soft IP cores. This approach

was used for ensuring the trustworthiness of RTL and firm cores [42, 47–49]. It is

inspired from the proof-carrying code (PCC), which was proposed in [50]. Using

the PCC mechanism, untrusted software developers/vendors certify their software

code. During the certification process, software vendor develops safety proof for

the safety policies provided by software customers. The vendor then provides the

user with a PCC binary file, which includes the formal proof of the safety properties

encoded with the executable code of the software. The customer becomes assured of

the safety of the software code by quickly validating the PCC binary file in a proof

checker. Efficiency of this approach in reducing validation time at the customer end

led to its adoption in different applications.

Using the concept of PCC, authors in [48, 49, 51, 52] developed the PCH frame-

work for dynamically reconfigurable hardware platforms. In this framework, authors

used runtime combinational equivalence checking (CEC) for verifying equivalence

between the design specification and the design implementation. A Boolean satisfi-

ability (SAT) solver was used to generate resolution proof for unsatisfiability of the

combinational miter circuit, represented in a conjunctive normal form (CNF). The

proof traces were combined with the bitstream into a proof-carrying bitstream by the

vendor and given to the customer for validation. However, the approach did not con-

sider exchange of a set of security properties between the customer and the vendor.

Rather it considers safety policy, which included agreements on a specific bitstream

format, on a CNF to represent combinational functions, and the propositional calcu-

lus for proof construction and verification.

Another PCH framework was proposed in [42, 47], which overcame the limita-

tions of the previous framework and expanded it for verification of security prop-

erties on soft IP cores. The new PCH framework was used for security property

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 61

Fig. 4.5 Working procedure of the PCH framework [46]

verification on synthesizable IP cores. In the framework, Hoare-logic style reason-

ing was used to prove the correctness of the RTL code and implementation was

carried out using the Coq proof assistant [45]. As Coq supported automatic proof

checking, the security proof validation effort of IP customers was reduced. More-

over, usage of the Coq platform by both IP vendors and IP consumers ensures that

same deductive rules could be used for validating the proof. However, Coq does not

recognize commercial hardware description languages (HDLs) and security prop-

erties expressed in a natural language. To solve this problem, semantic translation

of HDLs and informal security specifications to calculus of inductive construction

(CIC) was done. Based on this PCH framework, a new trusted IP acquisition and

delivery protocol was proposed (see Fig. 4.5), in which IP consumers provided both

functional specifications and a set of security properties to IP vendors. IP vendors

then developed the HDL code based on the functional specifications. The HDL code

and security properties were then translated to CIC. Subsequently, proofs were con-

structed for security theorems and the transformed HDL code. The HDL code and

proof for security properties were combined into a trusted bundle and delivered to

the consumer. Upon receiving the trusted bundle, IP consumers first generate the

formal representation of the design and security properties in CIC. The translated

code, combined with formal theorems and proofs, was quickly validated using the

proof checker in Coq platform.

yier.jin@eecs.ucf.edu

62 R.G. Dutta et al.

The PCH framework was also extended to support verification of gate-level circuit

netlist [44]. With the help of the new gate-level framework, authors in [44] formally

analyzed the security of design-for-test (DFT) scan chains, which is the industrial

standard testing method, and formally proved that a circuit with scan chain can vio-

late data secrecy property. Although various attack and defense methods have been

developed to thwart the security concerns raised by DFT scan chains [53–58], meth-

ods for formally proving the vulnerability of scan chain inserted designs did not exist.

For the first-time vulnerability of such a design was proved using the PCH framework

of [44]. The same framework was also applied in built-in-self-test (BIST) structure

to prove that BIST structure can also leak internal sensitive information [44].

Equivalence Checking

Orthogonal to the theorem proving approach is equivalence checking, which ensure

that the specification and the implementation of a circuit are equivalent. The tradi-

tional equivalence checking approach uses a SAT solver for proving functional equiv-

alence between two representations of a circuit. In this approach, if the specification

and the implementation were equivalent, the output of the “xor” gate was always zero

(false). If the output was true for any input sequence, it implied that the specifica-

tion and the implementation produced different outputs for the same input sequence.

