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ABSTRACT
The increasing penetration level of distributed energy resources

(DERs) substantially expands the attack surface of the modern

power grid. By compromising DERs, adversaries are capable of

destabilizing the grid and potentially causing large-area blackouts.

Due to the limited administrative control over DERs, constrained

computational capabilities, and possible physical accesses to DERs,

current device level defenses are insufficient to defend against ma-

licious attacks on DERs. To compensate the shortcomings of device

level defenses, in this paper, we develop a system-level risk-aware

DER management framework (RADM) to mitigate the attack im-

pacts. We propose a metric, trust score, to dynamically evaluate the

trustworthiness of DERs. The trust scores are initialized with of-

fline trust scores derived from static information and then regularly

updated with online trust scores derived from a physics-guided

Gaussian Process Regressor using real-time data. The trust scores
are integrated into the grid control decision making process by

balancing the grid performance and the security risks. Extensive

simulations are conducted to justify the effectiveness of the pro-

posed method.
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1 INTRODUCTION
The traditional power grid is undergoing a massive change through

the integration of distributed energy resources (DERs) [9]. DERs

represent the power generation devices or controllable loads spread-

ing in the distribution system, such as renewable energy harvesting
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devices like photovoltaic (PV) systems, electrical vehicles, and elec-

tricity storage, etc. In 2018, the capacity of renewable energy, which

constitutes the majority of DERs, has reached 20.5% of the total

electricity generating capacity in the U.S. [14]. With the significant

increase in the DER penetration level, DERs have been taking an

active role in grid control operations such as demand response

and frequency stabilization, due to its communication and control

capabilities similar to many other Internet of Things (IoT) devices.

Although DERs enrich the power grid with increasing auton-

omy and flexibility, they at the same time lead to a substantially

expanded attack surface of the power system [7], which may cause

the uneconomical dispatch of power, unstable grid status, or even

large-area blackouts [4, 5, 23]. The threats induced by the integra-

tion of DERs are mainly because of two reasons. First, like many

other IoT devices, most DERs are computationally constrained and

lack of security in design. Thus the DERs are implemented with no

or poor security defenses. Second, the connectivity between DERs

and the grid makes more types and larger scales of cyber-physical

attacks possible. As most DERs are owned and controlled by con-

sumers and third-parties, they may be inappropriately operated,

leaving vulnerabilities for attackers to exploit.

The asymmetry between the importance and the reliability of

DERs makes DERs attractive to attackers [4, 7]. To protect DERs

against malicious attacks, various approaches have been developed

in the literature, such as the usage of trusted execution environ-

ments (TEEs) [21], voltage-state of charge feature [30], cryptogra-

phy [15], sliding mode control [12], etc. Nevertheless, there is still a

lack of adequate protections on DERs due to the following reasons.

First of all, defenses relying on hardware modifications [21, 30] are

ineffective as the number of DERs is enormous; 2 million residen-

tial PV systems have been installed in the U.S. at the end of 2018.

Considering a 20-year life span of solar panels, the poor scalability

limits the application of protections using hardware modifications.

Moreover, cryptography is not an ideal solution due to the limited

computational capability. To avoid long latency, only naive cryp-

tography mechanisms can be implemented on DER devices, e.g.,

the simplest 128-bit Advanced Encryption Standard (AES) with a

mean latency of 4.05ms [15]. The latency for more complicated

mechanisms is expected to be much longer. Nonetheless, systems

such as substations require latency on the order of 10ms, which can

hardly be satisfied if more sophisticated cryptography is required

or grid support functions are implemented. In the literature, there

are also defense methodologies which modify the control strategies

embedded in the DER firmware [12]. Such methods require less

computational resources and can be implemented through wireless

firmware update. However, since most DERs are installed outside,

the attacker may gain physical access to the device [4], and thus,

https://doi.org/10.1145/3450267.3450536
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methods relying on the control strategies at the DER side might

not be effective.

Due to the limited administrative controls over DERs, constrained

computational capabilities, and the massive volume of DERs, imple-

menting defenses only on DERs are insufficient against malicious

attacks. To overcome the limitations of the current defense meth-

ods, we introduce an additional system defense layer on top of the

device level defenses. Since the solar energy is among the most

widely used DERs, in this paper, we use PV systems as a case study

of DERs. We consider an attacker capable of compromising the

data integrity of DERs and propose a framework that protects the

operations of the grid in the presence of such attacks. Specifically,

• We propose RADM, a risk-aware DER management frame-

work, to robustly integrate DERs into the power grid and

increase the resilience of the grid. We use the trust score
to quantify the probability of attacks on a DER, i.e., the

trustworthiness of a DER, and leverage the trust scores for
real-time risk-aware DER management. By doing so, the

grid is capable of maintaining normal operations even in the

appearance of attacks.

• Since the attack launch time is not determined, the trust
scores are dynamically estimated with a Bayesian frame-

work. The framework initializes the trust scores with offline

trust scores estimated from static information, such as DER

firmware and grid topology, to present a general assessment

of the DER security levels. The framework then updates

the trust scores with online trust scores utilizing real-time

information, such as weather information and solar power

generations, for a timely understanding of the DER status.

• To update the trust scores and obtain the real-time trustwor-

thiness of DERs, we propose a physics-guided Gaussian Pro-

cess Regressor integrating physical domain knowledge and

data-driven patterns. By leveraging the DER physical model,

the regressor prediction results are regulated by physical

laws and thus responsive to attacks. The data-driven pat-

terns learned from historical observations allow to enhance

the prediction power by cross-checking nearby DERs that

share similar generation patterns.

• Simulations are conducted to justify the effectiveness of

RADM. The results prove that our method can mitigate the

attack impacts with slight performance degradation.

The rest of the paper is organized as follows: Section 2 discusses

the current literature of the DER security and Section 3 introduces

the background knowledge of the paper. In Section 4, we describe

the system and the threat model considered, and formulate the

problem. The detailed trustworthiness evaluation framework is

introduced in Section 5. In Section 6, we use voltage regulation as

a case study and show how the DER trustworthiness is integrated

into the control decisions. Section 7 presents the performance of

the proposed work and in Section 8, we conclude our work.

2 RELATEDWORK
There have been several standards and guidelines addressing the

security of power systems, such as the NIST Framework for Improv-

ing Critical Infrastructure Cybersecurity [8] and IEEE C37.240 [1].

However, since power systems such as substations are within ad-

ministrative controls and have sufficient computational resources,

only few standards addressed the unique challenges of DERs. The

IEEE 1547 Standards [2] is designed specifically for DERs but no

practice for DER security has been recommended yet.

To defend against attacks on DERs, various methods have been

proposed. Thesemethods can be divided into two categories: hardware-

based and software-based. The hardware-based defenses leverage

hardware components to be the root-of-trust. In [21], Sebastian

et al. proposed to utilize the hardware-enforced trusted execution

environments (TEEs) and utilized the secure storage and crypto-

graphic functions of TEEs to reduce the attack surface and guaran-

tee the data integrity of DERs. Besides, Zografopoulos et al. [30]

explored the correlations between the state-of-charge (SoC) and

the voltage measurements from DER battery energy storage system

(BESS) and designed a DER authentication mechanism based on the

challenge-reply sequences (CRSeqs). There have also been various

works attempting to develop cryptographic modules. Lai et al. built

a cryptographic module with keys embedded in the trusted plat-

form modules (TPM) and examined the feasibility of implementing

different cryptography methods on DERs [15]. Hupp et al. [13] de-

veloped Module-OT which was integrated in the transport layer of

the Open Systems Interconnection (OSI) model. An average latency

of 4 ms was observed in [15] and 6ms in [13], which barely fulfilled

the latency requirement of substations. Since the hardware-based

defenses require modifications to the DER hardware, not only the

scalability is poor but also the cost is prohibitively high because of

the large population and the long life span of DERs.

