
Exposing Vulnerabilities of Untrusted Computing Platforms
Yier Jin∗, Michail Maniatakos∗ and Yiorgos Makris†
∗Department of Electrical Engineering, Yale University

†Department of Electrical Engineering, The University of Texas at Dallas
{yier.jin@yale.edu, michail.maniatakos@yale.edu, yiorgos.makris@utdallas.edu}

Abstract—This work seeks to expose the vulnerability of un-
trusted computing platforms used in critical systems to hardware
Trojans and combined hardware/software attacks. As part of
our entry in the Cyber Security Awareness Week (CSAW)
Embedded System Challenge hosted by NYU-Poly in 2011, we
developed and presented 10 such processor-level hardware Tro-
jans. These are split in five categories with various impacts, such
as altering instruction memory, modifying the communication
channel, stealing user information, changing interrupt handler
location and RC-5 encryption algorithm checking of a medium
complexity micro-processor (8051). Our work serves as a good
starting point for researchers to develop Trojan detection and
prevention methodologies on modern processor and to ensure
trustworthiness of computing platforms.

I. INTRODUCTION

The problem of maliciously intended modifications in man-
ufactured integrated circuits (ICs) has recently emerged to be
a main hardware security threat, mostly because of design
outsourcing and migration of fabrication to low-cost areas
across the globe. The booming of Intellectual Property (IP)
exchange market causes further concerns since IP cores can be
maliciously modified during various transaction stages before
arriving at system integrators. Such modifications, known as
hardware Trojans, introduce additional functionality that the
designer, vendor, and customer are unaware of, and which
may be exploited by the perpetrator after chip deployment.
Depending on the field of application, the consequences of
such attacks can range from minor inconvenience to major
catastrophes, as a result of sabotaging a chip, or stealing
sensitive data [1].

Many researchers have already proposed various hardware
Trojan detection methods at both post-silicon and pre-silicon
stages, e.g., side channel fingerprinting [2], [3], [4], [5], en-
hanced functional testing [6], code verification and functional-
ity comparison logic [7], [8], etc. However, all of the previous
work only focuses on small-scale ASIC designs while far less
work has been performed to detect malicious modifications in
processor-level designs to ensure trustworthiness of computing
platforms [9], [10].

In order to protect processors and stimulate research in the
field of processor-level hardware Trojan detection, we chose
the 8051 micro-processor as the target platform trying to
demonstrate that processor-level malicious modification can be
exploited by software codes to cause harmful impact. Example
malicious modifications are added in the processor, memory,
or the communication channels in order to leak sensitive
information, perform denial-of-service attacks or modify the
processor’s functionality. Figure 1 shows the block diagram of

the 8051 micro-processor implemented on a Xilinx Spartan-6
FPGA board. Hardware description language (HDL) codes for
the 8051 core, the UART module, testbenches and simulation
models were provided by NYU-Poly as part of the CSAW
Embedded System Challenge [11].

Fig. 1. Block diagram of 8051 micro-processor with UART channel

In the rest of the paper, ten processor-level hardware Trojan
designs are introduced in five categories, including malicious
instruction insertion, Trojan side channel, privacy hacking, ma-
licious code execution and cryptographic algorithm tracking.

II. INSTRUCTION MONITORING AND MODIFICATION

Different from ASIC design, processors and micro-
processors contain both control logic and computation units
and can perform general purpose operations. Here, the in-
struction set plays a key role to control the functionality
of the processor. For security purposes, the integrity of the
instruction memory where the program is stored is of highest
priority for processor-level hardware Trojan prevention. We
present three hardware Trojans targeting instruction memory
to demonstrate that any malicious modifications in instruction
memory can cause catastrophic impact to the processor. The
area overhead and performance impact resulting from the
insertion of hardware Trojans can be found in Table I.