Following the equivalence checking approach, [38] proposed a four-step procedure

to filter and locate suspicious logic in third-party IPs. In the first step, easy-to-detect

signals were removed using functional vectors generated by a sequential ATPG. In

the next step, hard-to-excite and/or propagate signals were identified using a full-

scan N-detect ATPG. To narrow down the list of suspected signals and identify the

actual gates associated with the Trojan, a SAT solver was used in the third step for

equivalence checking of the suspicious netlist containing the rarely triggered signals

against the netlist of the circuit exhibiting correct behavior. At the final step, clusters

of untestable gates in the circuit were determined using the region isolation approach

on the suspected signals list.

However, traditional equivalence checking techniques could result in state space

explosion when large IP blocks were involved with significantly different specifica-

tions and implementations. They also could not be used on complex arithmetic cir-

cuits with larger bus widths. An alternative approach was to use computer symbolic

algebra for equivalence checking of arithmetic circuit. These circuits constituted a

significant portion of datapath in signal processing, cryptography, multimedia appli-

cations, error root causing codes, etc. Due to this, their chances of malfunctioning

were very high. The new equivalence checking approach allowed verification of such

large circuits and it did not cause state space explosion.

yier.jin@eecs.ucf.edu

4 IP Trust: The Problem and Design/Validation-Based Solution 63

4.4 Conclusion

In this chapter, we analyzed existing prevention and certification methods for soft/

firm hardware IP cores. The prevention methods largely consisted of various hard-

ware locking/encryption schemes. These methods protected IP cores from piracy,

overbuilding, reverse engineering, cloning, and malicious modifications. On the

other hand, formal methods, such as theorem proving and equivalence checking,

helped validate the trustworthiness of IP cores. These methods can help certify the

trustworthiness of IP cores. Meanwhile, after a thorough analysis of all these pro-

posed IP validation/protection methods, we realized that a single method is not suffi-

cient to eliminate all the threats to IP cores. Combination of these methods becomes

a necessity in order to ensure the security of IP cores and further secure the modern

semiconductor supply chain.

Acknowledgements This work was supported in part by the National Science Foundation (CNS-

1319105).

References

1. Kocher, P.: Advances in Cryptology (CRYPTO’96). Lecture Notes in Computer Science, vol.

1109, pp. 104–113 (1996)

2. Kocher, P., Jaffe, J., Jun, B.: Advances in Cryptology–CRYPTO’99, pp. 789–789 (1999)

3. Quisquater, J.J., Samyde, D.: Smart Card Programming and Security. Lecture Notes in Com-

puter Science, vol. 2140, pp. 200–210 (2001)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Cryptographic Hardware and Embedded Systems

(CHES) 2001. Lecture Notes in Computer Science, vol. 2162, pp. 251–261 (2001)

5. Chari, S., Rao, J.R., Rohatgi, P.: Cryptographic Hardware and Embedded Systems—Ches

2002. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer, Berlin (2002)

6. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: IEEE Trans. Comput. 51(5), 541 (2002)

7. Tiri, K., Akmal, M., Verbauwhede, I.: Solid-State Circuits Conference, 2002. ESSCIRC 2002.

Proceedings of the 28th European, pp. 403–406 (2002)

8. Fan, Y.C., Tsao, H.W.: Electr. Lett. 39(18), 1316 (2003)

9. Torunoglu, I., Charbon, E.: IEEE J. Solid-State Circuits 35(3), 434 (2000)

10. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak, M.,

Tucker, P., Wang, H., Wolfe, G.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(10),

1236 (2001)

11. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: IEEE Trans. Comput.-Aided Des. Integr. Cir-

cuits Syst. 20(10), 1253 (2001)