Compared with the hardware-based defenses, the software-based

defenses are more affordable because the software can be updated

remotely. Cryptography has also been suggested in the software-

based defenses [9, 20]. As an emerging technology, blockchains

have also been applied to DERs [19]. Nevertheless, similar to the

cryptographic modules in the hardware-based defenses, concerns

about potential latency still exist in these methods due to the lim-

ited computational resources of DERs, especially for blockchains,

which have heavy computational overheads. Besides cryptography,

different control strategies have also been developed. Gholami et al.

designed a sliding mode observer to estimate the attack vector and

compensate the manipulated data [12]. Thus the observer is capable

of forcing the safe operation of DERs. Few papers considered the

grid resilience under attacks, i.e., how to maintain the operation of

the grid in case of successful attacks. Srikantha et al. in [24] con-

structed the control policies by formulating a two-player zero-sum

differential game between the control center and the attacker. The

authors demonstrated that the attack impacts could be mitigated

as long as a set of uncompromised components exist. However,

the control center could only win the game and maintain the grid

stability when the grid scale is smaller than 39 buses.

3 BACKGROUND
In this section, we introduce the background knowledge required in

the trustworthiness evaluation framework. We leverage Gaussian

Process Regression (GPR) to validate the trustworthiness of the

DER measurements, in our case, the PV generation reports. To

mitigate the impacts of spoofed reports and enhance the prediction
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accuracy, we combine the DER physical model, in our case, the PV

array circuit model, with GPR.

3.1 Gaussian Process Regression
A Gaussian process (GP) is a stochastic process in which any fi-

nite collection of the random variables in the process follows a

multivariate normal distribution. As a powerful regression algo-

rithm, GPR is able to learn an unknown function and also give a

reliable estimate of their own uncertainty, with a standard function

format 𝑦 = 𝑓 (𝑥) + 𝜖 where 𝜖 is the independent noise following
the Gaussian distribution N(0, 𝜎2). In GPR, 𝑓 (𝑥) is assumed to

be a random variable from a GP. That is, for any finite collection

x, 𝑓 (x) ∼ N (𝑚(x), 𝐾), where 𝑚(x) = 𝐸 [𝑓 (x)]. 𝐾 is the covari-

ance matrix and 𝐾𝑖 𝑗 = 𝑘 (x𝑖 , x𝑗 ;𝜽 ), where 𝑘 (x𝑖 , x𝑗 ;𝜽 ) is the kernel
function measuring the distance between x𝑖 and x𝑗 with hyper-

parameter 𝜽 .
Given a training dataset {x, y} and new observations x∗, the ob-

jective of GPR is to estimate the posterior distribution 𝑝 (y∗ |x, y, x∗).
Based on the definition of GP, the joint distribution of y and y∗
given x and x∗ is given as:

𝑝 (y; y∗ |x, x∗) ∼ N
(
𝑚(x),

(
𝐾 + 𝜎2𝐼 𝐾∗
𝐾𝑇∗ 𝐾∗∗

) )
,

𝐾∗ = 𝑘 (x, x∗;𝜽 ),
𝐾∗∗ = 𝑘 (x∗, x∗;𝜽 ).

(1)

Therefore, 𝑝 (y∗ |x, y, x∗) ∼ N (𝜇, Σ), in which

𝜇 = 𝐸 [𝑓 (x)] =𝑚(x) + 𝐾𝑇∗ (𝐾 + 𝜎2𝐼 )−1y,

Σ = 𝑉 [𝑓 (x)] = 𝐾∗∗ − 𝐾𝑇∗ (𝐾 + 𝜎2𝐼 )−1𝐾∗ .
(2)

3.2 Single-Diode PV Array Circuit Model
PV systems are composed of inverters and PV panels. The PV panels

can be regarded as a series of solar cells. According to [26], given

a PV array with 𝑁𝑃 strings in parallel and 𝑁𝑆 cells in series, the

output current

𝐼 =

𝑁𝑃 𝐼𝑖𝑟𝑟 − 𝑁𝑃 𝐼0

exp

©­­«
𝑞

(
𝑉 + 𝐼 𝑁𝑆

𝑁𝑃
𝑅𝑆

)
𝑁𝑆𝑛𝜅𝑇

ª®®¬ − 1

 −
𝑉 + 𝐼 𝑁𝑆

𝑁𝑃
𝑅𝑆

𝑁𝑆

𝑁𝑃
𝑅𝑃

,
(3)

in which 𝐼𝑖𝑟𝑟 is the photocurrent, 𝑉 is the output voltage, 𝐼0 is the

diode saturation current, 𝑅𝑆 is the series resistance, and 𝑇 is the

cell temperature. 𝑞 = 1.602 × 10
−19

C is the electronic charge, and

𝜅 = 1.3806503 × 10
−23

J/K is the Boltzmann’s constant. 𝑛 is the

diode ideality factor and almost remains constant w.r.t. operation

conditions. The derivation of the equation is elaborated in [26].

Typically each PV array is equipped with a Maximum Power

Point Tracking (MPPT) controller and operated at the maximum

power 𝑃 . Here we consider the incremental conductance algorithm

because of its efficient and stable tracking performance. Thus, when

the maximum power is reached, we have

𝑑𝑃

𝑑𝑉
=
𝑑 (𝐼𝑉 )
𝑑𝑉

= 𝐼 +𝑉 𝑑𝐼

𝑑𝑉
= 0.

That is,

𝐼

𝑉
=

𝑞𝑁𝑃 𝐼0
𝑁𝑆𝑛𝜅𝑇

exp

(
𝑞

(
𝑉+𝐼 𝑁𝑆

𝑁𝑝
𝑅𝑆

)
𝑁𝑆𝑛𝜅𝑇

)
+ 1

𝑁𝑆
𝑁𝑃

𝑅𝑃

1 + 𝑞𝐼0𝑅𝑆

𝑛𝜅𝑇
exp

(
𝑞

(
𝑉+𝐼 𝑁𝑆

𝑁𝑃
𝑅𝑆

)
𝑁𝑆𝑛𝜅𝑇

)
+ 𝑅𝑆

𝑅𝑃

. (4)

By solving Eq. 3 and Eq. 4, 𝐼 and 𝑉 can be determined, and the

PV generation power 𝑃 = 𝐼𝑉 .

4 PROBLEM DESCRIPTION
In this section, we formulate the problem and present a summary

in Figure 1. Specifically, we introduce the system model and the

threat model we tangle with and present a brief introduction to the

proposed DER management framework.

Sensor Weather website

Power line Information Flow

Attacker DER

Attack

Trustworthiness 
update

𝑟௜ =
1 − 𝜆 𝑛௧𝑟௜ + 𝜆𝑟௜

ᇱ

1 − 𝜆 𝑛௧ + 𝜆

Control Center

Offline trustworthiness 
evaluation

DER 
firmware

Vulnerability 
Score VSi

Grid 
topology

Criticality 
Score NECi

Offline trust score 𝑟̂௜

Physics-informed 
Gaussian Process 

Regression

Generation estimation 𝑃ത஽,௜

Online trust score 𝑠௜
Wald test

Online trustworthiness 
evaluation

Risk-aware optimization
Objective: Voltage regulation, etc.
Constraints: 

• Power flow balance
• Capacity constraints
• etc.

Trust score update

𝑟̂௜ =
1 − 𝜆 𝑛௧𝑟̂௜ + 𝜆𝑠௜
1 − 𝜆 𝑛௧ + 𝜆

𝑃௜ , 𝑄௜

𝑃෠஽,௜

𝑇௜ , 𝐺௜

𝑸஽

Figure 1: The architecture of RADM. 𝑇𝑖 and 𝐺𝑖 are the
weather information. 𝑃𝐷,𝑖 is the reported DER measure-
ments and in this case, the reported power generations from
PV systems. 𝑃𝑖 and 𝑄𝑖 are the sensor measurements such as
active/reactive power flows. Q𝐷 is the request to DERs.

