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Abstract—Modern deep learning enabled artificial neural networks,
such as Deep Neural Network (DNN) and Convolutional Neural Network
(CNN), have achieved a series of breaking records on a broad spectrum
of recognition applications. However, the enormous computation and
storage requirements associated with such deep and complex neural
network models greatly challenge their implementations on resource-
limited platforms. Time-based spiking neural network has recently
emerged as a promising solution in Neuromorphic Computing System
designs for achieving remarkable computing and power efficiency within
a single chip. However, the relevant research activities have been narrowly
concentrated on the biological plausibility and theoretical learning ap-
proaches, causing inefficient neural processing and impracticable multi-
layer extension thus significantly limitations on speed and accuracy when
handling the realistic cognitive tasks. In this work, a practical multilayer
time-based spiking neuromorphic architecture, namely “MT-Spike”, is
developed to fill this gap. With the proposed practical time-coding scheme,
average delay response model, temporal error backpropagation algorithm
and heuristic loss function, “MT-Spike” achieves more efficient neural
processing through flexible neural model size reduction while offering
very competitive classification accuracy for realistic recognition tasks.
Simulation results well validate that the algorithmic power of deep multi-
layer learning can be seamlessly merged with the efficiency of time-
based spiking neuromorphic architecture, demonstrating great potentials
of “MT-Spike” in resource and power constrained embedded platforms.

I. INTRODUCTION

The last decade has witnessed unprecedented evolutions of artificial

intelligence (AI), since the deep learning systems such as deep neural

networks (DNNs) and convolutional neural networks (CNNs) are

developed to perform a series of human-level cognitive applica-

tions [1]. However, the underlying enormous computation and storage

requirements seriously challenge DNNs’ processing efficiency, and

hence make them less attractive for cognitive tasks executing in many

light-weighted platforms such as smart phone, wearable device and

Internet-of-Things (IoT) etc., where very tighten power and hardware

resources are enforced [2], [3].

Recently, spiking-based neuromorphic computing inspired by Spik-

ing Neural Network (SNN), which is often recognized as the third-

generation neural network that can closely embrace the working

mechanism and efficiency of human brain, has emerged for achieving

tremendous computing efficiency at much lower power of a single

chip, i.e. total 1 million synapses with an operating power of

70mW in IBM TrueNorth [4]. To mimic the brain-style information

processing, the input data of SNN is usually conveyed as the electrical

spike train (or voltage pulse vector), followed by a more energy-

efficient event-driven computation [5], thus it is a promising solution

for hardware-favorable cognitive applications [6], [7].

Similar as state-of-the-art DNNs or CNNs, an efficient multilayer

learning rule to support the multilayer SNN architecture will be

essential to enhance SNN’s capability in realistic cognitive tasks.

Many multilayer rate-based SNNs (rSNNs) are successfully proto-

typed to fulfill the real-world tasks [4], [6]–[12] by directly borrowing

the Backpropogation (BP) algorithm of Artificial Neural Network

(ANN) [13], as such a rate-based information representation is analo-

gous to the numerical representation in ANN. However, the efficiency

of rSNN largely relies on the number of spikes – a large time

window should be maintained for generating a huge number of spikes,

resulting in an inefficient data processing and considerable spiking

power consumption. On the other hand, time-based SNN (tSNN) can

express the information more flexibly based on the presence and the

delay of each generated spike. Moreover, a better energy-efficiency

can be achieved by tSNN if the information can be efficiently

embedded in extremely sparse spike trains, i.e. a single spike [14].

However, unlike the rSNN, the realistic application of tSNN systems

is still limited due to its weak learning capability. Developing efficient

multilayer learning algorithms to enhance the potentials of tSNN is

non-trivial due to its fundamentally different processing paradigm –

the time-based spiking voltage modulation with a non-differentiable

thresholding function [14]–[20]. Despite of many existing time-based

learning rules like “Tempotron” [21] and “SpikeProp” [14], those

proof-of-concept algorithms are neither compatible with multilayer

extension nor feasible to handle the realistic applications due to

theoretical limitations or expensive convergence of learning etc. Thus,

an efficient multi-layer time-based learning algorithm that can merge

the algorithmic power of deep learning to the efficiency of the time-

based SNN architecture will be very crucial.