12. Qu, G., Potkonjak, M.: Proceedings of the 37th Annual Design Automation Conference, pp.

587–592 (2000)

13. Chang, C.H., Zhang, L.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(1), 76

(2014)

14. Roy, F.K.J.A., Markov, I.L.: Design, Automation and Test in Europe (DATE), vol. 1 (2008)

15. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Design Automation Conference (DAC), 2012

49th ACM/EDAC/IEEE, pp. 83–89 (2012)

16. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Design, Automation Test in Europe Confer-

ence Exhibition (DATE), vol. 2012, pp. 953–958 (2012). doi:10.1109/DATE.2012.6176634

yier.jin@eecs.ucf.edu

http://dx.doi.org/10.1109/DATE.2012.6176634

64 R.G. Dutta et al.

17. Rajendran, J., Zhang, H., Zhang, C., Rose, G., Pino, Y., Sinanoglu, O., Karri, R.: IEEE Trans.

Comput. 99 (2013)

18. Dupuis, S., Ba, P.S., Natale, G.D., Flottes, M.L., Rouzeyre, B.: Conference on IEEE 20th Inter-

national On-Line Testing Symposium (IOLTS), IOLTS ’14, pp. 49–54 (2014)

19. Chakraborty, R., Bhunia, S.: IEEE/ACM International Conference on Computer-Aided Design

2008. ICCAD 2008, pp. 674–677 (2008). doi:10.1109/ICCAD.2008.4681649

20. Chakraborty, R., Bhunia, S.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(10),

1493 (2009). doi:10.1109/TCAD.2009.2028166

21. Chakraborty, R.S., Bhunia, S.: J. Electr. Test. 27(6), 767 (2011). doi:10.1007/s10836-011-

5255-2

22. Chakraborty, R., Bhunia, S.: IEEE/ACM International Conference on Computer-Aided

Design—Digest of Technical Papers, 2009. ICCAD 2009, pp. 113–116 (2009)

23. Narasimhan, S., Chakraborty, R., Bhunia, S.: IEEE Des. Test Comput. 99(PrePrints) (2011).

http://doi.ieeecomputersociety.org/10.1109/MDT.2011.70

24. Desai, A.R., Hsiao, M.S., Wang, C., Nazhandali, L., Hall, S.: Proceedings of the Eighth Annual

Cyber Security and Information Intelligence Research Workshop, CSIIRW ’13, pp. 8:1–8:4.

ACM, New York (2013). doi:10.1145/2459976.2459985

25. Li, L., Zhou, H.: 2013 IEEE International Symposium on Hardware-Oriented Security and

Trust, HOST 2013, Austin, TX, USA, June 2–3, pp. 55–60 (2013). doi:10.1109/HST.2013.

6581566

26. Chakraborty, R., Bhunia, S.: 23rd International Conference on VLSI Design, 2010. VLSID’10,

pp. 405–410 (2010). doi:10.1109/VLSI.Design.2010.54

27. Chakraborty, R., Bhunia, S.: IEEE International Workshop on Hardware-Oriented Security

and Trust, 2009. HOST ’09, pp. 96–99 (2009). doi:10.1109/HST.2009.5224963

28. Alkabani, Y., Koushanfar, E.: USENIX Security, pp. 291–306 (2007)

29. Liu, B., Wang, B.: Design. Automation and Test in Europe Conference and Exhibition (DATE),

pp. 1–6 (2014). doi:10.7873/DATE.2014.256

30. Wendt, J.B., Potkonjak, M.: Proceedings of the 2014 IEEE/ACM International Conference on

Computer-Aided Design, ICCAD’14, pp. 270–277. IEEE Press, Piscataway (2014). http://dl.

acm.org/citation.cfm?id=2691365.2691419

31. Lao, Y., Parhi, K.: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 99, 1 (2014). doi:10.

1109/TVLSI.2014.2323976

32. Natale, G.D., Dupuis, S., Flottes, M.L., Rouzeyre, B.: Workshop on Trustworthy Manufactur-

ing and Utilization of Secure Devices (TRUDEVICE13) (2013)