Trojan I: Malicious instruction insertion
The first Trojan targets the address inconsistency between

program loading and program operating. That is, the genuine
8051 micro-processor will always run the program from ad-
dress 0x0000, disregarding the way programs are loaded. We
show that only one line modification on the HDL code suffices

131978-1-4673-3052-7/12/$31.00 ©2012 IEEE

to insert a JUMP instruction on top of any legitimate program
so that attackers can put malicious instructions at a pre-defined
location. The modified program generates correct results on a
genuine processor but performs additional functions in Trojan-
infected processors. It serves as a good example of how
vulnerable hardware can be exploited by seemingly harmless
software codes.

Trojan II: Program pattern checking
In cases where attackers cannot gain access to the program

and considering the fact that not all programs are of high se-
curity level containing sensitive information, in order to avoid
meaningless hacking, a Trojan performing on-chip program
recognition will be helpful for attackers. Under this require-
ment, we designed a new type of hardware Trojan which can
check the pattern of the program from simply detecting the
DPTR address to more complicated RC-5 encryption algorithm
matching. However, since we need to define the checking
pattern beforehand, such Trojans are better used in systems
of limited functionalities, e.g., encryption/decryption systems,
secure communications, etc.

Trojan III: Instruction replacement
The type III hardware Trojan is another low overhead

example modifying the instruction memory to cause malfunc-
tion of the system. Here we replace certain instructions with
pre-defined malicious instructions to change the functionality
of programs. This Trojan will be effective in the scenario
where attackers can access the software program at the testing
stage so that they can avoid using “contaminated” instructions
which will be maliciously replaced during operation. After
installation of the micro-processor, any programs containing
“contaminated” instructions will cause erroneous results.

III. TROJAN SIDE CHANNEL (TSC)

Trojan side channel is a special hardware Trojan design
which leaks internal sensitive information through malicious
side channels. According to the availability of on-chip re-
sources, attackers may either construct a new side channel (e.g.
authors in [12] constructed a CDMA-like wireless channel to
leak information with an additional LFSR; authors in [13]
simply inserted ring oscillators to construct FM channels) or
hide the Trojan side channel into legitimate communication
channels (e.g. authors in [14] added a shadow RS232 channel
with baud rate 19200 on top of the original RS232 channel
with baud rate 9600). Trojan side channels have been proven
to be a powerful attacking scheme for leaking internal sensitive
information in a contactless way.

All previously proposed Trojan side channels are imple-
mented in ASIC designs. The migration of these Trojans to
processors is not straightforward because a modern processor
will often have sensitive data protection schemes and users
are restricted to access only some of the memory addresses.
Inserting a Trojan side channel by invalidating the data pro-
tection scheme would result in a high Trojan overhead [15].
However, many of the on-board peripheral devices have the
privilege to visit restricted memory addresses. We can then

get around this problem by attacking those on-board devices
to insert a Trojan channel on top of their normal functionality.

Trojan IV: Trojan side channel on AC’97 codec
Among all the hardware available on the FPGA board, we

chose to hack the audio channel, a National Semiconductor
LM4550 AC ’97 audio codec, to hide our Trojan side channel
[16]. An audio Trojan side channel is constructed, which
leaks memory information by converting a ‘1’ bit into a one
second audio signal with half second beep and half second
silence and a ‘0’ bit into one second length silence. Necessary
modifications are made on HDL codes for both the micro-
processor and the audio driver module. The hidden AC ’97
Trojan side channel can be used to attack most of the modern
PC system with multimedia devices. The internal secret data
is converted to a multimedia signal and is then leaked through
the multimedia Trojan channel.

IV. PRIVACY HACKING

Most of the current computer systems including mission-
critical systems dedicated for cryptographic purpose or data
collection, do not contain sensitive information at the ar-
chitecture level but rather rely on users’ input to perform
various operations. In order to protect user privacy, most
of the current computer systems will encrypt the data from
input devices such as the keyboard, mouse, touchscreen and
only use the encrypted data when communicating with other
systems, or they would simply discard the user inputs after user
authentication. So for a general purpose processor, user input
is the most critical information of the whole system and the
most valuable information the attackers would like to collect,
before it is encrypted or discarded.