4.1 System Model
In this paper, we consider a simplified grid system in which DERs

are coordinated by a control center such as an independent system

operator (ISO). Without loss of reality, we assume that DERs are

required to report their manufacturing models, sizes (i.e., 𝑁𝑃 and

𝑁𝑆 ), and the locations before installation. Since the data sheets of

different DER manufacturing models are open to public, the con-

trol center knows the operation status at the Standard Reference

Conditions (SRC). We also assume that the control center has full

knowledge of the grid, such as the grid topology and the line ad-

mittance. We represent the grid as a weighted graph with each bus

(such as a substation) being a node and the nodal admittance matrix

Ỹ ∈ C𝑛𝑏×𝑛𝑏 being the weights. In the rest of the paper, we use “bus”

and “node” interchangeably. Ỹ𝑖𝑘 denotes the admittance between

bus 𝑖 and 𝑘 , and 𝑛𝑏 denotes the number of buses in the grid. If

there is no physical power line connecting buses 𝑖 and 𝑘 , Ỹ𝑖𝑘 = 0.

Ỹ not only represents the physical connection of the grid, but also

indicates the power transfer capability of each power line. With

the settings above, we have ỸṼ = Ĩ, in which Ṽ, Ĩ ∈ C𝑛𝑏×1
are the
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vectors of the voltages and the currents at each bus, respectively.

We also assume the power system is balanced and thus we have:

S̃𝑖 = Ṽ𝑖

𝑛𝑏∑
𝑘=1

(Ỹ𝑖𝑘 Ṽ𝑘 )∗, (5)

where S̃𝑖 denotes the power injection at bus 𝑖 .

We assume that two-way communication links are established

between the control center and DERs, through either wired or wire-

less communications. There are also a set of sensors, such as smart

meters and Phasor Measurement Units (PMUs), installed across the

grid for monitoring purposes. During operations, DERs and sensors

report their status and measurements, e.g., the power generations,

active/reactive power flow injections, voltage magnitudes/angles,

etc., to the control center. The control center also has access to the

weather data, including the solar irradiation and the temperature

data from the meteorological authority or public websites. In order

to maintain the grid stably and economically, the control center

can issue tasks, such as active/reactive power injections, to DERs,

according to the measurements from sensors and DERs.

4.2 Threat Model
In the threat model, we assume the adversary conducts attacks

on DERs. Compared with the control center, DERs are prone to

be attacked because the control center is much more powerful

in computing than DERs and can have various advanced security

mechanisms implemented. To mislead the control center, the adver-

sary compromises the data integrity of the DERs measurements by

exploiting vulnerabilities in DERs or the communication protocols.

With the tampered DER measurements, the grid will be operated

with inaccurate control decisions, which may lead to economic

losses or even blackouts.

We assume the adversary can compromise the DERs by physical

attacks [4], tampering DER firmware and/or spoofing the DER mea-

surements packets [7]. Due to limited resources, the adversary can

compromise at most 𝑘 DERs. Thus the adversary has to deliberately

identify the target DERs. The attacker is more willing to attack the

DERs with poor security defenses while located at critical buses.

Since different DER manufacturing models have different imple-

mentations, some DERs are more likely to be penetrated because of

the potential vulnerabilities in their firmware. Besides, to maximize

the attack impacts, the adversary would attack the DERs located at

the critical buses of the grid. Moreover, the attacker intends to pick

victim DERs in an area instead of spreading over a large area. By

doing so, the adversary can conduct coordinated attacks like that

in [23], which has the potential to cause large-area blackouts.

4.3 Overview of RADM
Considering the possible attacks on the DERs, we intend tomaintain

the normal operations of the grid even in the presence of attacks.

To achieve the goal, we develop a framework for robust DER man-

agement, RADM, as depicted in Figure 1. In the framework, we use

trust scores to dynamically quantify the trustworthiness of each

DER and operate the grid based on the DER trust scores. The trust
scores indicate the probability that a DER is not under attack and

the estimation of trust scores is summarized in Algorithm 1. By

leveraging the trust scores, the control center is facilitated with

more precise awareness of the DER security.

Algorithm 1 Trust Score Estimation

Input: DER firmware, S, Ỹ, 𝑛𝑡 , DER datasheets and locations, his-

torical weather information, historical DERmeasurements, real-

time weather information {𝐺𝑖 (𝑡)}, {𝑇𝑖 (𝑡)}, real-time DER mea-

surements {𝑃𝐷,𝑖 (𝑡)}
Output: {𝑟𝑖 }
1: Initialize:
2: {𝛼𝑖 }, {𝛽𝑖 }, {𝑟𝑖 } = OfflinePhase(DER firmware, S, Ỹ, 𝑛𝑡 );
3: {𝜃𝑖 (𝑡)}, {𝐾𝑖 (𝑡)}, {𝐾𝑃𝑍

𝑖
(𝑡)}, {𝐾𝑍𝑍

𝑖
(𝑡)} = GPRTraining(DER

datasheets and locations, historical DER measurements);

4:

5: repeat
6: {𝑠𝑖 (𝑡)} = OnlinePhase({𝐺𝑖 (𝑡)}, {𝑇𝑖 (𝑡)}, {𝑃𝐷,𝑖 (𝑡)}, {𝜃𝑖 (𝑡)},
{𝐾𝑖 (𝑡)}, {𝐾𝑃𝑍

𝑖
(𝑡)}, {𝐾𝑍𝑍

𝑖
(𝑡)});

7: Update {𝛼𝑖 } and {𝛽𝑖 } according to Eq. 22 and {𝑟𝑖 } accord-
ing to Eq. 23.

8: return {𝑟𝑖 };
9: until No new readings come in

Denote the set of DERs as N = {1, . . . , 𝑛} where 𝑛 is the number

of DERs. We denote the trust score of DER 𝑖 as 𝑟𝑖 and model the

status of each DER, i.e., attacked or not, at each time, as a Bernoulli

trial with the parameter 𝑟𝑖 . Since the start time of the attack is

unknown, the control center dynamically update their belief on 𝑟𝑖
based on a Bayesian framework. Compared with other trust eval-

uation frameworks such as the Dempster–Shafer theory [27], the

Bayesian framework is easier to implement. The Bayesian frame-

work is composed of an offline phase and an online phase. The

offline phase provides us with a general belief on the likelihood a

DER might be attacked, and the online phase tests the real-time

DER status based on dynamic data inputs. The former enhances

the robustness of the trustworthiness evaluation system, while the

latter can provides an up-to-date understanding of DERs.

Without loss of generality, we assume the trust score of DER 𝑖
follows a conjugate prior distribution, i.e., 𝑟𝑖 ∼ Beta(𝛼𝑖 , 𝛽𝑖 ). The
hyper-parameters 𝛼𝑖 and 𝛽𝑖 , and the trust score are initially esti-

matedwith the offline trust score 𝑟𝑖 in the offline phase (Algorithm 1,

line 2). The offline trust score is derived from the DER vulnerabil-

ity score 𝑉𝑆𝑖 and the DER criticality score 𝑁𝐸𝐶𝑖 . 𝑉𝑆𝑖 reflects the

adversary’s capability of manipulating the DER and is calculated

according to the DER firmware analysis results. 𝑁𝐸𝐶𝑖 reflects the

potential damages on the grid that an adversary can cause and is

calculated based on the grid topology. Since the start of an attack

is unpredictable, 𝛼𝑖 and 𝛽𝑖 are updated dynamically with the on-

line trust score 𝑠𝑖 to obtain a timely estimation of the trust score 𝑟𝑖
(Algorithm 1, line 6-7). The online trust score 𝑠𝑖 is the test result

from a physics-guided Gaussian Process Regressor, which combines

the physics-based model with a data-driven Gaussian Process (GP).

