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Abstract—Remote attestation is an important security service
that allows a trusted party (verifier) to verify the integrity of a
software running on a remote and potentially compromised de-
vice (prover). The security of existing remote attestation schemes
relies on the assumption that attacks are software-only and that
the prover’s code cannot be modified at runtime. However, in
practice, these schemes can be bypassed in a stronger and more
realistic adversary model that is hereby capable of controlling
and modifying code memory to attest benign code but execute
malicious code instead – leaving the underlying system vulnerable
to Time of Check Time of Use (TOCTOU) attacks.
In this work, we first demonstrate TOCTOU attacks on

recently proposed attestation schemes by exploiting physical
access to prover’s memory. Then we present the design and
proof-of-concept implementation of ATRIUM, a runtime remote
attestation system that securely attests both the code’s binary and
its execution behavior under memory attacks. ATRIUM provides
resilience against both software- and hardware-based TOCTOU
attacks, while incurring minimal area and performance overhead.

Index Terms—Attestation, runtime, memory attacks

I. INTRODUCTION

Recent high-profile attacks on embedded systems, such as

Mirai and Stuxnet, have become crucially alarming and of

increased significance as systems are becoming more intercon-

nected and collaborative. Remote attestation plays an important

role as a security service for detecting malware on a remote

device. It is implemented as a challenge-response protocol that

allows a trusted verifier to obtain an authentic report about

the (software) state of a potentially untrusted remote device

called prover. Conventional attestation schemes are static in

nature, i.e., the prover sends an authenticated report to the

verifier by issuing a digital signature or cryptographic MAC

(Message Authentication Code) over the verifier’s challenge

and the measurement (typically hash) of the binary code to

be attested [22]. However, static attestation only ensures the

integrity of binaries but not of their execution. In particular, it

cannot detect the prevalent state-of-the-art runtime attacks that

do not modify the program binary but subvert the intended

control flow of the targeted application program during its

execution. Current runtime attacks take advantage of code-

reuse techniques, such as return-oriented programming that

dynamically generate malicious code by chaining together code

snippets (called gadgets) of benign code without requiring

to inject any malicious code/instructions [24]. Consequently,

the hash value computed over the binaries remain unchanged

and the attestation protocol succeeds, although the prover has

been compromised. These sophisticated exploitation techniques

have been shown effective on many processor architectures,

such as Intel x86 [23], SPARC [4], ARM [16], and Atmel

AVR [10]. In fact, large-scale investigations of embedded

systems security have shown various vulnerabilities, including

memory corruption (such as buffer overflow) that can be

exploited for runtime attacks.

Hence, effective attestation should enable reporting the

prover’s dynamic behavior – more concretely, its current

execution details – to the verifier. To attest the dynamic

program behavior researchers have proposed enhancements

and/or extensions to static binary attestation (e.g., [11], [3]).

The most recent, C-FLAT [3], reports the prover’s dynamic

state (execution paths) and provides fine-grained control-flow

measurements to the verifier. Note that, unlike control-flow

integrity (CFI) enforcement, control-flow attestation provides

detailed information about the executed path that might be of

crucial interest to a remote verifier. This information helps

in detecting data-oriented non-control attacks [5] that can

bypass CFI by corrupting data variables to execute a valid

but unintended control-flow path, for instance, redirecting the

control flow to a high-privileged recovery routine (see also [13]).

However, C-FLAT requires program code instrumentation and

incurs high performance overhead, particularly on the prover.

On the other hand, all existing attestation schemes (including

C-FLAT) rule out physical attacks in their adversary model.

This assumption is not always realistic, since the adversary may

at some point have physical access to the prover. In this case,

it is possible to execute (extraordinarily effective and cheap)

non-invasive attacks on the program code memory through

physical access. In particular, the adversary physically controls

and modifies the memory such that benign code is attested but

malicious code is executed instead.
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Goals and Contributions. In this paper, we first demon-

strate that – using external interfacing with prover’s program

code memory bank – an adversary can bypass all existing at-

testation schemes and deliver sound attestation reports, without

even having to extract the prover’s secret keys (cf. § III).

To overcome the limitations of current attestation schemes,

we introduce a holistic approach to attestation ATRIUM, a

resilient runtime attestation scheme that is capable of detecting

both physical memory attacks and software attacks including

runtime attacks by attesting the executed instructions and their

control flow at runtime. Our main contributions are listed as

follows.