Trojan V: User information leakage
Considering the fact that most of the user input is from the

keyboard, the new type of hardware Trojan tries to hack the
8051 micro-processor by collecting all keyboard hits and then
leaking user information. Whenever a key is released, an F0
key-up code will be sent back to the micro-processor followed
by the scan code of the released key. This key-up code will
move the external RAM address bits to a pre-defined location,
so-called “Trojan location” and store the ASCII key value in
that address. This type of hardware Trojan can be applied to
any computer system to steal user information since it gets
around most of the hardware/software information protection
methodologies by attacking the raw input directly.

V. EXECUTING MALICIOUS CODE

Many of the modern attacks rely on attempts to execute
unauthorized code. The most common practice in the past was
buffer overflow attacks [17]. However, with the introduction
of the No-Execute bit in modern micro-processors, buffer
overflow attacks are extremely difficult to implement in the
latest systems. Another type of attack, return-to-libc [18],
was introduced recently and is the latest threat in terms of
executing malicious code.

In this section, we present modifications in the micro-
processor that allow the attacker to execute unauthorized code.
These Trojans are generalizable to microprocessors.

132

Trojan VI: Interrupt handler location change
This Trojan involves the modification of the jump location

of the interrupt service routines. Specifically, we modify
the service location for External Interrupt 1 (IE1), which is
originally located in location 0x13, to location 0x11. The
result of this change is that whenever IE1 occurs, the micro-
processor jumps to location 0x11 instead of location 0x13
(thus, 2 bytes before). The 2 bytes are enough to fit a SJMP
or AJMP instruction; so, the programmer can place a jump
instruction to malicious code.

Locations 0x0B-0x12 (8 bytes) are reserved for the Timer
Interrupt 0 (TF0) interrupt handler. However, in most of the
cases 8 bytes are not enough to handle an iterrupt. The most
common practice is to place a jump instruction (2-3 bytes)
in the address of the micro-processor defined interrupt service
location. The remaining 4-5 bytes are filled with NOPs.

In order to achieve the routine location change, one line is
modified in the VHDL of the micro-processor. This change
incurs no overhead.

Trojan VII: LCALL → ACALL transformation
This Trojan converts an LCALL instruction to an ACALL

instruction, whenever the Trojan is enabled. This enables a
jump to another location, where malicious code is inserted. In
order for the Trojan to be transparent, whenever the malicious
code ends, the program counter returns to the original LCALL
instruction, the Trojan is disabled and the originally requested
routine is serviced.

Whenever an LCALL is substituted by an ACALL, the
program jumps to a different address. LCALL is a 3-byte
instruction, while ACALL requires 2-bytes:

Fig. 2. LCALL and ACALL encoding [19]

Thus, whenever the LCALL is transformed to ACALL, the
jump address is PC<15:11>000 addr15-addr8. For example, if
LCALL 0444 at location 0x0403 is executed, then the jumping
address would be 0x0004 (PC<15:11>= 00000, addr15-addr8
= 00000100 (0x04)). Since bits 10-8 are always 0, the micro-
processor will jump within the 0x?000-0x?0FF or 0x?800-
0x?8FF 256-byte segments. Thus, the program can align the
code accordingly so that the malicious code starts at address
0x?0FF or 0x?8FF (end of 256-byte segment) and no code
exists in the aforementioned 256-bytes segments (NOPs will
be executed until the PC reaches the beginning of the malicious
code).

Trojan VIII: Unused instruction executed as LCALL
Trojan VIII utilizes an unused operation code to jump to

a malicious code location. Specifically, opcode ‘11110010‘
is unutilized and we can modify to decoder to interpret it
as an LCALL (opcode ‘00010010‘). Furthermore, during the
malicious LCALL execution, the program counter is modified
to point to location 0x03FD (last 3 bytes in memory), where
the programmer can place a jump to the malicious code.

In order to implement the attack, the ‘malicious’ LCALL
can replace a normal LCALL, jumping to a different address.
Thus, the program size of the initial assembly is unchanged
(unlike the case when an extra LCALL is added). The mali-
cious and normal LCALL have different PC targets, depending
on whether the Trojan is installed or not. Furthermore, the
machine code has to be modified after the assembly, or during
loading (the first three bits of the LCALL are set to 1).