In this work, by orchestrating our proposed time-based coding and

multi-layer learning algorithm, a Multilayer Time-based Spiking Neu-
romorphic Architecture, namely “MT-Spike”, is proposed to facilitate

the realistic cognitive applications. Our major contributions include:

• We proposed a practical time-coding scheme to efficiently trans-

late various types of information into the time domain through

an individual spike, achieving remarkable reduction on spiking

energy consumption and network model size;

• We developed a novel average delay response model to simplify

the expensive neural processing in tSNN and enable the multi-

layer extension, significantly enhancing the learning capacity of

this single-spike-driven neuromorphic computing system;

• We proposed a heuristic loss function and integrated it with the

derived temporal error backpropagation algorithm, leading to a

more efficient multi-layer learning for tSNN.

Our evaluations show that “MT-Spike” can even achieve the accuracy

comparable to that of CNN while still maintaining the energy

and processing efficiencies of tSNN when handling realistic tasks

like “MNIST” dataset, demonstrating a very promising solution for

emerging cognitive computing on resource-limited platforms.
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(a) Similarity Between ANN and rSNN

(b) Multiple Sub-Synapses and Voltage Thresholding in tSNN
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Fig. 1. Neural processing in ANN, rSNN and tSNN.

II. BACKGROUNDS AND MOTIVATIONS

A. Basics of rSNN and tSNN

The popular spiking neural network (SNN) architectures can be

generally categorized as Rate-based SNN (rSNN) and Time-based

SNN (tSNN), where “rate-coding” and “time-coding” schemes are

adopted to encode the input data [22], respectively.

In rSNN, each piece of input information is first translated into

a spike train of the input neuron with its occurrence frequency

proportional to the numerical representation of the input data over

a preset time period. For example, the number of spikes (i.e. “6”

here) in rSNN is equivalent to the intensity of input data (ANN-style,

x = 6), as Fig. 1(a) shows. Then the spikes will be weighted towards

the synthesized results of output neurons through the connected

synapses. The patterns can be recognized based on response strength

of the output neurons, e.g. the largest number of output spikes (or

rate). Because the spike rate is closely analogous to information

representation of the ANN, many practical multilayer rSNNs are

well demonstrated in real-world applications by naturally adopting

ANN’s backpropogation (BP) algorithm. Moreover, the efficiency

largely relies on the number of spikes because of such a rate-based

information process mechanism [23].

The tSNN expresses the information more elaborately by lever-

aging both the presence and occurring time of individual spike, i.e.

each stimulus is represented as the desired delay of a single spike

in our design, thus ideally more energy-efficient than rSNN because

of significant reduced number of spikes [15], [22], [24], [25]. As

Fig. 1(b) shows, the input voltage pulses (kernel-modulated spikes)

with different delays di are tunned by synapses with different weights

wi and then accumulated at the output neuron. Once the sum of

membrane voltage reaches a target threshold, an output spike will

be generated and the whole system can be stopped. Accordingly, its

occurrence time da can determine a data pattern.

B. Impractical multi-layer learnings in tSNN

Extending the single-layer tSNN to multi-layer tSNN can poten-

tially enhance its capability for realistic cognitive tasks. However,

designing efficient tSNN multi-layer learning algorithms is very

challenging due to the fundamentally different training mechanism—

the time-based spiking voltage modulation with a non-differentiable

thresholding function. We have investigated many existing time-

based learning algorithms, i.e. unsupervised spiking-time-dependent

plasticity (STDP) [26], theoretical “Tempotron” learning [21] and

“SpikeProp” [14]. Those proof-of-concept algorithms are either un-

able to support multi-layer structure or too bio-plausible to handle the

MT-Spike System Architecture

Temporal Coding Unit (TCU)
Practical Time-coding Scheme

Time-Info Representation

Synaptic Processing Unit (SPU)
Time-SNN Controller Average Delay Response

Neurons Delay AnalyzerSynapses

Multilayer ExtensionTemporal Readout Unit (TRU)
Classes Readout Target Delay Processing