• We demonstrate memory bank attacks on state-of-the-

art attestation schemes for embedded devices such as

SMART [9] and C-FLAT [3]. We exploit physical access

to code memory to bypass attestation and deliver sound

attestation reports without having to extract the prover’s

secret keys.

• We present ATRIUM– an attestation scheme which:

(1) detects memory bank attacks by attesting instructions

as they are fetched from (off-chip) memory for execution;

(2) prevents software attacks on the attestation process it-

self by separating the attestation engine from the processor

(i.e., no instructions are sent to the processor to perform

attestation). Instead, attestation is performed by a separate

hardware engine in parallel. (3) detects runtime attacks

by tracking and reporting both executed instructions and

control-flow events during execution.

• We present a proof-of-concept implementation and perfor-

mance analysis which demonstrate the effectiveness and

feasibility of ATRIUM, and its applicability to low-end

embedded devices.

II. BACKGROUND

Control-Flow Graph (CFG). The execution flow of a

program can be abstracted into a control-flow graph (CFG) by

leveraging the aid of static and dynamic code analysis. The

nodes in CFG represents basic blocks of a program, while

edges represent control-flow transitions from one block to

another by means of a branch instruction. A valid path in CFG

is composed of several nodes connected by edges.

Runtime Attacks. An outline of the different classes of

runtime attacks is illustrated in Figure 1. The system dedicates

separate memories for data and code. The former is marked

as readable and writable (rw), while the latter is marked as

readable and executable (rx). This ensures that code cannot

be executed from data memory, and code memory cannot be

overwritten by means of software. Along this CFG, we can

outline three major classes of runtime attacks: � non-control-

data attacks that indirectly affect the control flow of a program,

� corruption of loop variables, and � code-pointer overwrite

attacks. By corrupting control-flow information stored in the

stack or heap and overwriting code-pointers (return addresses

and function pointers) as in � an attacker can redirect the

control flow of a program such that execution has a malicious

and unauthorized effect. In attacks based on code-injection,

Figure 1: Different attack classes

the attacker places a malicious executable payload in program

memory and redirects control flow to execute it. Alternatively,

state-of-the-art runtime attacks leverage code-reuse techniques,

such as Return-oriented Programming (ROP) [23]. These

attacks exploit a memory corruption vulnerabilities (e.g., buffer

overflows) in the program and stitch together a malicious

sequence of machine code instructions from benign gadgets
of code already residing in the memory of the vulnerable

program. Non-control-data attacks [5] do not compromise the

control flow of a program, but cause unexpected malicious

control flow by corrupting critical data variables such as an

authentication variable. This results in executing a privileged

(unintended) but permissible control-flow path that exists in

the CFG. Attack � affects the number of times a program loop

executes by corrupting a loop variable such as a counter. This

can have severe consequences depending on the context, e.g.,

a syringe pump dispenses more liquid than requested (see [3]).

Code injection attacks can be prevented by either marking

memory as writable or executable. This mechanism is known

as Data Execution Prevention (DEP) [12]. Countermeasures

against code reuse attacks include: Control-Flow Integrity
(CFI) [2], fine-grained code randomization [19], and Code-

Pointer Integrity (CPI) [18].

Besides software-based runtime attacks, a stronger adversary

as shown in Figure 1, can modify program code in memory

through physical access without mounting sophisticated inva-

sive physical attacks, but by simply replacing the benign code

memory with malicious code memory at runtime. We elaborate

on these memory bank attacks next in § III and propose an

attestation scheme that can mitigate them in § V.

III. TOCTOU ATTACKS ON ATTESTATION SCHEMES

Next we describe memory bank attacks that we aim to

mitigate in this work, and we show how they bypass recently

proposed attestation schemes: SMART [9] C-FLAT [3] and

LO-FAT [7]. These attacks assume a stronger adversary that

can physically manipulate the code memory without the need

for sophisticated invasive physical attacks and can consequently

bypass attestation schemes that strictly consider software-only

adversary. The attack is illustrated in Figure 2: At Prv’s side
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the attestation scheme (i.e., the attestation code and secret

key) is stored on-chip while the benign code resides in an

external memory. The adversary can interleave instruction

fetches to malicious code in-between those fetches needed

to attest the benign code of the original program. This can

be done by replacing the original memory interface with an

interface to a memory controller. This allows the adversary to

direct instruction fetches to either benign code when attestation

is running, or malicious code otherwise. The same interleaving

attack can be achieved by inserting malicious instructions in-

between hooks to the attestation. As long as the malicious

instructions do not interfere with attesting benign code, e.g.,

intended control flow, the attestation can be bypassed. In the

following, we describe how we implement the attacks to bypass

SMART and C-FLAT.