Trojan IX: OISC
This Trojan is based on the concept of One Instruction Set

Computing (OISC). OISC is an abstract machine that uses only
one instruction, eliminating the need for a machine language
opcode. With a judicious choice for the single instruction,
OISC is capable of being a universal computer in the same
manner as traditional computers that have multiple instructions
[20]. In this example, we use subleq (Subtract and branch
if less than or equal to zero).

OISC code is installed in memory, and executes there.
Whenever the 8051 does not access the memory, an OISC
cycle is executed by performing a memory operation. Nine
cycles are needed to execute one subleq instruction (the
memory contents of 3 operands need to be fetched). The
process is completely transparent to the user, but the memory
contents are being modified (and the OISC code should not
be overwritten).

Since higher order instructions can be synthesized using
subleq, the programmer can execute any desired program.
There are several online tools for compiling C programs to
subleq assembly.

VI. RC5 ATTACK

This section describes Trojans that are specific to the RC-5
encryption algorithm. Specifically, we try to exploit properties
of the RC-5 algorithm and leak information that will help the
attacker extract the parameters of the process.

Trojan X: RC5 rounds and rotations tracking
The Trojan X detects the RC-5 algorithm by tracking the

number and type of arithmetic operations performed between
registers. Specifically, every iteration of the RC-5 requires 2
4-byte additions, 2 4-byte XORs and 2 4-byte multiplications.
This translates to 8 additions, 8 XORs and 4 multiplica-
tions (since operations are per byte, except for multiplication
that produces a 16-bit result). These operations are always
performed between the accumulator and the memory, thus
can be easily distinguished from other arithmetic operations.
Therefore, by tracking the number of operations, we can
identify an RC-5 iteration. Furthermore, the Trojan also tracks
the number of data-dependent rotations.

The Trojan is completely transparent to the user, is imple-
mented purely in hardware, and places information about the
number of iterations as well as the rotations to the last memory
location. In order to minimize overhead, 4 bits are used for the
number of rounds and 4 bits for the rotation count. Thus, after
executing the RC-5 algorithm, the last location (0x3FF) of the
external memory contains the value 0xXY, which means that
num rounds % 8 = Y and shift count % 8 = X.

133

TABLE I
SUMMARY OF PROPOSED TROJAN DESIGNS AND THEIR OVERHEAD

Trojan type Trojan Description Slice Registers (Overhead) Slice LUTs (Overhead) Average Fanout
Genuine N.A. 549 2661 5.42
Trojan 1 Malicious instruction insertion 548 (0%) 2666 (0%) 5.42
Trojan 2 Program pattern checking 554 ˜ 568 (0.9% ˜ 3.5%) 2646 ˜ 2672 (-0.6% ˜ 0.4%) 5.33 ˜ 5.39
Trojan 3 Malicious instruction replacement 549 (0%) 2668 (0.2%) 5.41
Trojan 4 Trojan side channel (audio) 647 (17.9%)* 2614 (-0.2%) 5.11
Trojan 5 Private information collecting 616 (12.2%)* 2756 (3.6%) 5.23
Trojan 6 Interrupt handler location change 549 (0%) 2661 (0%) 5.41
Trojan 7 LCALL → ACALL transformation 546 (-0.55%) 2369 (-11.98%) 4.96
Trojan 8 Unused instruction executed as LCALL 551 (0.3%) 2711 (1.87%) 5.33
Trojan 9 OISC 603 (9.8%) 2718 (2.14%) 5.21
Trojan 10 RC5 rounds and rotations tracking 566 (3.09%) 2665 (0.01%) 5.32

* Note that the high overhead here includes an extra module to an drive AC ’97 codec (or keyboard).
Modern computer systems often contain these drivers so this overhead may be lowered to less than 1%.