Most computations of the trust score estimation scheme is processed

offline, including the offline trust estimation and the GP training.

Thus, the scheme induces little computational overhead during

run-time and is efficient for real-time implementations.

When generating requests for DERs regarding different opera-

tions such as voltage regulations or economic dispatches, we for-

mulate the tasks as optimization problems with the estimated trust
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score 𝑟𝑖 included to balance the impacts of attacks. The details of

the framework will be introduced in the following sections.

5 TRUST SCORE ESTIMATION
5.1 Offline Estimation
As described in Algorithm 2, we provide a general belief on the

distribution of the trust score 𝑟𝑖 by quantifying 𝛼𝑖 and 𝛽𝑖 of the prior
distribution based on the DER vulnerability score 𝑉𝑆𝑖 and the DER

criticality score 𝑁𝐸𝐶𝑖 .

Algorithm 2 Offline Trust Score Estimation

1: function OfflinePhase(DER firmware, S, Ỹ, 𝑛𝑡 )
2: for 𝑖 ∈ N
3: Construct v𝑖 through automatic firmware vulnerability

detection;

4: 𝑉𝑆𝑖 = min( | |v
𝑖◦S | |2
10

, 1);
5: Calculate 𝑁𝐸𝐶𝑖 with Ỹ, the set of generators and the

set of loads;

6: 𝑟𝑖 = (1 −𝑉𝑆𝑖 × 𝑁𝐸𝐶𝑖 );
7: 𝛼𝑖 = 𝑛𝑡𝑟𝑖 , 𝛽𝑖 = 𝑛𝑡 − 𝛼𝑖 ;
8: end for
9: return {𝛼𝑖 }, {𝛽𝑖 }, {𝑟𝑖 };
10: end function

5.1.1 DER vulnerability score. Due to the heterogeneity of the de-

vices in the grid, different devices may have different functionalities

and implementations, and thus different vulnerabilities may lie in

different devices. Since DERs with more severe vulnerabilities are

more likely to be compromised, we check the possible vulnerabili-

ties in DER firmware and derive the DER vulnerability score 𝑉𝑆𝑖
for each DER 𝑖 (Algorithm 2, line 3-4). We choose the Common

Vulnerability Scoring System (CVSS) to quantify the severity of

a vulnerability. We denote the vector of the severity of vulnera-

bilities using S ∈ [0, 10]𝑛𝑆 , in which the 𝑘-th element S𝑘 denotes

the severity score of the vulnerability 𝑘 and 𝑛𝑆 is the number of

vulnerabilities recorded. Note that the construction of S is static

and only requires regular update, therefore, no run time overhead

is induced. By automatically exploring the vulnerabilities in device

firmware (existing work can be found in [16]), a boolean vector

v𝑖 ∈ {0, 1}𝑛𝑆 can be constructed for DER 𝑖 (Algorithm 2, line 3). v𝑖
𝑘
,

i.e., the 𝑘-th element in v𝑖 , is a boolean variable indicating whether

the vulnerability 𝑘 exists in DER 𝑖 . To justify how likely an adver-

sary is capable of compromising DER 𝑖 , we integrate all the detected

vulnerabilities by defining the DER vulnerability score 𝑉𝑆𝑖 as the

scaled distance between the state of the DER 𝑖 , v𝑖 , to the origin, i.e.,
a secure state with no vulnerability (Algorithm 2, line 4):

𝑉𝑆𝑖 = min

(
| |v𝑖 ◦ S| |2

10

, 1

)
, (6)

where v𝑖 ◦ S is the Hadamard product, i.e., the elemental-wise

product, of v𝑖 and S. | | · | |2 indicates the 𝐿2 norm.

5.1.2 DER criticality score. DERs locate at different places will have
different impacts on the grid if compromised. Therefore, besides

𝑉𝑆𝑖 which determines how likely an adversary can manipulate the

device, the criticality of a device to grid that determines how much

an adversary can impact the grid, is also an imperative component

of the trustworthiness assessment of a DER. Since the more critical

a node is, the more likely it will be the target of an adversary, a

critical node is expected to have a relatively low trust score. Many

metrics have been proposed to evaluate the node criticality [17, 28].

Here we adopt the Node Electrical Centrality (NEC) proposed in

[17] (Algorithm 2, line 5). The NEC of node 𝑖 , 𝑁𝐸𝐶𝑖 , reflects the

impact of node 𝑖 to the grid if the node is removed. 𝑁𝐸𝐶𝑖 is a

weighted average of the electrical betweenness centrality and the

eigenvector centrality. Instead of treating all nodes equally, the

authors assign different attributes (generators and/or loads) to the

nodes. With such setting, the electrical betweenness of a node

is defined as the weighted sum of currents flowing through the

node w.r.t each generator-load pairs. Compared with the standard

definition of betweenness centrality in graph theory, the definition

of the electrical betweenness centrality is more reasonable because

the currents do not flow along the shortest paths only. Due to the

limited space, we will not elaborate how 𝑁𝐸𝐶𝑖 is calculated here.

5.1.3 Trust score in the offline phase. 𝑉𝑆𝑖 infers the probability that
an adversary is capable of compromising a DER, and the criticality

score 𝑁𝐸𝐶𝑖 infers the probability that an adversary would like to

attack the device. As assumed in the threat model (Section 4.2),

the attacker is more likely to attack the DERs with poor security

defenses while located at critical buses. Therefore, 𝑉𝑆𝑖 × 𝑁𝐸𝐶𝑖
indicates the probability that a DER will be compromised, and the

trust score of DER 𝑖 , i.e., the probability that the DER will not be
compromised, is computed as (Algorithm 2, line 6)

𝑟𝑖 = 1 −𝑉𝑆𝑖 × 𝑁𝐸𝐶𝑖 . (7)

Statistically, we expect 𝑟𝑖 to be the initial belief of the trustworthi-

ness of DER 𝑖 and can derive that (Algorithm 2, line 7)

𝑟𝑖 = 𝐸 (𝑟𝑖 ) =
𝛼𝑖

𝛼𝑖 + 𝛽𝑖
=
𝛼𝑖

𝑛𝑡
,

𝛼𝑖 = 𝑛𝑡𝑟𝑖 , 𝛽𝑖 = 𝑛𝑡 − 𝛼𝑖 ,
(8)

where 𝑛𝑡 = 𝛼𝑖 + 𝛽𝑖 represents our belief on the confidence of the

prior distribution estimation and a larger 𝑛𝑡 will result in a smaller

variance on the distribution estimation. Given 𝑛𝑡 , both 𝛼𝑖 and 𝛽𝑖
can be derived from Eq. 8.

5.2 Online Monitoring and Estimation
As described in Algorithm 3, in the online phase, we update the

distribution of the trust score with real-time measurements. We

monitor the status of DERs (compromised or not) by comparing

their readings with the estimated readings from a physics-guide

GPR exploiting external data (e.g., weather), DER physical model,

and real-time neighboring DER readings.

5.2.1 Physics-guided Gaussian process regression. We use the re-

ported power generations from PV systems as the DER measure-

ments and denote the generation of PV system 𝑖 at time 𝑡 as 𝑃𝐷,𝑖 (𝑡).
The true power generation of the PV system 𝑖 is denoted as𝑚𝑖 (𝑡).
We assume that 𝑃𝐷,𝑖 (𝑡) ∼ N (𝑚𝑖 (𝑡), 𝜎2

𝑖
(𝑡)) in the attack free sce-

nario. Here 𝜎𝑖 (𝑡) is the standard deviation of 𝑃𝐷,𝑖 (𝑡). Based on the

distances between PV systems, each PV system 𝑖 has a set of neigh-

boring PV systems denoted as 𝐸𝑖 = { 𝑗 |𝑑 (𝑖, 𝑗) < 𝑑0; 𝑗 ≠ 𝑖; 𝑗 ∈ 𝑁 }.
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𝑑 (𝑖, 𝑗) represents the distance between PV system 𝑖 and 𝑗 , and 𝑑0 is

the distance threshold. 𝐸𝑖, 𝑗 for 1 ≤ 𝑗 ≤ 𝑘𝑖 is the 𝑗-th element in 𝐸𝑖 ,

i.e., the 𝑗-th neighbor of PV system 𝑖 , and 𝑘𝑖 = |𝐸𝑖 | is the number

of neighbors of PV system 𝑖 . Since nearby PV systems share similar

weather conditions, their performance will also follow similar pat-

terns. Therefore, we can use the neighboring power generations to

predict the power generation of PV system 𝑖 .

