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Abstract

Based on the shifted polynomial basis (SPB), a high efficient bit-parallel multiplier for the field GF(2m) defined by an equally-
spaced trinomial (EST) is proposed. The use of SPB significantly reduces time delay of the proposed multiplier and at the same time
Karatsuba method is combined with SPB to decrease space complexity. As a result, with the same time complexity, approximately
3/4 gates of previous multipliers are used in the proposed multiplier.
© 2008 Published by Elsevier B.V.
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1. Introduction

Finite filed operations are used in many areas such
as coding theory, computers algebra, combinatorial de-
signs and cryptography [3,6,13]. Among these opera-
tions, multiplication is of the most importance because
other complex operations such as exponentiation, di-
vision, etc. can be carried out through iterative mul-
tiplications. Based on the advanced design technology
nowadays, more and more logic gates can be located
on a single chip which makes the implementations of
parallel architectures possible and reasonable. In or-
der to improve the efficiency of cryptographic system
and coding system, many bit-parallel multiplier archi-
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tectures have been proposed recently to achieve high
computation speed [2,5,8,10–12,14,15]. Also, various
basis except for polynomial basis (PB), dual basis (DB),
and normal basis (NB) are developed in order to further
reduce the critical path of multipliers with even fewer
logic gates. And certain types of irreducible polynomi-
als are used to improve the performance of multipliers
in which trinomial is one of the best choices [12].

Although different architectures can be evaluated
from several points of view, time complexity and space
complexity are often the two most important parame-
ters. The former is defined as the elapsed time between
input and output of the circuit implementing the multi-
plier, and it is usually expressed as the sum of TA (the
delay of a two input AND gate) and TX (the delay of a
two input XOR gate) with corresponding coefficients.
The latter is weighed by the numbers of AND gates
and XOR gates used in multiplier denoted as #AND



212 H. Shen, Y. Jin / Information Processing Letters 107 (2008) 211–215
and #XOR. In the finite field generated by trinomi-
als, the most efficient multiplier architecture nowadays
contains m2 AND gates and m2 − 1 XOR gates with
time delay of TA + (1 + �log2 m�)TX [5]. If the trino-
mial is an equally-spaced trinomial (EST) in the form
of f (x) = xm + x

m
2 + 1 (m is even), the best result is

TimeDelay = TA + (1 + �log2(m − 1)�)TX , #AND =
m2, #XOR = m2 − m

2 .
As mentioned above, although we can put much

more logic gates in a single chip than ever before, the
O(m2) complexity of AND and XOR gates still costs
considerable chip area. Many researchers are devoted
to the reduction of multipliers’ space complexity with-
out increasing their time complexity. M. Elia et al. [1]
use Karatsuba–Ofman multiplication and achieve even
lower space complexity but their method requires two
more TX delays.

In this paper, we propose a new bit-parallel multi-
plier for GF(2m) defined by EST f (x) = xm + x

m
2 + 1

using shifted polynomial basis which can significantly
reduce the critical path. Also, we use the well-known
Karatsuba–Ofman multiplication [4] to decrease the
space complexity of the proposed bit-parallel multiplier.
Based on these two methods, an high efficient architec-
ture is constructed. The space complexity of the pro-
posed multiplier is about 3/4 of the previous result
while the time complexity matches the best efficient
multipliers ever known of TA + (1 +�log2(m− 1)�)TX .
The irreducible EST in the form of xm + x

m
2 + 1 ex-

ist when m = 2 × 3i where i is a non-negative integer.
Although the number of irreducible EST is not that re-
dundant, they can be used in source critical area, e.g.,
smartcard where field polynomials are often fixed for
the sake of lowering chip area.

The rest of paper is organized as follows: Section 2
introduces the representation of shift polynomial basis
(SPB). Based on this representation a new bit-parallel
multiplier architecture is proposed in Section 3. Sec-
tion 4 presents the comparison between the proposed
multiplier and some others. Finally the conclusions are
drawn in Section 5.