Figure 2: Memory bank attack on attestation schemes

A. SMART

SMART [9] is a static attestation scheme that establishes

a root of trust in low-end embedded systems with minimal

hardware components. It targets microprocessors that are able to

execute code from an external memory, whereas the attestation

code and key reside in an internal ROM and are protected by

access control policies of a memory protection unit (MPU).

When an attestation request is received, the atomic attestation

code in ROM computes a HMAC of a region of code memory,

provided in the attestation request. Then the attested code

executes atomically.

Detecting Attestation Execution. By eavesdropping in the

communication channel between the verifier and the prover for

an attestation request, we determine when the attestation engine

is about to run in order to launch a TOCTOU attack. Although

this is permissible by the adversary model in SMART, we

choose not to tackle the detection problem this way. Instead,

we examine a side-channel that is inherent to the SMART

design, by placing a monitor on the address bus between the

processor and memory to capture which addresses are being

accessed. Using the access patterns, we are able to discern

whether a CPU is executing from external memory or from the

internal ROM. Since SMART is prototyped on the open-source

MSP4301, it utilizes a von Neumann architecture, where data

and instructions are accessed over the same address space but

are structured such that they reside in different sections of

memory. Hence, we can extract and filter out data accesses,

1http://opencores.org/project,openmsp430

leaving behind accesses to code memory. In doing so, we

observe the time-frame that it takes the internal ROM to set

up the attestation environment, followed by the linear scan of

code addresses, then the subsequent execution of external code.

On processors with modified Harvard architecture, a temporary

halt in accesses to code memory would be recognized, as the

ROM code starts executing. We then observe a linear scan

over an address range, as code is being read and hashed by

the attestation code. A break is then noticed as the ROM

code cleans up memory, followed by the continued access to

program memory for execution. Utilizing this, we perform one

of the following attacks to mount a TOCTOU attack.

Blind Execution of Malicious Software. Since code mem-

ory remains external to the SoC, we splice the address bus,

add a new memory chip containing malicious code and utilize

the monitor to detect when the attestation code runs. When

attesting, we bank to the memory with the intended code. When

executing, we bank to the malicious code memory, allowing

SMART to report valid attestation results while malicious code

is actually executed by CPU during periods of no attestation.

Leakage of Secrets via Data Memory Banking. As the

attestation code runs, temporary values are saved in memory,

assuming SMART implementation utilizes off-chip memory

to store temporary values. We use the monitor to detect when

the attestation code runs. As data memory is accessed to store

temporary values, we bank memories to allow for the leakage

of values. We perform this by physically tampering with the

address lines between the processor and the memory. As the

monitor detects when SMART is about to perform its cleanup

routines, we bank to a different portion of memory, leaving the

ROM code to erase the wrong portion of memory. By reading

the SMART secrets from memory, we are able to reconstruct

the attestation secret and fake a valid response.

B. C-FLAT

C-FLAT [3] is a runtime attestation scheme that aims to

measure and report the control-flow behavior of an executing

code. It instruments all branch instructions such that they are

intercepted by a runtime tracer (RTT). The RTT recovers the

source and destination addresses of the branch as well as its

type, which are then passed to the measurement engine (ME).

The ME is responsible for computing a hash over the reported

branches and these hash measurements are secured by running

in a TrustZone secure world. In this way, a runtime control-flow

attestation report is generated and verified against previously

computed control-flow traces stored in a trusted verifier party.

C-FLAT is susceptible to two TOCTOU attacks assuming

that the attacker has physical access to the code memory : 1)

replacing instructions within a basic block with malicious ones;

and 2) refactoring the control-flow graph (CFG) of an arbitrary

program to match a benign CFG protected by C-FLAT. Both

attacks exploit the fact that C-FLAT attests only control flow

when exiting a basic block but not the executed instructions

themselves. Hence, intermediate instructions within the basic

block can be arbitrarily replaced by malicious executable code

by a stronger adversary with physical access to the code
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memory, as long as the control flow of the code remains

unchanged and the expected attestation report is not violated.

These attacks are also applicable to the hardware-assisted

control-flow attestation scheme LO-FAT [7] since it also only

attests control flow.