Since the neighboring PV systems can be compromised, the

prediction results may be biased with the tampered neighboring

reports. Therefore, besides the neighboring data, we also combine

the physical model predictions to enhance the prediction accuracy.

Denote the power generation of PV system 𝑖 derived from the phys-

ical model as 𝑃𝐷,𝑖 (𝑡). We assume that 𝑃𝐷,𝑖 (𝑡) ∼ N (𝑚𝑖 (𝑡), 𝜖2

𝑖
(𝑡)).

𝜖𝑖 (𝑡) is the standard deviation of 𝑃𝐷,𝑖 (𝑡). Given the PV system man-

ufacturing model, the solar irradiation𝐺𝑖 (𝑡) and the temperature

𝑇𝑖 (𝑡) at PV system 𝑖’s location at time 𝑡 , the output voltage𝑉𝑖 (𝑡) and
the output current 𝐼𝑖 (𝑡) of PV system 𝑖 at time 𝑡 can be determined

with Eq. 3 and Eq. 4, and thus the output power 𝑃𝐷,𝑖 (𝑡) = 𝑉𝑖 (𝑡)𝐼𝑖 (𝑡)
(Algorithm 3, line 3).

Based on the settings above, we have (Algorithm 3, line 4)

Z𝑖 (𝑡)

= (𝑃𝐷,𝑖 (𝑡), 𝑃𝐷,𝑖 (𝑡), 𝑃𝐷,𝐸𝑖,1 (𝑡), 𝑃𝐷,𝐸𝑖,1 (𝑡), . . . , 𝑃𝐷,𝐸𝑖,𝑘𝑖
(𝑡), 𝑃𝐷,𝐸𝑖,𝑘𝑖

(𝑡))𝑇 ,
(9)

as the vector of the reported and the physics-based power genera-

tions for PV system 𝑖 and its neighbors. For each epoch 𝑡 over a day,

Z𝑖 (𝑡) is collectively modeled as a Gaussian ProcessN(𝜇𝑖 (𝑡),Σ𝑖 (𝑡)).
Here, 𝜇𝑖 (𝑡) is the expectation of Z𝑖 (𝑡), i.e.,

𝜇𝑖 (𝑡) = (𝑚𝑖 (𝑡),𝑚𝑖 (𝑡),𝑚𝐸𝑖,1 (𝑡),𝑚𝐸𝑖,1 (𝑡), . . . ,𝑚𝐸𝑖,𝑘𝑖
(𝑡),𝑚𝐸𝑖,𝑘𝑖

(𝑡))𝑇 ,

and Σ𝑖 (𝑡) is the covariance matrix of Z𝑖 (𝑡). To parameterize the

covariancematrix and incorporate performance similarities induced

by physical distances, the covariance between any two elements of

𝑍𝑖 (𝑡) is defined based on𝑑 (𝑘, 𝑗) values byGaussian kernel functions

𝐶𝑜𝑣 (𝑃𝐷,𝑘 (𝑡), 𝑃𝐷,𝑗 (𝑡)) = 𝜎 (𝑡)2 exp

(
−𝑑 (𝑘, 𝑗)

2

2ℎ1 (𝑡)2

)
, (10)

𝐶𝑜𝑣 (𝑃𝐷,𝑘 (𝑡), 𝑃𝐷,𝑗 (𝑡)) = 𝜖 (𝑡)2 exp

(
−𝑑 (𝑘, 𝑗)

2

2ℎ2 (𝑡)2

)
, (11)

𝐶𝑜𝑣 (𝑃𝐷,𝑘 (𝑡), 𝑃𝐷,𝑗 (𝑡)) = 𝛼 (𝑡)𝜎 (𝑡)𝜖 (𝑡) exp

(
−𝑑 (𝑘, 𝑗)

2

2ℎ3 (𝑡)2

)
. (12)

Here, ℎ1 (𝑡), ℎ2 (𝑡) and ℎ3 (𝑡) are the length scales of the covariance

functions adjusting the impact of PV system distances to their

correlations. To simplify the mathematical model, here we assume

all PV systems have the same standard deviations, that is, 𝜎𝑖 (𝑡) =
𝜎 (𝑡) and 𝜖𝑖 (𝑡) = 𝜖 (𝑡) for all 𝑖 ∈ N. Note that this assumption can

be flexibly relaxed if the PV systems exhibit very large differences

in variances. Since the physical model prediction from PV system 𝑘

does not directly connect to the reported reading from PV system

𝑗 , a parameter 𝛼 (𝑡) is used to scale the effect of their correlation.

During the training phase, we use historical data to estimate the

hyper-parameters𝜃𝑖 (𝑡) = (𝜇𝑖 (𝑡), 𝛼 (𝑡), 𝜎 (𝑡), 𝜖 (𝑡), ℎ1 (𝑡), ℎ2 (𝑡), ℎ3 (𝑡))
by maximizing the log likelihood (Algorithm 3, line 5):

L𝑖 = −
1

2

𝑛𝑠𝑝∑
𝑠=1

Z𝑇𝑖,𝑠Σ𝑖Z𝑖,𝑠 −
1

2

𝑛𝑠𝑝 × log( |Σ𝑖 |) −
𝑛𝑠𝑝

2

× log(2𝜋), (13)

where 𝑛𝑠𝑝 indicates the number of historical samples, and Z𝑖,𝑠 is

the 𝑠-th sample..

During the prediction phase, the power generation of PV system

𝑖 , 𝑃𝐷,𝑖 (𝑡), is estimated with (Algorithm 3, line 13):

𝑃𝐷,𝑖 (𝑡) =𝑚𝑖 (𝑡) + 𝐾𝑃𝑍
𝑖 (𝑡) (𝐾

𝑍𝑍
𝑖 (𝑡))

−1 (Z−𝑖 (𝑡) − 𝜇−𝑖 (𝑡)), (14)

and the variance of the estimation, 𝐾𝑖 (𝑡), is
𝐾𝑖 (𝑡) = 𝐾𝑃𝑃

𝑖 (𝑡) − 𝐾
𝑃𝑍
𝑖 (𝑡) (𝐾

𝑍𝑍
𝑖 (𝑡))

−1 (𝐾𝑃𝑍
𝑖 (𝑡))

𝑇 , (15)

in which

Z−𝑖 (𝑡) = (𝑃𝐷,𝑖 (𝑡), 𝑃𝐷,𝐸𝑖,1 (𝑡), 𝑃𝐷,𝐸𝑖,1 (𝑡), . . . , 𝑃𝐷,𝐸𝑖,𝑘𝑖
(𝑡), 𝑃𝐷,𝐸𝑖,𝑘𝑖

(𝑡))𝑇 ,
(16)

𝜇−𝑖 (𝑡) = (𝑚𝑖 (𝑡),𝑚𝐸𝑖,1 (𝑡),𝑚𝐸𝑖,1 (𝑡), . . . ,𝑚𝐸𝑖,𝑘𝑖
(𝑡),𝑚𝐸𝑖,𝑘𝑖

(𝑡))𝑇 , (17)

𝐾𝑃𝑍
𝑖 (𝑡) = 𝐶𝑜𝑣 (𝑃𝐷,𝑖 (𝑡),Z−𝑖 (𝑡)), (18)