33. Maes, R., Schellekens, D., Verbauwhede, I.: IEEE Trans. Inf. Forensics Secur. 7(1), 98 (2012)

34. Zhang, L., Chang, C.H.: IEEE Trans. Inf. Forensics Secur. 9(11), 1893 (2014)

35. Guneysu, T., Moller, B., Paar, C.: IEEE International Conference on Field-Programmable

Technology, ICFPT, pp. 169–176 (2007)

36. Drimer, S., Güneysu, T., Kuhn, M.G., Paar, C.: (2008). http://www.cl.cam.ac.uk/sd410/

37. Wolff, E., Papachristou, C., Bhunia, S., Chakraborty, R.S.: IEEE Design Automation and Test

in Europe, pp. 1362–1365 (2008)

38. Banga, M., Hsiao, M.: IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pp. 56–59 (2010)

39. Hicks, M., Finnicum, M., King, S.T., Martin, M.M.K., Smith, J.M.: Proceedings of IEEE Sym-

posium on Security and Privacy, pp. 159–172 (2010)

40. Sturton, C., Hicks, M., Wagner, D., King, S.: 2011 IEEE Symposium on Security and Privacy

(SP), pp. 64–77 (2011)

41. Zhang, X., Tehranipoor, M.: 2011 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), pp. 67–70 (2011)

42. Love, E., Jin, Y., Makris, Y.: IEEE Trans. Inf. Forensics Secur. 7(1), 25 (2012)

43. Jin, Y., Yang, B., Makris, Y.: IEEE International Symposium on Hardware-Oriented Security

and Trust (HOST), pp. 99–106 (2013)

44. Jin, Y.: IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014)

45. INRIA: The coq proof assistant (2010). http://coq.inria.fr/

yier.jin@eecs.ucf.edu

http://dx.doi.org/10.1109/ICCAD.2008.4681649
http://dx.doi.org/10.1109/TCAD.2009.2028166
http://dx.doi.org/10.1007/s10836-011-5255-2
http://dx.doi.org/10.1007/s10836-011-5255-2
http://doi.ieeecomputersociety.org/10.1109/MDT.2011.70
http://dx.doi.org/10.1145/2459976.2459985
http://dx.doi.org/10.1109/HST.2013.6581566
http://dx.doi.org/10.1109/HST.2013.6581566
http://dx.doi.org/10.1109/VLSI.Design.2010.54
http://dx.doi.org/10.1109/HST.2009.5224963
http://dx.doi.org/10.7873/DATE.2014.256
http://dl.acm.org/citation.cfm?id=2691365.2691419
http://dl.acm.org/citation.cfm?id=2691365.2691419
http://dx.doi.org/10.1109/TVLSI.2014.2323976
http://dx.doi.org/10.1109/TVLSI.2014.2323976
http://www.cl.cam.ac.uk/sd410/
http://coq.inria.fr/

4 IP Trust: The Problem and Design/Validation-Based Solution 65

46. Guo, X., Dutta, R.G., Jin, Y., Farahmandi, F., Mishra, P.: Design Automation Conference

(DAC), 2015 52nd ACM/EDAC/IEEE (2015) (To appear)

47. Love, E., Jin, Y., Makris, Y.: 2011 IEEE International Symposium on Hardware-Oriented Secu-

rity and Trust (HOST), pp. 12–17 (2011)

48. Drzevitzky, S., Kastens, U., Platzner, M.: International Conference on Reconfigurable Com-

puting and FPGAs, pp. 189–194 (2009)

49. Drzevitzky, S.: International Conference on Field Programmable Logic and Applications, pp.

255–258 (2010)

50. Necula, G.C.: POPL’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 106–119 (1997)

51. Drzevitzky, S., Platzner, M.: 6th International Workshop on Reconfigurable Communication-

Centric Systems-on-Chip, pp. 1–8 (2011)