We chose to implement a TOCTOU attack against one of the

case studies presented in [3], namely the syringe pump program

responsible for dispensing intravenous (IV) fluids. Our attack

goal is to dispense liquid in incorrect volumes at unexpected

times, thereby, disrupting the correct flow of IV fluids. We

only demonstrate the second attack variant, however, the first

variant of the attack is also easily feasible by replacing the

original instructions within the basic block with malicious ones.

This allows the original RTT hooks into the ME to compute

a valid attestation report as it is based upon the source and

destination addresses of a branch and its type.

In place of the original program that manages liquid

dispensing and withdrawal, we implement a malicious program

that chooses a random value to dispense by modifying the

set-quantity function and additionally creates compound

dispense and withdraw triggers for the move-syringe
function. We embed this code in the original program, which

creates new edges in the CFG of the syringe pump program.

Our new edges would violate C-FLAT’s attestation report for

the benign syringe pump program.

To avoid triggering C-FLAT, we refactor the CFG of our

attacker syringe pump program using the REpsych tool2 to

construct the desired CFG. The REpsych tool is an IDA plugin

that translates a source image into a functioning program whose

CFG is the image. We used the original syringe pump’s CFG as

a source image, and our modified syringe pump program as the

target. This allowed us to generate a program with alternative

functionality, but equivalent CFG to the original syringe pump

program. We then recompute the attestation report using

C-FLAT’s tools3. The attacker program’s attestation report

matched the original syringe pump program’s attestation report

after CFG refactoring. Thus, we were able to accurately execute

the attacker program without violating C-FLAT’s protection.

IV. ATRIUM

We present ATRIUM a runtime attestation scheme targeting

bare-metal embedded systems software. ATRIUM comprises

a remote embedded system, called in this context the prover

Prv, and a trusted verifier Vrf . The Prv is deployed in-field

such that the adversary has physical access to its memory.

Typically, both Vrf and Prv have access to the binary code

of the program P to be attested on Prv. Note that, in practice,

it may not be feasible to apply runtime attestation to the entire

program code due to obvious efficiency reasons, but it can be

applied to pre-defined security-critical code regions.

A. Adversary Model and Assumptions

In addition to the standard capabilities of the adversary in

typical remote attestation schemes, which assume software-

2https://github.com/xoreaxeaxeax/REpsych
3https://github.com/control-flow-attestation/c-flat

only attacks, our adversary can also perform runtime attacks

(§ II). Furthermore, we assume a stronger adversary that has

physical access to the Prv’s memory and can manipulate the

program code at runtime and, therefore, is able to mount a

TOCTOU attack (§ III). However, the adversary cannot modify

memory reserved and used by ATRIUM itself – this memory is

hardware-protected and not mapped to the software-accessible

address space. Data-oriented programming attacks [13] that

do not affect the control flow as well as invasive physical

attacks on the SoC that aim at extracting secret keys are out

of scope. This assumption is reasonable, since an adversary is

more likely to mount a simple physical attack on the memory

as we demonstrated in § III, rather than expensive sophisticated

invasive attacks on the chip that can destruct it eventually.

B. Runtime Attestation: High-Level Scheme

Inspired by C-FLAT [3] (described in § III-B) and the

hardware-assisted scheme LO-FAT [7], ATRIUM performs

attestation of an executing program code at runtime. However,

unlike both schemes, it measures both the executed instructions

(to detect the more advanced TOCTOU attacks described

in § III) and control flow (to detect runtime attacks).

Similar to C-FLAT, our attestation mechanism relies on Vrf
performing one-time offline pre-processing to generate the CFG

of program P (including expected loop execution information)

by means of static and dynamic analysis. Vrf computes

cryptographic hash measurements over the instructions and

addresses of basic blocks along legal CFG paths and stores

them in a reference database. Vrf initiates the attestation by

sending Prv benign input inb, the code region to be attested

in P , and a nonce to ensure freshness of the attestation report.

Prv executes P on the benign inputs inb and potentially

malicious inputs inm that are not controlled by Vrf and may

lead to the corruption of the program’s control flow by means

of runtime attacks (§ II). ATRIUM is triggered during the

execution of the code region of interest and computes a set of

hash measurements over the executed paths. When execution

of the code region is complete, Prv generates and sends to

Vrf the final attestation report consisting of the concatenated

set of hash values H0‖...‖Hn and the number of iterations of

the hash values which correspond to executed loop paths, and

a signature over H0‖...‖Hn and the nonce based on Prv’s

secret key sk . To ensure authenticity of the report, sk is stored

in memory accessible only by ATRIUM. Upon receiving the

report, Vrf verifies its signature using Prv’s public key pk
and checks whether the H0‖...‖Hn values match the reference

hash values under input inb. If they match, Vrf concludes

that Prv’s execution of the attested code region was correct

in terms of executed instructions and their control flow. For

better understanding, we demonstrate next by an example how

the hash values are computed during attestation.