𝐾𝑍𝑍
𝑖 (𝑡) = 𝐶𝑜𝑣 (Z−𝑖 (𝑡),Z−𝑖 (𝑡)), (19)

𝐾𝑃𝑃
𝑖 (𝑡) = 𝐶𝑜𝑣 (𝑃𝐷,𝑖 (𝑡), 𝑃𝐷,𝑖 (𝑡)) . (20)

Algorithm 3 Online Trust Score Estimation

1: function GPRTraining(DER datasheets and locations, histor-

ical weather information {𝐺𝑖 }, {𝑇𝑖 }, historical DER measure-

ments {𝑃𝐷,𝑖 })
2: for 𝑖 ∈ N
3: Solve𝑉𝑖 and 𝐼𝑖 with Eq. 3 and Eq. 4, and thus 𝑃𝐷,𝑖 = 𝑉𝑖 𝐼𝑖 ;

4: Construct 𝑍𝑖 according to Eq. 9;

5: 𝜃𝑖 = arg max𝜃 L𝑖 ;
6: Calculate𝐾𝑖 (𝑡),𝐾𝑃𝑍

𝑖
(𝑡) and𝐾𝑍𝑍

𝑖
(𝑡) according to Eq. 15,

Eq. 18 and Eq. 19, respectively;

7: end for
8: return {𝜃𝑖 (𝑡)}, {𝐾𝑖 (𝑡)}, {𝐾𝑃𝑍

𝑖
(𝑡)} and {𝐾𝑍𝑍

𝑖
(𝑡)};

9: end function
10:

11: function OnlinePhase({𝐺𝑖 (𝑡)}, {𝑇𝑖 (𝑡)}, {𝑃𝐷,𝑖 (𝑡)}, {𝜃𝑖 (𝑡)},
{𝐾𝑖 (𝑡)}, {𝐾𝑃𝑍

𝑖
(𝑡)}, {𝐾𝑍𝑍

𝑖
(𝑡)})

12: for 𝑖 ∈ N
13: Calculate the estimated DER measurement 𝑃𝐷,𝑖 (𝑡) ac-

cording to Eq. 14;

14: Calculate the statistic 𝑡𝑖 (𝑡) according to Eq. 21;

15: Apply Wald test to 𝑡𝑖 (𝑡) and obtain the trust score 𝑠𝑖 (𝑡);
16: end for
17: return {𝑠𝑖 (𝑡)};
18: end function

5.2.2 Trust score in online phase. To decide whether the PV system

𝑖 is under attack, the estimation 𝑃𝑖 (𝑡) is validated with the reported

generation 𝑃𝑖 (𝑡) through Wald test (Algorithm 3, line 14-15). Since

𝑃𝐷,𝑖 (𝑡) |𝑍−𝑖 (𝑡) ∼ N (𝑃𝐷,𝑖 (𝑡), 𝐾𝑖 (𝑡)) in attack-free cases, the statistic

𝑡𝑖 (𝑡) = (𝑃𝐷,𝑖 (𝑡) − 𝑃𝐷,𝑖 (𝑡))/
√
𝐾𝑖 (𝑡) (21)

follows the asymptotic 𝑧 distribution.When the 𝑝-value correspond-

ing to 𝑡𝑖 (𝑡) is low, it is unlikely that the PV system is not under
attack. We set up a threshold 𝜏 such that when the 𝑝-value is below

𝜏 , we believe the PV system is compromised and its online trust

score 𝑠𝑖 = 0. Otherwise, 𝑠𝑖 = 1.

Since an adversary is prone to attack PV systems close to each

other, the neighboring PV systems are also at risk when a PV system
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is subject to attack. In our GPR, the estimations of the PV systems

will be deviated if the neighboring PV system is compromised.

Therefore, our trust score estimation framework can catch such

potential vulnerabilities. On the other hand, thanks to the physical

model, the impacts of compromised neighboring PV systems are

alleviated to avoid the degradation of the grid performance.

5.3 Trust Score Update
Given an observation 𝑠𝑖 (𝑡), the posterior distribution of 𝑟𝑖 can be

updated through the following exponentially weighted moving

average of the prior and online trust score:

𝛼𝑖 ← (1 − 𝜆)𝛼𝑖 + 𝜆𝑠𝑖 (𝑡),
𝛽𝑖 ← (1 − 𝜆)𝛽𝑖 + 𝜆(1 − 𝑠𝑖 (𝑡)).

(22)

Such an update can better utilize historical observations and facili-

tate the detection of less obvious attacks [18]. 𝜆 is a parameter to

balance the prior knowledge and the new observations. A larger 𝜆

will make the trust score more sensitive to attacks while a smaller 𝜆

will result in a more stable trust score. Recall that 𝑟𝑖 = 𝐸 (𝑟𝑖 ) = 𝛼𝑖/𝑛𝑡
and 𝑛𝑡 = 𝛼𝑖 + 𝛽𝑖 , the posterior expectation of the trust score is then
(Algorithm 1, line 6)

𝑟𝑖 ←
(1 − 𝜆)𝑛𝑡𝑟𝑖 + 𝜆𝑠𝑖 (𝑡)
(1 − 𝜆)𝑛𝑡 + 𝜆

. (23)

6 RISK-AWARE DER MANAGEMENT
To maintain the normal operations of the grid, we integrate the

estimated trust scores into the coordination of DERs in the trans-

mission network by introducing a resilience term to balance the

overall grid performance and the security risks derived from the

trust scores. Depending on different grid operations, the optimiza-

tion formulation may change. For illustration purpose, in this paper,

we showcase how the trust score is utilized to maintain the voltage

profile. Other tasks can be formulated in a similar manner.

To guarantee the grid stability or dispatch energies economically,

the control center may want to set the grid voltages at a certain

point. To force the voltage to the set point, the control center sends

requests to PV systems to inject/absorb certain amounts of reactive

powers to/from the grid. To decide the most preferrable action of

each PV system, the control center calculates the optimal power

flow (OPF). Nevertheless, when a PV system is compromised, the

tampered power generation reports from it may mislead the deci-

sion of the control center. Moreover, the compromised PV systems

may not follow the requests from the control center and thus, the

grid cannot be correctly controlled. Therefore, to mitigate the im-

pacts of tampered power generation reports, we use the estimated

measurement from GPR 𝑃𝐷,𝑖 for OPF. Meanwhile, we introduce a

resiliency term in which the assigned amount of the reactive power

injection/absorption for each PV system Q𝐷,𝑖 is weighted with its

trust score estimation 𝑟𝑖 . By doing so, we intend to assign heavier

tasks to those trustworthy PV systems and balance the possible

impacts caused by the malfunctioning of compromised PV systems.

The objective function of OPF is formulated as follows:

min

Q𝐷

| |V − V𝑟𝑒 𝑓 | |2 − 𝜂r𝑇 Q𝐷 , (24)

V = (𝑉1,𝑉2, . . . ,𝑉𝑛𝑏 ) is the vector of the voltage amplitudes of

each bus. V𝑟𝑒 𝑓 denotes the vector of desired values of the voltages.

𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑛𝑏 ) denotes the vector of the voltage angles of

each bus. r is the vector of trust scores and Q𝐷 is the vector of

the amounts of reactive powers requested from PV systems. 𝜂 is a

penalty coefficient to balance the following two terms. The first term

forces the grid voltage to the set voltage profile, and the second term

enhances the grid resilience and limits the impacts of PV systems

with low trust scores. By doing so, we increase the resilience of the

grid by making a trade-off between grid performance and security.