Data Interface

Numerical Visual Time Domain Conf. Data Mapping

Single-Spike Delay 
Generation

Model Size Reduction

Layers Delay Generator

Temporal Error 
Backpropagation Algorithm

Single Neuron 
Multiple Delays

Multiple Neurons 
Single Excitatory

Target Delay 
Generator

Temporal 
Error Detector

Heuristic Loss Function

Implicit differentiable 
ReLU activation

Fig. 2. The overview of MT-Spike system architecture.

realistic applications because of the cost and difficult convergence of

learning etc.

Fig. 1(b) illustrates the working principle of the most

popular multi-layer supervised temporal learning algorithm- -

“SpikeProp” [14] in a two-layer tSNN. Here “SpikeProp” can perform

complex nonlinear classification in temporal domain by customizing

the BP algorithm widely adopted in multi-layer ANNs. Unlike the

one-one synaptic connection of two neurons in a standard BP-based

multi-layer ANN, the link between any two neurons of two adjacent

layers in “SpikeProp” is composed of multiple synaptic terminals (i.e.

m), where each terminal serves as a sub-synapse associated with

a different spiking delay di and weight wi (see the connection of

example neurons H2–A2 in Fig. 1(b)). A sufficient number of such

sub-synapses that can precisely model small delay differences and

modulate the spiking voltage kernels between each pre-synaptic and

post-synatic neuron pair is needed, leading to significantly enlarged

network size. As an example, handling the simple XOR problem

with a two-layer architecture (one hidden layer and one output layer)

requires ∼ 40× more weights in “SpikeProp”-based tSNN [14]

than that of an ANN (240 v.s. 6). Thus, the limited scalability of

such a bio-plausible algorithm greatly hinders it from solving more

practical and complicated cognitive tasks regardless of the expensive

implementation cost, e.g. accurately control the temporal information.

III. DESIGN DETAILS

In this section, we present the design details of our proposed “MT-

Spike” – a multilayer time-based spiking neuromorphic architecture

with temporal error backpropagation.

A. System Architecture

As a realization of multilayer fully-connected spiking neural net-

work (SNN), MT-Spike is inspired from biological spiking neuron

models and able to work in “training” and “testing” modes for non-

linear classification tasks. As Fig. 2 shows, neural processing is

conducted in MT-Spike through three major components – Temporal

Coding Unit (TCU), Synaptic Processing Unit (SPU) and Temporal

Readout Unit (TPU).

1) Temporal Coding Unit (TCU): TCU is developed to handle

a variety of stimuli like numerical and visual samples at the input

layer. With the underlying practical time-coding scheme, stimuli can

be first translated into spike delays needed by each input neuron,

then a time-based sparse spike train–single spike per input neuron

will be generated and sent to Synaptic Processing Unit. Specially, a
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(b) Time-coding on Visual Sample

(a) Time-coding on Numerical Sample
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Fig. 3. Practical Time-coding Scheme in MT-Spike.

flexible neural network size reduction based on the temporal-spatial

information conversion can be achieved by the proposed time-coding

scheme.

2) Synaptic Processing Unit (SPU): As the major part of SNN,

SPU consists of synapses and neurons which are organized in

multiple layers. In each layer, the temporal information (i.e. delays),

rather than the voltage kernels, of the coming spike train will be

directly adjusted through synapses and integrated by neurons. With

devised average delay response model, each neuron can obtain the

customized temporal information and then immediately generate

an output spike according to the calculated delays. The output

spike train will be further sent to next layer following a similar

processing mode until reaching the output layer. Note traditional

tSNN tunes the voltage modulation based on the pre-synatic and post-

synatic delay differences, fires a spike until the accumulated voltage

reaches the threshold voltage and records the associated spike delay.

However, SPU directly leverages the delays for fast computations and

completely eliminates the costly and time-consuming spiking-kernel

(voltage) related operations.