Example. A CFG of an example pseudo-code is shown

in Figure 3. Each numbered node in the CFG represents the

corresponding numbered basic block of sequential instructions

in the pseudo-code and the address of the first instruction of

that basic block. For example, N5 corresponds to the first 3
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Figure 3: Example pseudo-code and its segmented CFG

instructions outlined in the pseudo-code, constituting a single

basic block, and the address of the first instruction. The CFG

shown in Figure 3 has 2 main paths: P0, in bold, consisting

of nodes N1-N2-N5-N6-N4 and P1, in dashed, consisting of

nodes N1-N3-N7-N4. In order to avoid combinatorial explosion

of legal hash values that would occur due to multiple loop

iterations, the program CFG is split into segments such that

hash values for loop paths are computed separately, rather than

computing a single hash value over the complete executed path

of the attested region. In Figure 3, due to the loop in N5-N6,

P0 is sectioned into 3 segments: S0, S1 and S2. S0 comprises

all nodes till loop entry at N5, where S1 is initialized. S1
ends at the loop exit node N6, and S2 is initialized at N4 and

beyond until again another loop is encountered and so on.

When path P0 is executed and attested, ATRIUM accumu-

lates nodes (address of the first instruction and the individual

instructions in each node) along each segment and computes a

hash value for each segment: a hash value H0 = H(N1||N2)
over the nodes in S0 of P0, followed by H1 = H(N5||N6)
over the nodes in S1, and H2 = H(N4) over the nodes in S2,

resulting in the set of hash values H0||H1||H2 representing

the executed path P0. P1, on the other hand, has no loops.

Therefore, when executed the whole path is measured by

a single hash value H3 = H(N1||N3||N7||N4). This CFG

segmentation in hash computation allows our scheme to tackle

loops and nested loops efficiently, while also allowing fine-

grained attestation of their execution. It requires that ATRIUM

can detect and interpret loops accurately at runtime. Unlike

C-FLAT, we aim to realize this without instrumentation, hence

avoiding the associated performance overheads. We present next

the architecture of ATRIUM and how it interfaces directly with

the processor hardware to capture at runtime every executed

instruction and accurately interpret control flow and infer loop

entry and exit points without instrumentation.

V. ATRIUM: DESIGN AND IMPLEMENTATION

ATRIUM is a hardware-based scheme for runtime attestation

that tightly integrates with a processor, as shown in Figure 4.

This allows it to extract the executed instructions and their

memory addresses from the execute stage of the pipeline

at runtime while the program P (that needs to be attested)

executes on input values inb and inm. ATRIUM outputs a set

of hash values H0‖...‖Hn computed over the executed path

Figure 4: Architecture of ATRIUM

which get included in the attestation report. We present next

the components of ATRIUM and their implementation details.

A. Instruction Filter

Upon code execution, the instruction filter extracts the current

program counter (PC) and the executed instruction per clock

cycle and checks whether the current instruction is a branch or

jump, since such instructions reflect control-flow transitions.

Implementation. We implemented the instruction filter such

that it tightly extends the execute stage of the processor from

which it extracts the PC and instruction per clock cycle. If the

current instruction is a control-flow instruction, its PC and the

address it jumps to are stored as source–target pair, (Src, Tgt)-
pair. To determine whether the branch was taken and whether

control jumped forwards or backwards in memory, the PC of

the next executed instruction is compared to the stored target

address. Instruction filter outputs the following signals: (1)

branch instructions, their type, and (Src, Tgt)-pairs and (2)

basic block addresses and executed instructions.

B. Loop Encoder

As explained in § IV-B, ATRIUM handles loops and their

hash computations differently. Hence, at runtime the loop

encoder detects loops and identifies their entry and exit points

and their depth, in case of nested loops. It checks whether

the behavior of a captured branch can be inferred as returning

to a loop’s entry point, hence indicating a new loop iteration.

The loop encoder instructs the hash controller to finalize the

ongoing hash computation and initialize a new one with the

entry address of a loop iteration. Furthermore, the loop encoder

also detects if a branch represents a system call since system

functions have to be handled specially in ATRIUM.