52. Drzevitzky, S., Kastens, U., Platzner, M.: Int. J. Reconfig. Comput. 2010 (2010)

53. Yang, B., Wu, K., Karri, R.: Test Conference, 2004. Proceedings. ITC 2004. International, pp.

339–344 (2004)

54. Nara, R., Togawa, N., Yanagisawa, M., Ohtsuki, T.: Proceedings of the 2010 Asia and South

Pacific Design Automation Conference, pp. 407–412 (2010)

55. Yang, B., Wu, K., Karri, R.: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(10),

2287 (2006)

56. Sengar, G., Mukhopadhyay, D., Chowdhury, D.: IEEE Trans. Comput.-Aided Des. Integr. Cir-

cuits Syst. 26(11), 2080 (2007)

57. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: 2012 IEEE 30th VLSI Test Symposium

(VTS), pp. 246–251 (2012)

58. Rolt, J., Das, A., Natale, G., Flottes, M.L., Rouzeyre, B., Verbauwhede, I.: Constructive Side-

Channel Analysis and Secure Design. In: Schindler, W., Huss, S. (eds.) Lecture Notes on Com-

puter Science, vol. 7275, pp. 89–104. Springer, Berlin (2012)

yier.jin@eecs.ucf.edu

	Contents
	1 The Landscape of SoC and IP Security
	1.1 Introduction
	1.2 SoC Design Supply Chain and Security Assets
	1.3 The Challenge of Design Complexity
	1.4 State of Security Design and Validation: Research and Practice
	1.5 The Book
	References

	2 Security Validation in Modern SoC Designs
	2.1 Security Needs in Modern SoC Designs
	2.2 Supply Chain Security Threats
	2.3 Security Policies: Requirements from Design
	2.4 Adversaries in SoC Security
	2.5 IP-Level Trust Validation
	2.6 Security Along SoC Design Life Cycle
	2.7 Security Validation Activities
	2.8 Validation Technologies
	2.9 Summary
	References

	3
SoC Security and Debug
	3.1 Introduction
	3.2 SoC Debug Architecture
	3.2.1 Debug Interface
	3.2.2 On-Chip DfD Instrumentation

	3.3 Security Concerns and Hazards
	3.3.1 SoC Security Requirements
	3.3.2 DfD Induced Security Hazards

	3.4 Protection Against Hazards Induced by Debugging
	3.4.1 Trade-Off Between Security and Debug
	3.4.2 Authentication-Based Debug Access Control
	3.4.3 Limitations and Challenges

	3.5 Summary
	References

	4 IP Trust: The Problem and Design/Validation-Based Solution
	4.1 Introduction
	4.2 Design for IP Protection
	4.2.1 Threat Model
	4.2.2 Combinational Logic Locking/Encryption
	4.2.3 Finite State Machine Locking/Encryption
	4.2.4 Protection Methods for FPGA IP

	4.3 IP Certification
	4.4 Conclusion
	References

	5 Security of Crypto IP Core: Issues and Countermeasures
	5.1 Introduction
	5.1.1 Implementation: An Issue for Security
	5.1.2 Side Channels

	5.2 Power Analysis of Cryptographic Cores
	5.2.1 Simple Power Attack (SPA)
	5.2.2 Differential Power Attacks
	5.2.3 Template Attack

	5.3 Countermeasures Against Power Analysis
	5.3.1 t-Private Circuit
	5.3.2 Masking
	5.3.3 DRECON: DPA Resistant Encryption by Construction
	5.3.4 Evaluation of Side Channel Leakage for a Crypto Core

	5.4 Fault Attack Resistant Crypto Cores
	5.4.1 General Principle of DFA of Block Ciphers
	5.4.2 Fault Analysis of AES
	5.4.3 Experimental Results on Fault Models
	5.4.4 Proposed DFA on AES-192 Key Schedule
	5.4.5 Countermeasures Against DFA