3) Temporal Readout Unit (TRU): TRU is responsible to perform

the classification by directly reading out the delays of the final output

spikes from the SPU. In training mode, the individual target spiking

delay of each output neuron will be set by TRU and compared with

the actual output delay for the temporal error detection and cali-

bration. Through heuristic loss function and efficient temporal error

backpropagation algorithm, only associated temporal errors from the

output layer will be calculated and layer-wise back-propagated to

update those correlated synapses.

B. TCU and Practical Time-Coding

As discussed previously, rSNN demands for a large number of

spikes occurring in an adequate time window to represent the am-

plitude of input data (i.e. numerical value or pixel density). Because

the information is only conveyed by the spiking rate, the additional

coding dimension–the spike occurrence time in temporal domain, is

not fully utilized for energy and processing efficiency optimizations.

Hence, we propose “practical time-coding scheme” to efficiently link

the input information to the occurrence time of generated spikes in

TCU. In our design, the input data will be carried by an ultra-sparse

spike train – a single spike per neuron with the information coded
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Fig. 4. Model size reduction through adjustable temporal resolution.

as the spiking delay, potentially suppressing the number of needed

spikes towards better efficiency.

1) Practical Time-coding Scheme: To better illustrate the proposed

coding techniques, we define following three key parameters: An

encoding time window T , a unit time interval τ , and the time

encoding resolution R = T
τ

. Note τ also denotes the period of

a single spike. To make our encoding biological compatible, we

also interpret the spike with a short (long) delay as the excitatory

(inhibitory) response under strong (weak) stimulus.

We explored several possible time-coding schemes on two rep-

resentative datasets: numerical-style “Iris dataset” (3 classes, 4 at-

tributes) [27] and visual-style “MNIST dataset” (10 handwritten

digits) [28], as shown in Fig. 3. In Iris dataset, each attribute (i.e.

{length, width ...}) can be mapped to a single spike associated

with an input neuron. As Fig. 3(a) shows, the delay di of each

single spike generated within T can be calculated as di = T ·
round

(
1− ni

max(ni)−min(ni)

)
, where ni is the i-th data sample at

a selected attribute.

For visual-style “MNIST dataset”, we first investigated an existing

coding technique adopted in most ANNs and SNNs – the “1-1

coding”, i.e. each single pixel is mapped to an input neuron, as

shown in Fig. 3(b). The delay di of the spike generated by the input

neuron i is inversely proportional to the associated pixel density pi:

di = T ·round
(
1− pi

max(pi)

)
. Note there will be no spike if pi = 0.

However, the coding efficiency of “1-1 coding” is limited because

many spikes that should represent different data patterns occur at a

common time slot (see the spiking delay distribution of “1-1 coding”

in Fig. 3(b)). Besides, the number of input neurons is always equal

to the image resolution, indicating a large model size. To better

leverage the whole encoding time window and reduce the model size,

we further develop the “conv-like coding” inspired by human visual

cortex (receptive field) and Convolutional Neural Networks (CNNs).

By perceiving the localized information from multiple adjacent pixels

through a square kernel, spiking delay in “conv-like coding” can

be expressed as the number of “0s” within the kernel among the

binarized pixels. As Fig. 3(b) shows, the spiking delays of “conv-

like coding” are almost evenly distributed across the whole time

domain, indicating effective utilization of temporal information, thus

a potential model size reduction in spatial domain or rather a reduced

number of input neurons.

2) Spatial Model Size Reduction: To illustrate the advantage of

spatial model size reduction provided by our proposed “conv-like

coding”, we assume the number of elements covered by the kernel

as a square number R. Note R = T
τ

also represents the temporal

resolution of encoding. The number of input neurons can be expressed

452



(a) Delay Adjusting in SRM (b) Learnability and Temporal ReLU in ADR
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Fig. 5. Design exploration on Average Delay Response Model.