Implementation. To detect loops at runtime without rely-

ing on code instrumentation, we utilize a feature of RISC

architectures that implement a link-register, such as PowerPC,

ARM, SPARC, and RISC-V. We adopt a heuristic used in [7]

to distinguish between backward branches that indicate loop

entry, and branches for subroutine calls where the call target

resides earlier in memory. Subroutine calls use instructions

that update the link-register with the return address, hence, we

consider any non-linking backwards branch as a loop entry
node. Consequently, the basic block after the branch instruction

is considered a loop exit node. This is based on observations
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of the RISC-V compiler assembly and its calling convention:

any subroutine call with multiple call sites must be linking
and updates the link-register. Subroutines with a single call

site can be compiled as a linking branch or inlined using the

RISC-V compiler. A system call is identified by comparing its

target against a predefined list of addresses of such functions

and issuing a unique identifier for that function F_ID. The

loop encoder stores the addresses of entry and exit nodes of

each loop in a content-addressable memory (CAM) to ensure

single-cycle constant-access search time. At runtime, every

(Src, Tgt) is used to index the CAM to detect if a loop is

re-entered or exits and to extract its loop_ID and depth (in

case of nested loops). An iterations counter for each loop is

maintained and updated at runtime. We detect loop exit when

execution proceeds past the currently active loop exit node,

either due to sequential execution or a non-linking jump, such

as a break. The F_ID, loop_ID and loop_status signals are

forwarded then to the hash controller.

C. Hash Engine and Hash Controller

The hash engine computes a hash value of each executed

path within a segment (§ IV-B). The hash controller regulates

the operation of the hash engine, i.e., finalizes or initiates a

hash computation based on the control signals received from

the loop encoder. In case the computed hash corresponds to

a loop path, the hash controller sends this hash to the hash

lookup and sets the search boundaries of the hash lookup to

that particular current loop (necessary in case of nested loops).

Otherwise, the hash value is simply stored in hash memory.

Implementation. We selected Blake2 4 for hash computa-

tions and used the open-source hardware implementation of

Blake2b, which takes as an input a message block of size 1Kbit

and has a configurable digest size. We configured its digest size

to 88 bits to reduce memory requirements for hash lookup and

hash memory. The hash controller buffers incoming instructions

from the loop encoder, aligns them in 1Kbit message blocks

and feeds them to the hash engine. The hash engine requires

28 cycles to process a block, thus the hash controller issues a

stall signal to the processor in case its buffer is full and the

hash engine cannot digest a new message block. Therefore,

system calls are handled differently because we observe that

they often involve short loops that are executed arbitrarily

many times, e.g., string utility functions. Hashing such a short

loop path every time it executes, especially for a large number

of iterations, would require the hash controller to stall the

processor frequently and delibitate performance. Hence, the

executed instructions along a loop path are concatenated and

stored in plaintext in a dedicated CAM and sent to the hash

engine only once when it is first encountered. When the same

path is executed again, it is compared with the previously

recorded paths in the CAM, and a corresponding counter is

incremented when a match is found, without sending it to

the hash engine again. The counters are concatenated with

the corresponding hash values in the final attestation report.

4https://blake2.net/

Upon finalizing a hash computation, the hash controller checks,

whether the resulting hash is computed over a path within a

loop or not. If it is computed over a path loop, it forwards the

resulting hash value from the hash engine synchronized with

its corresponding loop_ID to the hash lookup.

D. Hash Lookup

The hash lookup is dedicated to storing and tracking hash

values during loop iterations efficiently. Once a hash value is

ready, the hash controller forwards it to the hash lookup, which

searches within the current loop’s list of hash values for a

match. If not found, then the hash value is appended to the list.

The hash lookup also maintains a counter per loop path which

is incremented when its corresponding hash is encountered.

Implementation. To avoid multiple memory accesses due to

sequential search of a particular hash value, we implement the

hash lookup as a set of CAMs, whose number can be configured

based on the system’s requirements. A CAM is dedicated for

every active loop, so the number of CAMs is determined by the

maximum number of nested loops that ATRIUM is configured

to track concurrently. Each CAM has a configurable capacity

of (n,m) bits, where n is the maximum number of entries and

m is number of bits per entry and a counter to maintain the

occupied number of entries. When a loop is detected, the hash

controller sends the hash lookup to reserve a CAM for it and

reset its counter to zero. The CAM holds the computed hash

values of a currently executing loop temporarily till the loop

exits. Each time a path in the pertinent loop is executed, its

computed hash value is looked up in the associated CAM. If a

match is not found, i.e., this path has not been executed before,

then its hash value is appended to the CAM. When a new

loop is detected and all CAMs are occupied, a CAM that was

reserved for a loop that already exit (and will not be executed

again) is freed and re-used. If a path does not belong to a loop,

then its hash value is used to update the hash memory directly.