VII. DISCUSSION AND CONCLUSION

In this paper, we presented ten processor-level hardware
Trojan designs. We demonstrated that malicious modifications
in the micro-processor, with trivial overhead, can be exploited
by software codes to cause catastrophic impact to the whole
computing system. Further, by reusing on-chip computing
resources, zero-overhead Trojans become possible which can
easily evade previously proposed Trojan detection methods
relying on side channel fingerprinting.

Our work raises the alarm that micro-processors are quite
vulnerable to hardware Trojan attacks and similar attacks can
be easily implemented on modern processors. There are clearly
more points of vulnerability that can be exploited for malicious
purposes in large-scale processors. This provides significant
impetus to improve methods for detecting and combating
hardware Trojans in modern computing platforms towards
designing trusted computing basis for critical systems.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation (NSF-1017719). The travel grant to participate
in the Embedded Systems Challenge were provided part by
The National Science Foundation (0958510,1059328), Army
(W911NF-11-1-0470), Air Force Research Labs and Intel. The
FPGA platforms for the contest were donated by Xilinx.

REFERENCES

[1] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy hardware: Identifying and classifying hardware
Trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in IEEE Symposium
on Security and Privacy, 2007, pp. 296–310.

[3] Y. Jin and Y. Makris, “Hardware Trojan detection using
path delay fingerprint,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 51–57.

[4] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power
supply signal calibration techniques for improving detection
resolution to hardware Trojans,” in IEEE/ACM International
Conference on Computer-Aided Design, 2008, pp. 632–639.

[5] Y. Jin and Y. Makris, “Hardware Trojans in wireless crypto-
graphic ICs,” IEEE Design and Test of Computers, vol. 27, pp.
26–35, 2010.

[6] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty,
“Towards Trojan-free trusted ICs: Problem analysis and detec-
tion scheme,” in IEEE Design Automation and Test in Europe,
2008, pp. 1362–1365.

[7] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying
hardware: Towards runtime verification of reconfigurable mod-
ules,” International Conference on Reconfigurable Computing
and FPGAs, pp. 189–194, 2009.

[8] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware
intellectual property: A pathway to trusted module acquisition,”
IEEE Transactions on Information Forensics and Security, vol.
7, no. 1, pp. 25–40, 2012.

[9] Tucek J. Cozzie A. Grier C. Jiang W. Zhou Y. King, S.T.,
“Designing and implementing malicious hardware,” in Proceed-
ings of the 1st USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2008, pp. 1–8.

[10] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and
J. M. Smith, “Overcoming an untrusted computing base:
Detecting and removing malicious hardware automatically,” in
Proceedings of IEEE Symposium on Security and Privacy, 2010,
pp. 159–172.

[11] http://www.poly.edu/csaw2011/csaw-embedded.
[12] L. Lin, M. Kasper, T. Guneysu, C. Paar, and W. Burleson,

“Trojan side-channels: Lightweight hardware Trojans through
side-channel engineering,” in Cryptographic Hardware and
Embedded Systems, vol. 5747 of LNCS, pp. 382–395. Springer-
Verlag Berlin, 2009.

[13] http://isis.poly.edu/csaw/embedded.
[14] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware

Trojan design and implementation,” in IEEE International
Workshop on Hardware-Oriented Security and Trust, 2009, pp.
50–57.

[15] Y. Jin and Y. Makris, “Is single trojan detection scheme
enough?,” in Proceedings of the IEEE International Conference
on Computer Design (ICCD), 2011, pp. 305–308.

[16] www.digilentinc.com/atlys/.
[17] I. Gerg, “An overview and example of buffer overflow,” Infor-

mation Assurance Technology Professionals Newsletter, vol. 7,
no. 4, pp. 110–116, 2005.

[18] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 2007, pp. 552–561.

[19] Intel Corporation, “Intel mcs51 family user manual,” 1981.
[20] F. Mavaddat and B. Parhami, “Urisc: the ultimate reduced

instruction set computer,” International Journal of Electrical
Engineering Education, vol. 25, pp. 327–34, 1988.

134