as M = �P−√
R+1

S
�2, where P and S represent the width of input

image and the stride to slide the kernel. “Zero-padding” will be also

applied according to the image resolution. Hence the encoding time

window T and input neuron number M can be flexibly changed

by tunning R without sacrificing the amount of information of an

entire image. Fig. 4 shows the concept of model size reduction

based on “conv-like coding”. In this example, the “original design”

is configured as M = 4 input neurons, 16 synaptic weights for the

first layer at a temporal resolution R. Alternatively, a “size-reduced

design” with only M = 2 input neurons, 8 synaptic weights (50%

less), can be easily achieved by doubling the temporal resolution R
or rather the encoding time T (assume τ does not vary). Although the

efficiency of model size reduction depends on the percentage of the

first-layer weights over the total number of weights, as we shall show

later, such a technique is still very effective even without degrading

the system accuracy.

C. SPU and Average Delay Response

After the information is encoded as the delay of the input spike,

the next question becomes how to perform the layer-wise time-based

synaptic processing. The objective of the synaptic processing unit

(SPU) is to generate an output response at each neuron based on its

afferent input delays. Thus, how the neural processing model handles

the temporal information will directly impact the performance of

SPU in “MT-Spike”. As discussed in section II-B, the existing

multi-layer tSNN still depends on expensive voltage modulation

and threshold based neural processing paradigm due to the absence

of the proper loss function and differentiable activation function,

significantly hindering its applicability in real-world cognitive tasks.

To develop an efficient time-based neural processing, we first

explored the processing mechanism of biological plausible Spike

Response Model (SRM) [14], [15], [21].

1) Delay Adjusting Through Weighting Efficacy: Fig. 5(a) presents

the concept of SRM. Its detailed mathematical model can be ex-

pressed as:⎧⎪⎪⎨
⎪⎪⎩
V (t) =

∑
i wi

∑
di

K(t− di)

K(t− di) = exp
(
− t−di

τ1

)
− exp

(
− t−di

τ2

)
V (ts) = Vth ⇒ ts = dj

(1)

Where K, τ1 and τ2 are the Pre-Synaptic Potential (PSP) kernel

function, voltage decay and integrate time constant, respectively.

As Fig. 5(a) shows, the two updated weightings (w1 + Δw1 and

w2 + Δw2) are applied to the two delayed versions (d1 and d2)

of PSP spiking kernels, respectively. Accordingly, the integrated

voltage w.r.t. time is slightly changed, translating into an equivalent

delay adjustment when the voltage reaches the threshold (ts → t′s).

Despite of the costly analog voltage computation and the target

delay extraction, the fundamental goal of SRM is to identify an

output spiking time by leveraging the pre-synaptic weights and input

spiking delays. Inspired by this observation, we propose the following

Average Delay Response (ADR) Model (see Fig. 5(b)):

dj(wij , di) =
1

n

n∑
i=1

wijdi (2)

where wij , di and n denote the synaptic weighting efficacies between

neuron i and j, input spike delays of neuron i and number of post-

synapses. dj denotes the output spike delay of neuron j. Hence,

the output spiking delay can be directly tuned by the weights wij ,

speeding up or slowing down the occurrence of an output spike. Note

the result of ADR model (see Eq. 2) is no less than any input delay

di, which well complies with the nature of a causal system–a post-

synaptic spike will be only trigged by the pre-synaptic input spikes.

2) Advantages of Average Delay Response Model: First, the

proposed ADR model can eliminate the costly voltage kernel mod-

ulations and complicated pre-synaptic/post-synaptic time control un-

avoidable in traditional tSNNs, because the proposed time-coding

schemes ensure a comprehensive precise delay based information

process across all the layers, e.g. performing target classification and

error calculation by the delay.

Second, ADR model also increases the adjustable delay range

significantly (e.g. a whole encoding time window T ) by direct delay

weighting when compared with that of traditional SRM limited by the

PSP kernel, as shown in Fig. 5(b). As we will show in Section. IV,

“MT-Spike” with average delay response can achieve remarkable

improvement accuracy over the traditional tSNN.

Finally, ADR model can implicitly work as a “Special ReLU” [29]

function–a non-negative output delay with a smaller value repre-

senting a stronger response for an output neuron (the earlier the

spike fires, the stronger the response is). Unlike the un-differentiable

threshold function in traditional tSNN, the “Special ReLU” function

is differentiable and thus can facilitate an efficient multilayer learning

through temporal error propagation.