There are several physical limits and constraints characterizing

the system. All voltage magnitudes and angles are bounded by an

upper and a lower limit to guarantee the stability of the grid:

0.98 ≤ 𝑉𝑖 ≤ 1.02,

− 𝜋
2

≤ 𝛿𝑖 ≤
𝜋

2

.
(25)

Since we consider a balanced system model, we have the following

power balance constraints:

𝑃𝐺,𝑖 + 𝑃𝐷,𝑏𝑖 − 𝑃𝐿,𝑖 −𝑉𝑖
∑
𝑗

𝑉𝑗
(
𝐺𝑖 𝑗 cos𝛿𝑖 𝑗 + 𝐵𝑖 𝑗 sin𝛿𝑖 𝑗

)
= 0,

𝑄𝐺,𝑖 +𝑄𝐷,𝑏𝑖 −𝑄𝐿,𝑖 −𝑉𝑖
∑
𝑗

𝑉𝑗
(
𝐺𝑖 𝑗 sin𝛿𝑖 𝑗 − 𝐵𝑖 𝑗 cos𝛿𝑖 𝑗

)
= 0,

(26)

𝑃𝐺,𝑖 , 𝑄𝐺,𝑖 are the active and the reactive power injection from gen-

erator and 𝑃𝐿,𝑖 ,𝑄𝐿,𝑖 are the active and the reactive power consumed

by the load at the bus 𝑖 . All the 4 variables can be measured by smart

meters. 𝑃𝐷,𝑏𝑖 and 𝑄𝐷,𝑏𝑖 are the active and reactive powers of the

PV system 𝑏𝑖 (𝑏𝑖 ∈ N) located at bus 𝑖 . If no PV system is installed

at the bus, 𝑃𝐷,𝑏𝑖 and 𝑄𝐷,𝑏𝑖 will be 0. 𝐺𝑖 𝑗 and 𝐵𝑖 𝑗 are the real and

the imaginary components of 𝑌̃𝑖 𝑗 . 𝛿𝑖 𝑗 = 𝛿𝑖 − 𝛿 𝑗 is the voltage angle
difference between bus 𝑖 and 𝑗 . Moreover, the apparent power of

each PV system should not exceed its capacity:

𝑃2

𝐷,𝑏𝑖
+𝑄2

𝐷,𝑏𝑖
≤ 𝑆2

𝐷,𝑏𝑖
, (27)

where 𝑆𝐷,𝑏𝑖 is the nominal power of PV system 𝑏𝑖 .

We summarize the optimization problem as follows:

min

Q𝐷

| |V − V𝑟𝑒 𝑓 | |2 − 𝜂r𝑇 Q𝐷 ,

s.t., 𝐸𝑞. 25, 26, 27

(28)

To solve the highly non-linear problem Eq. 28, we adopt a heuristic

algorithm - Differential Evolution (DE) [6, 25]. DE improves the

solution of the optimization problem iteratively by generating off-

spring candidates from mutations of the parent candidate solutions

and selecting the better ones from the offspring and parent can-

didates. DE is easy to implement and converges fast because the

mutation is generated based on the difference between candidates

instead of random generation. Denote the number of populations

as 𝑁𝑃 and the maximum number of generations as 𝑁𝐺 . The muta-

tion factor 𝐹 is the weight of the difference between two random

candidates and functions like the learning rate. The crossover rate

𝐶𝑅 decides the probability that a crossover operation is performed.

The implementation of DE is illustrated as follows:

(1) Initialization: Set the index of generation 𝑔 = 0. A set of

candidates {q0

𝑘
|𝑘 ∈ {1, . . . , 𝑁𝑃}} are initialized as random

vectors between the lower and the upper bound of Q𝐷 , i.e.,

-S𝐷 and S𝐷 .



ICCPS ’21, May 19–21, 2021, Nashville, TN, USA Yaodan Hu, Xiaochen Xian, and Yier Jin

(2) Mutation: Increase the generation index 𝑔← 𝑔 + 1. At the

generation 𝑔, for each candidate, an offspring is generated

from three candidates, q𝑔−1

𝑟𝑘1
, q𝑔−1

𝑟𝑘2
and q𝑔−1

𝑟𝑘3
, randomly chosen

from the candidate set: u𝑘 = q𝑔−1

𝑟𝑘1
+ 𝐹 (q𝑔−1

𝑟𝑘2
− q𝑔−1

𝑟𝑘3
).

(3) Crossover: For each element in u𝑘 , a randomnumber 𝑐𝑟𝑟𝑎𝑛𝑑 ∈
(0, 1) is generated. If 𝑐𝑟𝑟𝑎𝑛𝑑 > 𝐶𝑅, the element is replaced

with the corresponding element in q𝑔−1

𝑘
.

(4) Selection: Given q𝑔−1

𝑘
and u𝑘 , we derive V and 𝛿 with Mat-

power [29], and the results are evaluated w.r.t Eq. 28. The

constraint violation is handled through the Superiority of

feasible solutions (SF) method proposed in [10]. From q𝑔−1

𝑘
and u𝑘 , we choose the one with no or less violation that

minimizes the objective function in Eq. 24 as the candidate

for the next generation q𝑔
𝑘
.

(5) The mutation, crossover and selection processes are iterated

until the maximum number of generation is reached. From

all candidates, we choose the one with no or the smallest

violation that minimizes Eq. 24 as the solution of Eq. 28, Q𝐷 .

7 EXPERIMENTAL RESULTS
7.1 Dataset and Simulation Setup
We use the 39-bus system shown in Figure 2 as the test case. The

PV systems are installed at the buses connected to loads but not

connected to the generators, which results in 12 PV systems in total.

The PV system indexes and their corresponding bus indexes are

summarized in Table 1. The PV systems are divided into 3 groups

with 4 PV systems in each group. Group 1 includes PV system 1, 4,

7, 10, group 2 includes PV system 2, 5, 8, 11, and group 3 includes

PV system 3, 6, 9, 12. For PV systems in the same group, they are

the neighbors of each other.
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G1

G10
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G5 G4

G7

G2

G3
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<34>
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D5

D6

D7

D8

D9

D10

D11

D12

G# Generator # D# TransformerDER # <#>   Bus # Load

Figure 2: Single line diagram of the modified IEEE 39-bus
with 12 PV installed.

PV 1 2 3 4 5 6 7 8 9 10 11 12

bus 8 18 24 7 26 16 4 27 15 3 28 21

Table 1: PV indexes and their corresponding bus indexes.

Due to the lack of real-time fine-grained load and PV generation

data, we use synthetic data for simulation. Similar to [3], we use the

load data of New York (NY) state in Nov, 2019 from the NYISO to

derive the power demands of loads in the 39-bus system. There are

11 control areas in the NYISO map while there are 21 loads in the

39-bus system. Therefore, for each load in the 39-bus system, we

randomly choose 2 control areas from the NYISO map and use the

sum of their load data as the active power demand of the load in the

39-bus system. The synthetic data generation process is detailed

in [3]. Since the historical reactive power data is not available, we

generate the reactive powers for the loads by assuming a constant

power factor 𝑃𝐹 = 0.9.

To generate the PV power generation data, we utilize the weather

information from the National Solar Radiation Database (NSRDB)

[22]. NSRDB offers synthetic data for half-hourly solar radiation

measurements and meteorological data with a granularity of about

4km, i.e., 0.04°in latitude/longitude. We use global horizontal irradi-

ance (GHI) and temperature measurements for the whole year of

2019. The locations of the 12 PV systems are selected from the Cali-

fornia state, which is rich in the solar energies. The 3 groups of PV

systems are located near (-81.58°, 30.5°), (-81.78°, 30.25°), and (-81.30°,

30.61°), respectively. We assume a penetration level of 15% and the

nominal power of the PVs are set as 15% of the initial apparent

powers of the loads in the 39-bus system. We use SunPower SPR-

415E-WHT-D as the manufacturing model of PV systems. GHI and

temperature measurements are input to Simulink [11] to generate

the PV power generation data.