E. Hash Memory

All computed hash values are stored in a dedicated memory.

After the execution of the code region to be attested completes,

these hash values are assembled and a digital signature is

computed over them. The hash values H0‖...‖Hn and their

signature are then transmitted to Vrf .

Implementation. An on-chip hash memory is dedicated to

store all computed hash values during a single attestation run

of the pertinent code region. The sequence of the storage of the

hash values in memory indicates the order of the first occurrence

of their corresponding code segments during execution. It is

necessary to maintain this order and report H0‖...‖Hn in the

same sequence to Vrf for correctly verifying execution. In our

FPGA prototyping of ATRIUM (cf. § VI), we configure the

hash memory as on-chip block RAM (BRAM) of configurable

capacity with each entry occupying 88 bits for hash digest and

8 bits for its counter. The capacity is configured according

to our attestation requirements, i.e., the maximum number

of CFG segments an attested code region would consist of.

Alternatively, for constrained embedded systems, we can reduce
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the memory requirements by streaming the hash values (or

every batch of them) as soon as they get generated to the Vrf .

VI. EVALUATION & SECURITY CONSIDERATIONS

A. Performance & Area Evaluation

We implemented ATRIUM in Verilog, interfaced it with the

open-source RISC-V Pulpino core 5, and simulated and synthe-

sized it. Performance and functionality were evaluated using

a suite of microprocessor benchmarks including Dhrystone,

mt-matmul, rsort, spvm and towers.

Functionality. We extended the Pulpino RTL with ATRIUM

and performed cycle-accurate simulation on ModelSim while

executing the aforementioned benchmarks. We confirm correct

functionality of ATRIUM by comparing simulation results

with reference execution profiles of the benchmarks, which we

extracted by running the benchmarks on standalone Pulpino

without ATRIUM and analyzing the execution trace.

Area and Memory. Area utilization depends on the config-

urations of the hash lookup and hash memory of ATRIUM. For

our evaluation, we configured the hash lookup with 8 CAMs,

each CAM with n = 8 entries and each entry being m = 88
bits. This allows ATRIUM to track up to 8 active nested loops

at once with a maximum of 8 different 88− bit path hashes

per loop. On synthesizing ATRIUM using Xilinx Vivado on

a Zedboard (Virtex-7 XC7Z020 FPGA), we show the overall

area utilization to be 15% of slice registers and 20% of slice

LUTs of this FPGA, while only one 18Kbit BRAM is required

for the hash memory.

Performance. Implementation results indicate that ATRIUM

can operate at a maximum clock frequency of 70 MHz on

a Zedboard (Virtex-7 xc7z020 FPGA) and is, hence, on par

with the Pulpino’s maximum clock frequency of 50 MHz on

the same board. Performance experiments show an overhead

of 1.97% for Dhrystone, 12.23% for mt-matmul, 22.69% for

rsort, 6.06% for spvm and 1.7% for towers. Since ATRIUM

components run on par with Pulpino, performance loss is caused

by the hash function, as the processor stalls occur only when the

currently executed path has ended and needs to be hashed while

the hash engine is still processing the previously executed path

and is not ready for input. This overhead is incurred for loops

with paths whose number of executed instructions are less than

the required number of cycles for the hash engine to finalize

its computation (28 cycles for the chosen hash function). To

mitigate this overhead, the hash engine should be clocked at a

higher frequency than the processor if possible.

B. Security Considerations.

We assume that the used cryptographic primitives are secure.

Upon receiving an attestation request, Prv generates and sends

the list of computed hash values H0‖...‖Hn along with a digital

signature computed over it and a nonce provided by Vrf and

signed by Prv’s secret key sk. The signature guarantees the

authenticity of the attestation report while the nonce ensures

its freshness. By verifying the signature, checking the value of

5https://github.com/pulp-platform/pulpino

the nonce, and comparing the received hashes to their expected

values stored in Vrf ’s database, Vrf gains assurance of the

correct execution (both instruction and their control flow) of

the current program on Prv. We consider three classes of

attacks that can be mounted on ATRIUM.

Malware and Network Attacks. ATRIUM detects mali-

cious software modification introduced by the adversary, as

every executed instruction is included in the hash computation.