	5.5 Testing and Validation of Crypto Cores
	5.5.1 Working Principle of Scan-Chain-Attacks on Block Ciphers

	5.6 Conclusions
	References

	6 PUF-Based Authentication
	6.1 Introduction
	6.2 Information Security and Cryptography
	6.3 Cryptographic Primitives for Authentication Protocols
	6.3.1 Random Number Generation
	6.3.2 Cryptographic Hash Functions
	6.3.3 Secure Sketches and Fuzzy Extractors
	6.3.4 Statistical Metrics

	6.4 Traditional, Software-Oriented Authentication
	6.4.1 Entity Authentication

	6.5 Physical Unclonable Functions (PUFs)
	6.5.1 PUF-Based Authentication
	6.5.2 Strong Versus Weak PUFs
	6.5.3 The Arbiter PUF
	6.5.4 Hardware-Embedded Delay PUF (HELP)
	Clock Strobing
	PN Processing
	Temperature-Voltage (TV) Compensation
	Bit Generation Algorithm
	Entropy Analysis
	Statistical Analysis of the Bitstrings
	Security Property Analysis

	6.6 PUF-Based Authentication Protocols
	6.6.1 Protocol 1: Strong PUF with Unprotected Interface
	6.6.2 Protocol 2: Controlled PUF
	6.6.3 Protocol 3: Reverse Fuzzy Extractor
	6.6.4 Protocol 4: Slender PUF Protocol
	6.6.5 Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
	6.6.6 Protocol 6: The HELP Authentication Protocol

	6.7 PUF-Based Authentication for SoC
	6.8 Conclusion
	References

	7
FPGA-Based IP and SoC Security
	7.1 Introduction
	7.1.1 Brief Description of an FPGA Architecture and Its Design Flow
	7.1.2 IPs in FPGA
	7.1.3 Typical Threats for an FPGA-Based IP
	7.1.4 Security Aspects: Countermeasures and Vulnerabilities

	7.2 Cryptographic Primitives on FPGA Bitstream
	7.2.1 Symmetric Key Encryption of Bitstream on FPGAs for Confidentiality
	7.2.2 Primitive Crypto Units for Authentication and Integrity Check
	7.2.3 Confidentiality, Authentication, Integrity and Freshness of Bitstream in Remote Dynamic Partial Reconfiguration
	7.2.4 Generation of FPGA Chip-Specific Encryption Key
	7.2.5 Partial Encryption and Security Issues

	7.3 Authentication of an IP in FPGA
	7.3.1 Embedding Signatures of IP Vendor and Legitimate User
	7.3.2 Techniques for Verification of Signatures in FPGA

	7.4 Insertion and Detection of HTH in an IP for FPGAs
	7.4.1 RO-Based Detection of HTH in HDL Design and Its Challenges
	7.4.2 Parity-Based Detection of HTH Inserted in HDL, Mapped or P&Red Design
	7.4.3 Trojans Inserted in Bitstream and the Challenge of Detection
	7.4.4 Tamper or Fault Injection in FPGAs and Overhead of Detection

	7.5 Security in SoCs and Other Advanced Architectures on FPGAs
	7.5.1 Security in SoC
	7.5.2 Security in Embedded Systems
	7.5.3 Security in Cloud Architecture

	7.6 Summary
	References

	8 Physical Unclonable Functions and Intellectual Property Protection Techniques
	8.1 Introduction
	8.1.1 Storing Secret Keys on a Chip
	8.1.2 The Need for IP Protection Techniques

	8.2 Physical Unclonable Functions (PUFs)
	8.2.1 Motivation
	8.2.2 Types of PUFs
	8.2.3 Security Metrics
	8.2.4 Applications and Protocols
	8.2.5 Challenges
	8.2.6 Beyond PUFs---Public PUFs (PPUFs)
	8.2.7 Sensor PUFs
	8.2.8 Other Reads