Based on the assumptions made in the threat model (Section 4.2),

the attacks are performed on the 3 PV systems with the lowest

offline trust scores. The offline trust scores of PV systems are pre-

sented in Figure 3, and the attack victims are PV system 1, 2 and

10. At each epoch, with a probability of 0.5, the attacks are per-

formed by adding random numbers between 10 and 20 to the power

generation data of the victim PV systems.

7.2 Simulation Results
7.2.1 Trust score in the offlline phase. In the simulation, the vul-

nerability score of PV system 𝑖 , i.e., 𝑉𝑆𝑖 , is randomly generated.

We calculate the offline trust scores of PV systems according to

Eq. 7 with 𝑛𝑡 = 10 and depict them in Figure 3. PV system 6 and

10, corresponding to bus 16 and 3, have the highest 2 𝑁𝐸𝐶 (0.26

and 0.34), which agrees with our intuitions that buses with higher

degrees in graph theory are supposed to carry more power flows.

On the other hand, PV system 10 also has a high 𝑉𝑆 value (0.54),

and thus its offline trust score is the lowest among all the PV sys-

tems (0.82). This meets our assumption that a PV system located

at a critical place with poor security implementations is more at-

tractive to adversaries. Furthermore, although PV system 2 does

not have a high 𝑁𝐸𝐶 (0.17), it has the highest VS (0.72), i.e., the

poorest security implementations. Therefore, PV system 2 is easy

to be compromised and have a low overall offline trust score 0.88.

7.2.2 Physics-guided GPR evaluation. Since the power generations
from PVs heavily rely on the solar irradiation, a GPR is trained for

every half hour from 9 am to 16:30 pm when the solar irradiation is

abundant, thus resulting in 16 GPR models for each PV system. In

the training phase, 80% of the PV power generation data is used as

the training data. To evaluate the performance of trustworthiness

evaluation capability of the physics guided GPR, for each PV system,

we use the mean of the relative errors ((𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛−𝑇𝑟𝑢𝑡ℎ)/𝑇𝑟𝑢𝑡ℎ)
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Figure 3: The offline trust score of each PV system.

at each time epoch as the performance metric, and the box plot

of the average relative errors for each PV system is presented in

Figure 4. When there’s no attack, the average relative errors are

within 5% except few outliers. Recall that the estimation accuracy

depends on it’s neighbor readings and physical model prediction.

Therefore, when attack appears, the prediction errors increase for

all the PV systems in group 1 (PV system 1, 4, 7, 10) as half of the

PV systems (PV system 1 and 10) are compromised. On the other

hand, for the PV systems in group 2 (PV system 2, 5, 8, 11), in which

only PV system 2 is compromised, the performance of PV system 2

does not change because its neighbors are not attacked, and thus

the predictions from GPR are the same. Besides, the performance of

other PV systems in group 2 drops only slightly compared with the

attack-free situation. This proves that the proposed GPR has the

capability of recovering the true power generations of PV systems

when a moderate number of PV systems are compromised.
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Figure 4: The box plot of the average relative errors at each
epoch for PV systems. (a) depicts the results without attacks
and (b) depicts the results with attacks.

When performing the Wald test, the threshold 𝜏 = 1 × 10
−5
. An

attack is alarmed if the online trust scores of any PV systems are

equal to 0. The test achieves an accuracy (𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑡𝑜𝑡𝑎𝑙 ) of 98.75%, a
false negative rate (𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) of 0%, and a false
positive rate (𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒/𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) of 2.67%. Therefore,
our online trust score estimation is capable of correctly evaluating

the dynamic trustworthiness of the DERs.

7.2.3 The dynamics of trust scores. Here we evaluate the impact

of attacks on the trust scores of the attacked PV systems and their

neighbors as shown in Figure 5. The vertical red dashed line marks

the epochs that a PV system is attacked over a day. Due to the

superior performance of the online trust score estimation, we assign

more weight to 𝑠𝑖 and choose 𝜆 = 0.5 in Eq. 22. We select two PV

systems from each group and present their trust scores 𝑟𝑖 on day 1.

According to the figure, we observe that the proposed trust score

estimation framework can accurately capture the dynamic status

of PV systems. The trust scores of the attacked PV systems (PV

system 1 and 2) decrease at the epochs with attacks and increase at

the epochs without attacks. Since two PV systems are attacked in

group 1, the attacker is likely to attack the remaining ones. Thus

the trust score of PV system 7 decreases as well. On the other hand,

only PV system 2 is attacked in the group 2, thus PV system 5 is

less affected and has a relatively high trust score. The trust scores

of PV system 3 and 9 keep increasing because PV systems in the

group 3 are not attacked.
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Figure 5: The dynamics of the trust scores on day 1.
7.2.4 Evaluation of RADM. With the trust scores, we optimize

Eq. 28 with 𝜂 = 0.01. Through several trials, we set 𝑁𝑃 = 50, 𝑁𝐺 =

100, 𝐹 = 0.7 and 𝐶𝑅 = 0.9. The objective voltages of all buses

are set at 1 p.u.. We use the Mean Square Errors (MSEs) between

the reference voltage profile V𝑟𝑒 𝑓 and the voltages V from the

solution of Eq. 28 as the performance metric. In the basic case,

the optimization is run without the second term in Eq. 28, i.e.,

with the objective to minimize | |V − V𝑟𝑒 𝑓 | |2 only. Both the basic

case and RADM are examined with and without the presence of

attacks and the results are presented in Figure 6. We use the MSE

of the basic case without attacks as the baseline. As shown in

Figure 6a, an average MSE of 5.42 × 10
−4

is achieved in the baseline.

Compared with the baseline, the attacks result in an average MSE

of 6.39 × 10
−4

in the basic case, which increases the average MSE

by 17.97% (Figure 6c). On the other hand, in RADM, when no attack

appears, the introduction of the resilience term, i.e., −𝜂r𝑇 Q𝐷 in

Eq. 28, leads to an average MSE of 5.78 × 10
−4
, which increases

the average MSE by 6.56% (Figure 6b). When there are attacks, the

average MSE is 5.77 × 10
−4

(Figure 6d). Therefore, by introducing

the resilience term, RADM resists to the attacks at the cost of

slightly degrading the performance compared with the baseline. In

the worst situation, a maximum MSE of 6.19 × 10
−4

is observed in

the baseline, which is increased by 61.44% with a maximum MSE of

1 × 10
−3

when attacks occur. On the other hand, RADM achieves

maximum MSEs of 6.36 × 10
−4

without attacks and 6.46 × 10
−4

with attacks, which are only 2.63% and 4.15% worse compared

with the baseline. Thus, RADM could perform even better and

significantly limit the impact of attacks in the worst situations.

8 CONCLUSIONS
In this paper, we develop a system-level DER management frame-

work, RADM, which is capable of identifying DER risk levels and

maintaining the grid performance even when DERs are subject to

attacks. We propose to use trust scores to evaluate the trustworthi-

ness of DERs and a trust score estimation method is developed. The
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Figure 6: The box plot of the MSEs at each epoch. (a) the per-
formance of the basic case without attacks; (b) the perfor-
mance of RADMwithout attacks; (c) the performance of the
basic case with attacks; and (d) the performance of RADM
with attacks.
method estimate the trust scores by generating a general belief of

the trust scores in the offline phase and then updating the belief

with real-time data in the online phase. To mitigate the attack im-

pacts on DERs, we formulate the grid decision making process as

a optimization problem balancing the grid performance and the

security risks derived from the 𝑡𝑟𝑢𝑠𝑡𝑠𝑐𝑜𝑟𝑒𝑠 . Through simulations,

we use PV systems as a case study of DERs and demonstrate the

capability of the trust scores of capturing the dynamic status of

DERs as well as RADM’s capability of mitigating the attack impacts

with only slight degradation of the grid performance. In the future

work, we will investigate developing a more robust GPR adapting

to varying PV power generation patterns across a day to enhance

the scalability of the proposed method.
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