2. Shifted polynomial basis (SPB)

Shifted polynomial basis (SPB) is first introduced
by H. Fan and Y. Dai [5] which is derived from poly-
nomial basis (PB) by adding a shift variable into each
field element in order to improve the efficiency of mul-
tiplier. In PB representation, each element of GF(2m)

is represented by a different binary polynomial of de-
gree less than m. More explicitly, a bit string (am−1,
am−2, . . . , a1, a0) is taken to represent binary polyno-
mial as

a(x) =
m−1∑
i=0

aix
i = am−1x

m−1 + am−2x
m−2 + · · ·

+ a1x + a0, ai ∈ GF(2).

Here the set M = {xm−1, xm−2, . . . , x,1} represents a
polynomial basis.

The addition of bit strings corresponds to addition of
binary polynomials. Multiplication is defined in terms
of an irreducible binary polynomial f (x) of degree m,
called the field polynomial for the representation. The
product of two elements is simply the product of the
corresponding polynomials, reduced modulo f (x).

Here goes the definition of SPB over GF(2m) in
GF(2).

Definition 1. (See [5].) Let v be an integer and the or-
dered set M = {xi | 0 � i � m − 1} be a polynomial
basis of GF(2m) over GF(2). The ordered set xvM :=
{xi+v | 0 � i � m − 1} is called the shifted polynomial
basis (SPB) with respect to M .

In reality, let f (x) = xm + xk + 1 be an irreducible
trinomial over GF(2), M = {xi | 0 � i � m − 1} be a
PB and x−vM := {xi−v | 0 � i � m − 1} be an SPB,
where 0 � v � m − 1 and x is a root of f (x) = 0.
It has been proved that the best value of v is k or
k − 1 with which the multiplier has lowest complex-
ities [5]. From now on, we denote that v equals to
k and x−kM := {xi−k | 0 � i � m − 1} is the SPB.
A field element a(x) can be uniquely represented
as a(x) = (am−1, am−2, . . . , a1, a0) = x−k

∑m−1
i=0 aix

i

with respect to SPB.
It is easy to transform the elements between PB

and SPB representations. Let d(x) = ∑m−1
i=0 dix

i and
a(x) = ∑m−1−v

i=−v av+ix
i be two elements represented in

PB and SPB. The conversions between these two repre-
sentations are showed by the following two formulae:

d(x) =
m−1∑
i=0

dix
i

=
m−1−v∑

i=0

dix
i +

m−1∑
i=m−v

di

(
xv+i−m + xi−m

)

=
(

m−1−v∑
dix

i +
−1∑

dm+ix
i

)
+

v−1∑
dm+i−vx

i,
i=0 i=−v i=0
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a(x) =
m−1−v∑
i=−v

av+ix
i =

m−1−v∑
i=0

av+ix
i

+
−1∑

i=−v

av+i

(
xm+i + xv+i

)

=
(

m−1−v∑
i=0

aix
i +

m−1∑
i=m−v

av−m+ix
i

)
+

v−1∑
i=0

aix
i .

According to the above formulae, the conversion
between these two representations only needs v XOR
gates and 1TX delay with parallel computing.

Multiplication on SPB is the same as that on PB ex-
cept that reduction step abides by two formulae:

xi = xk+i−m + xi−m, where

m − v � i � 2m − 2 − 2v,

xi = xm+i + xk+i , where − 2v � i � −(v + 1).

If the irreducible trinomial is f (x) = xm + x
m
2 + 1

where k = v = m
2 , we have:

xi = xi− m
2 + xi−m, where

m

2
� i � m − 2,

xi = xm+i + x
m
2 +i , where − m � i � −

(
m

2
+ 1

)
.

3. Multiplier based on SPB

Karatsuba method has been used to improve the effi-
ciency of bit-parallel multiplier for GF(2m) generated
by an AOP (All-One Polynomial) and a trinomial in
[1,7,9]. This method can reduce the space complexity
by approximately a factor of 3/4 because it replaces
the multiplication by three half-sized integers multipli-
cations. This method, however, will increase the time
delay which makes the decrease of space complexity
less attractive. Here, by using SPB representation, we
modify the Karatsuba method and propose a new multi-
plier architecture with significantly low space complex-
ity and time delay in the fields generated by EST.