To evade detection, finding a second image that maps to same

hash value is required. However, that is infeasible since the

hash engine is second pre-image resistant. Forging the signature

or replaying an old signature is also not feasible, due to security

of signature scheme and to the nonce being long enough.

Runtime Attacks. Since basic block addresses are included

in hash computations along with the executed instructions, the

hash values computed in ATRIUM reflect the control flow of

the executed path. Being tightly integrated with the processor,

ATRIUM is guaranteed to track and record every control-flow

event executed. An attacker who knows the program code

P or CFG(P ) can try to bypass ATRIUM by searching for

a second pre-image of the corresponding hash. However, by

using cryptographically-secure hash function, finding collisions

is computationally infeasible.

Physical Attacks. An adversary with physical access to Prv
can try to manipulate the program code in Prv’s memory at

runtime, i.e, between time of attestation and time of execution.

However, in ATRIUM attestation is performed during execution.

Therefore, it is guaranteed that every instruction that is

executed on Prv will be included in the hash generation, and

consequently any manipulation will be detected by Vrf , as

the generated hash values would not match Vrf ’s expectations.

This defends against TOCTOU attacks that can occur when

attestation is followed by execution, as was the case for both

SMART [9] and C-FLAT [3]. Finally, fault injection attacks

which target the SoC clock and cause unintended behavior

would also be detected by Vrf , as long as the attacks affect

the instructions executed or their control flow. Note that,

expensive invasive/semi-invasive physical attacks on the SoC

are considered out of scope in this work.

VII. RELATED WORK

Attestation Schemes. Existing static attestation schemes

such as software-based [14], [20], hardware-based [21], [17],

and hybrid [15], [9] attestation schemes are vulnerable to

runtime attacks. Control-flow attestation (C-FLAT) aims at

enhancing the security of static attestation schemes by addi-

tionally hashing the code’s execution control flow. This enables

the detection of code-reuse and non-control data attacks that

divert the execution flow. However, due to frequent hash calcu-

lations and context switching (on TrustZone), C-FLAT incurs

high performance overhead. LO-FAT [7] leverages hardware

assistance to track and measure control flow, thus, overcoming

the limitations of C-FLAT and enabling efficient attestation

of uninstrumented code. LO-FAT, however, incurs significant

area overhead due to its on-chip memory requirements (up to

49 36Kbit Block RAMs are used sparsely to store counters of
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loops’ paths). Finally, in a stronger adversary model with

physical access to the prover’s device, these schemes are

vulnerable to Time of Check Time of Use (TOCTOU) attacks.

ATRIUM mitigates this by providing both static and control-

flow attestation in a stronger (and more realistic) adversary

model efficiently.

Authenticated Memory Modules. Authenticated Memory

Modules (such as Intel Authenticated Flash [1]) aim at

resisting physical attacks on external memory by preserving

the memory’s integrity. However, they are insecure under an

adversary model with physical access. Moreover, they do

not authenticate the control flow of the execution. On the

contrary, ATRIUM provides an additional defense against

software runtime attacks by coupling the attestation of both

the instructions and their control flow with their execution to

eliminate any room for TOCTOU attacks.

Memory Authentication. Such schemes [8], [6] aim at

resisting physical attacks on external memory. However, they

incur high performance overhead by authenticating memory

blocks before execution and are susceptible to runtime attacks.

ATRIUM detects both runtime attacks and physical attacks on

code memory while incurring minimal overhead.

Hardware Security Architectures. Finally, hardware se-

curity architectures (such as Intel SGX) provide memory

authentication as well as static attestation. However, such

architectures are not designed to target low-end embedded

devices. Furthermore, they only provide static attestation and

therefore cannot meet the goals that we target. Nevertheless,

they provide security features complementary to our work.

VIII. CONCLUSION

Due to the ubiquity of interconnected embedded systems,

software running on these devices have become vulnerable

to remote software attacks. Previous attestation schemes have

been proposed to detect these attacks while always ruling

out physical attacks. In this paper, we showed that physical

attacks on the system’s code memory are indeed feasible. We

presented a hardware-based efficient scheme ATRIUM that

allows precise attestation of both executed instructions as well

as their control flow. ATRIUM is the first attestation scheme to

provide security guarantees against a stronger adversary with

physical access to code memory, and does not require any code

instrumentation (compliant to legacy software) or instruction

set extension. Our proof-of-concept implementation is highly

efficient with reasonable performance impact on the attested

software at an expense of minimal area overhead and memory.
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