	8.3 IP Protection
	8.3.1 Motivation
	8.3.2 Classification
	8.3.3 Watermarking
	8.3.4 Fingerprinting
	8.3.5 Logic Locking
	8.3.6 Metering
	8.3.7 Split Manufacturing

	8.4 Conclusion
	References

	9 A Systematic Approach to Fault Attack Resistant Design
	9.1 Introduction to Fault Attacks
	9.2 Fundamental Fault Attack Requirements
	9.2.1 Fault Model
	9.2.2 Fault Injection Techniques

	9.3 Fault Measurement
	9.3.1 Fault Measurement Steps
	9.3.2 Fault Measurement Case Study

	9.4 Fault Analysis
	9.4.1 Advanced Encryption Standard
	9.4.2 Differential Fault Analysis
	9.4.3 Fault Sensitivity Analysis
	9.4.4 Differential Fault Intensity Analysis

	9.5 A Systematic Organization of Fault Attack Countermeasures
	9.5.1 Countermeasures for Fault Injection Access
	9.5.2 Countermeasures for Fault Injection
	9.5.3 Countermeasures for Fault Effect
	9.5.4 Countermeasures for Fault Observation

	9.6 Conclusion
	References

	10 Hardware Trojan Attacks and Countermeasures
	10.1 Introduction
	10.2 IC Supply Chain Globalization and Threats
	10.3 IC Design Flow and Vulnerabilities
	10.4 Hardware Trojans Horses
	10.5 Hardware Trojans Detection and Prevention
	10.5.1 Trojan Detection Based on Side-Channel Analysis
	Delay-Based Trojan Detection Techniques
	Power-Based Trojan Detection Techniques
	Multi-side Channel Trojan Detection Techniques

	10.5.2 Trojan Detection Based on Logic Value
	10.5.3 Trojan Detection Without a Golden Model
	Design Techniques
	Front-End Circuit Switching Activity Analyses

	10.6 Trojan Prevention
	10.7 Circuit Vulnerability Analysis
	10.8 Design for Hardware Trust
	10.9 Hardware Trojans in Complex Designs
	10.10 Challenges with Hardware Trojans
	References

	11
In-place Logic Obfuscation for EmergingNonvolatile FPGAs
	11.1 Introduction
	11.2 Background
	11.2.1 Hardware Security in FPGAs and Related Work
	11.2.2 High Density RRAM-FPGA
	11.2.3 Security Advantages and Concerns of Nanoscale Device

	11.3 Threat Model of RRAM-FPGA and Our Proposed Hardware Solutions
	11.4 Security Protection of RRAM-FPGA
	11.4.1 Obfuscated Configurations and Chip DNA
	11.4.2 Blank Mode Operation
	11.4.3 Encrypted Addressing

	11.5 Evaluation and Discussion of RRAM-FPGA Security
	11.5.1 Protection of Logic Piracy in FPGA
	11.5.2 Protocol-Based Denial-of-Service Attack
	11.5.3 Miscellaneous Discussion

	11.6 Conclusion
	References

	12 Security Standards for Embedded Devices and Systems
	12.1 Introduction
	12.2 Foundational Cryptographic Algorithms and Associated Standards
	12.2.1 Advanced Encryption Standard (AES)
	12.2.2 Triple DES (3DES)/Triple DEA
	12.2.3 Secure Hash Standard (SHS)

	12.3 Generic Security Standards
	12.3.1 Federal Information Processing Standard (FIPS) 140
	12.3.2 Common Criteria (CC)

	12.4 Application/Market Specific Security Standards
	12.4.1 Payment Card Industry (PCI) Standard
	12.4.2 Europay Mastercard Visa (EMV) Standard
	12.4.3 Interplay of EMV and PCI Standards

	12.5 Security Standard Compliance Assessment
	12.6 Summary
	References

	13 SoC Security: Summary and Future Directions
	Acknowledgements