Assume that a(x) = x− m
2

∑m−1
i=0 aix

i , b(x) =
x− m

2
∑m−1

i=0 bix
i are two elements in SPB representa-

tion. We partition a(x) = A · x− m
2 + B and b(x) =

C · x− m
2 + D, where

A =
m
2 −1∑
i=0

aix
i, B =

m
2 −1∑
i=0

ai+ m
2
xi,

C =
m
2 −1∑

bix
i, D =

m
2 −1∑

bi+ m
2
xi.
i=0 i=0
Then, we multiply a(x) and b(x) with Karatsuba
method and do some transformations as follows:

S = a(x) · b(x)

= (
A · x− m

2 + B
)(

C · x− m
2 + D

)
= AC · x−m + BD + (AC + BD)x− m

2

+ (A + B)(C + D)x− m
2

= (
AC · x− m

2 + BD
)
x− m

2

+ (
AC · x− m

2 + BD
) + (A + B)(C + D)x− m

2 . (1)

The right side of (1) can be divided into two parts:
Sre, which needs further reductions modulo f (x) and
Snore, which does not need any reductions because the
exponents of all elements in Snore are located in the
interval of [−m

2 , m
2 − 1]. These two parts are listed sep-

arately as follow:

Sre = (
AC · x− m

2 + BD
)
x− m

2 + (
AC · x− m

2 + BD
)
,

Snore = (A + B)(C + D)x− m
2 .

(i) We consider Sre in detail first. Let

AC =
( m

2 −1∑
i=0

aix
i

)
·
( m

2 −1∑
i=0

bix
i

)
=

m−2∑
i=0

pix
i .

These pis can be computed as follows:

pi =
⎧⎨
⎩

∑i
j=0 ajbi−j , 0 � i � m

2 − 1,∑m
2 −1
j=i− m

2 +1 ajbi−j ,
m
2 � i � m − 2.

(2)

Similarly, we get the coefficients qis of BD =∑m−2
i=0 qix

i

as:

qi =
⎧⎨
⎩

∑i
j=0 aj+ m

2
bi−j+ m

2
, 0 � i � m

2 − 1,∑m
2 −1
j=i− m

2 +1 aj+ m
2
bi−j+ m

2
, m

2 � i � m − 2.

(3)

According to (2) and (3), the result of the expression
AC · x− m

2 + BD can be computed quickly.

AC · x− m
2 + BD

=
m−2∑
− m

2

zix
i =

⎧⎪⎨
⎪⎩

pi+ m
2
, −m

2 � i � −1,

pi+ m
2

+ qi, 0 � i � m
2 − 1,

qi,
m
2 � i � m − 2.

(4)

From (4), we can find that, for −m
2 � i � −1, zi con-

tains (i + m
2 + 1) elements, for 0 � i � m

2 − 1, zi con-
tains m

2 elements and for m
2 � i � m − 2, zi contains

(m − 1 − i) elements. Thus, circuit implementation of

(AC ·x− m
2 +BD) requires m

2 · m
2 −m+ m

2 · m
2 = m2

2 −m

XOR gates. The calculations of AC and BD both need
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Table 1
The space and time complexities of Sre = (AC · x− m

2 + BD) + (AC · x− m
2 + BD)x

− m
2 mod f (x)

Operation #AND #XOR Time delay

(AC · x− m
2 + BD) m2

2
m2

2 − m TA + �log2
m
2 �TX

(AC · x− m
2 + BD) + (AC · x− m

2 + BD)x
− m

2 m 1TX

Total m2

2
m2

2 TA + �log2 m�TX
m
2 · m

2 = m2

4 AND gates. As a result, (AC · x− m
2 + BD)

totally requires m2

2 AND gates, (m2

2 − m) XOR gates
and the time delay is (TA + �log2

m
2 �TX).

Note that Sre needs to be reduced modulo f (x) and
we partition (AC ·x− m

2 +BD) into three parts named r1,
r2, r3.

AC · x− m
2 + BD � r1 · x− m

2 + r2 + r3 · x m
2 ,

where r1 = ∑−1
i=− m

2
zix

i+ m
2 , r2 = ∑m

2 −1
i=0 zix

i , r3 =∑m−2
i= m

2
zix

i− m
2 . Sequentially we have

(
AC · x− m

2 + BD
) · x− m

2

= r1 · x−m + r2 · x− m
2 + r3.

Because the exponents of r3 · x
m
2 in (AC · x− m

2 + BD)

and r1 · x−m in (AC · x− m
2 + BD) · x− m

2 are beyond the
range [−m

2 , m
2 − 1], they need to be reduced as follows:

Sre mod f (x) = (
r1 · x− m

2 + r2 + r3 · x m
2

+ r1 · x−m + r2 · x− m
2 + r3

)
mod f (x)

= r1 · x− m
2 + r2 + r3 + r3 · x− m

2

+ r1 + r1 · x− m
2 + r2 · x− m

2 + r3

= (r1 + r2) + (r2 + r3)x
− m

2 . (5)

In (5), identical parts are removed under the addition
law in GF(2). Therefore (5) needs m XOR gates and
require 1TX delay. In conclusion, the generation of Sre

needs m2

2 AND gates and (m2

2 − m) + m = m2

2 XOR
gates with time delay of TA + (1 + �log2

m
2 �)TX =

TA + �log2 m�TX . The space and time complexity on
computing Sre are summarized in Table 1.

(ii) Here we consider Snore in detail. Because Snore =
(A + B)(C + D)x− m

2 needs no further reduction, it can
be carried out by an m

2 -fold left shift of (A+B)(C+D).
The shift operation can be realized by a simple rewiring
without any logic gates. The space and time complexity
on computing Snore are summarized in Table 2.

From Tables 1 and 2, the computations of Sre and
Snore have the same time delay so they can be calculated
in parallel simultaneously.

Since C = S mod f (x) = Sre mod f (x) + Snore, an-
other m XOR gates and 1TX delay should be added
Table 2
The space and time complexities of Snore = (A + B)(C + D)x

− m
2

Operation #AND #XOR Time delay

(A + C), (B + D) m 1TX

(A + C)(B + D)x
− m

2 m2

4 (m
2 − 1)2 TA + �log2

m
2 �TX

Total m2

4
m2

4 + 1 TA + �log2 m�TX

Table 3
Comparison of bit-parallel multipliers when f (x) = xm + x

m
2 + 1

Proposals #AND #XOR Time delay

Wu [8] m2 m2 − m
2 TA + (1 + �log2(m − 1)�)TX

Sunar [12] m2 m2 − m
2 TA + (1 + �log2(m − 1)�)TX

Imana [15] m2 m2 − m
2 TA + (1 + �log2 m�)TX

Our proposal 3
4 m2 3

4 m2 + m + 1 TA + (1 + �log2(m − 1)�)TX

when computing the final result. The total space com-
plexity and time complexity of the proposed architec-
ture can be calculated from Tables 1, 2 and extra gates
on adding Sre and Snore together:

#AND = m2

2
+ m2

4
= 3

4
m2,

#XOR = m2

2
+ m2

4
+ 1 + m = 3

4
m2 + m + 1,

Time delay = TA + (
1 + �log2 m�)TX.

Because m is even, �log2 m� = �log2(m − 1)�,
the time complexity can be rewritten as TA + (1 +
�log2(m − 1)�)TX .

4. Comparison

In the fields generated by trinomials, low complex-
ity multipliers mainly use polynomial basis. Table 3
gives a comparison of four different implementations
of bit-parallel multipliers in the class of fields gen-
erated by an equally-spaced trinomial xm + x

m
2 + 1

according to space complexity and time complexity.
From Table 3, the proposed multiplier requires about
25 percent fewer circuit gates than the previous best
architectures while with the same time complexity of
TA +(1+�log2(m−1)�)TX . This merit enables the pro-
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posed multiplier to be used in space critical area such as
smartcard, RFID tags, etc.

5. Conclusion

In this paper, a new bit-parallel multiplier architec-
ture is proposed. In this architecture, SPB and Karatsuba
method are combined which can reduce the time com-
plexity and space complexity, respectively. This multi-
plier can be used in area-critical occasion because of
its low space complexity in GF(2m) defined by EST.
To find more efficient polynomials which can use the
method proposed in this paper should be the future
work.
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