D. Target Delay Set and Class Readout in TRU

The functionality of Temporal Readout Unit (TRU) mainly consists

of target delay setup and class readout for the testing and training
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modes. Since the practical time coding schemes can perform the

spatial-temporal information conversion (see section III-B2), we

present the implementation details of Target Delay Setup and Class

Readout for following two different cases: 1) A single output neuron

with multiple target spiking delays, and the class number is equal to

that of target delays; 2) Multiple output neurons with only two target

delays, where the output neuron number and the number of classes

are identical. Similar to the traditional bio-plausible tSNN [14], we

assume the selected target delays are no less than the encoding time

T in “MT-Spike”.

1) Single Output Neuron: To maximize the temporal information

of the output neuron while minimizing the number of output neurons,

we assign multiple target spike delays at a single output neuron in

“MT-Spike” (see Fig. 6(a)). Here one target delay represents one

class, i.e. the target delay T + i × τe for the i-th class, where τe
is the adjustable time interval to differentiate two adjacent classes

and is constrained as no less than τ–the period of a single spike.

For instance, the target delay can be defined as {T, T+3, T+6} for

the three classes {“Setosa”, “Versicolour” and “Virginica”} in “Iris

dataset” [27], respectively. Here τe = 3τ, τ = 1.

As Fig. 6(a) shows, these target delays will serve as “delay

checkpoints” to readout a class according to temporal distances

between the actual output delay and those “delay checkpoints”, that

is, to find the nearest target with smallest temporal distance for a

testing. During the training, a temporal error will be calculated based

on the delay distance between actual delay and target delay of a class

at output neuron if a classification failure happens. However, as we

shall show later in Section. IV, such a single output neuron solution

suffers from significant accuracy degradation on complex datasets

with more class numbers, i.e. MNIST [28], because of very limited

weighting effectiveness on single output neuron.

2) Multiple Output Neurons: To handle the large dataset with

more classes, an alternative solution is to increase the number of

output neurons, i.e. same as the number of classes, so that each class

can be dedicated to one output neuron. To maintain the biological

plausibility, short target delay T + τe will be only assigned to the

“excitatory” output neuron (i.e. neuron A2, representing current class

label 2) while that of all the remained “inhibitory” neurons are

assigned with a same longer delay T + τi, as shown in Fig. 6(b).

Here τe < τi.

For example, if the target class label is “1” (i.e. handwritten

digits from “0” to “9”) in MNIST, ten target delays {T + 4, T +
0, T + 4, ..., T + 4} will be assigned to the ten output neurons

{A1, A2, A3, ..., A10}, respectively, Here we assume τe = 0 and

τi = 4. During the testing, the class readout will be achieved by the

“excitatory” output neuron with an “earliest” spike, i.e. the one with

minimal actual spike delay. In training mode, each output neuron will

calculate an individual temporal error based on the difference of its

actual delay and target delay if an incorrect class label is identified.

E. Temporal Error Backpropagation and Heuristic Loss Function

Based on our proposed average response model and its implicit

temporal “ReLU” activation, an efficient multilayer learning algo-

rithm can be obtained through temporal error backpropagation for

“MT-Spike”.

1) Temporal Error Backpropagation: In this section, we present

our proposed temporal error backpropagation algorithm. For an

output neuron j, the temporal error function is defined as:

Ej =
1

2

(
dt(j) − da(j)

)2
(3)

where dt(j) is its target delay and da(j) is its actual delay, with

implicit activation function ϕ, the output delay of neuron j in layer

l is given as:

dlj = ϕ(netlj) = ϕ

(
1

n

n∑
i=1

wl
ijd

l−1
i

)
(4)

where dl−1
i is the pre-synaptic delay of the i-th neuron and n is the

number of pre-synapses. Thus the partial derivative of temporal error

with respect to weight wl
ij can be expressed as:

∂Ej

∂wl
ij

=
∂Ej

∂dlj

∂dlj
∂netlj

∂netlj
∂wl

ij

(5)

where:
∂netlj
∂wl

ij

=
∂

∂wl
ij

(
1

n

n∑
i=1

wl
ijd

l−1
i

)
=

dl−1
i

n
(6)

∂dlj
∂netlj

=
∂

∂netlj
ϕ
(
netlj

)
= 1 (7)

For neuron j at output layer l:

∂Ej

∂dlj
=

∂Ej

∂da(j)
=

∂

∂da(j)

1

2
(dt(j) − da(j))

2 = da(j) − dt(j) (8)

∂Ej

∂wl
ij

=
dl−1
i (da(j) − dt(j))

n
(9)

For neuron j at hidden layer(s):

∂Ej

∂dlj
=

n∑
k=1

(
∂Ej

∂netl+1
k

∂netl+1
k

∂dlj

)
=

n∑
k=1

(
∂Ej

∂dlj

∂dlj

∂netl+1
k

wl+1
jk

)
(10)
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// Heuristic Loss Function H({da}, c, dt
min, dt

max)
// {da}: actual delays array of output neurons 
// c: target class index
// dt

min,dt
max: min and max target delay 

{N} = DFS(c); // get array N by DFS to depth c 
j = 1; // neuron index
while j <= c { // output neuron(s) is partially engaged
    switch(N[i]) {
        case 0 : dt = dt

max; // inhibitory
        case 1 : dt = dt

min; // excitatory
    }
    Ej = 0.5*(dt-da[i])^2; // temporal error of output neuron i
    call Temporal Error Backpropagation; ++j;
}

1

1

0

1

Binary Decision Tree
e.g. 3 neurons 
are engaged 
in training of 
the 3rd target 

class

--

0

0

1

…
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Fig. 7. Heuristic Loss Function and Binary Decision Tree.

where k is the post-synaptic neuron of j, by defining:

δlj =
∂Ej

∂dlj

∂dlj
∂netlj

=

{
da(j) − dt(j) , l is output layer∑

k δ
l+1
k wl+1

jk , l is hidden layer
(11)

We can obtain the weight updating at learning rate η as:

Δwl
ij = −η

∂Ej

∂wl
ij

= δlj
dl−1
i

n
(12)

2) Heuristic Loss Function: In MT-Spike, the neural competition

among different data patterns increases significantly as the dataset

becomes more complicated, as the weight updating solely relies

on the extreme sparse spike–single spike. As we will show later

in Section. IV, our MT-Spike exhibits lower accuracy compared

with the multi-layer ANN when handling large complex dataset.

Hence, to alleviate the neural competition, we further propose the

Heuristic Loss Function in MT-Spike as the trigger of Temporal

Error Backpropagation– H({da}, c, dmin
t , dmax

t ), where {da} and

c are the actual delay array of all output neurons and active class

of current sample, respectively. dmin
t and dmax

t represent two target

delays for excitatory neuron and inhibitory neuron, respectively (see

section. III-D2).

Fig. 7 illustrates the algorithm, as well as the novel data structure

of heuristic loss function. An “Huffman” style binary decision tree

with its depth equal to the total number of target classes is introduced.

Only partial output neuron(s) will be involved by leveraging a depth-

first-search (DFS) through the binary decision tree. For example, to

process the MNIST dataset (10 classes with label “0” to “9”), the

binary decision tree with a maximum depth 10 (the depth of the root

is 0) will be generated according to Fig. 7. All the nodes, except the

root node, in the left (right) subtree are marked as 1 (0). If the 3rd

data pattern (class label “2”) is selected, a depth-first-search will be

conducted on the decision tree until the depth reaches 3. The 3 nodes

traversed by the longest searching path (highlighted in Fig. 7) indicate

only 3 out of total 10 neurons, i.e. A1 and A2 as inhibitory neuron and

A3 as excitatory neuron, will participate in the learning of the class

“2”. Note here only the synaptic weights associated with those three

neurons will be updated. By deploying the Heuristic Loss Function

in temporal error backpropagation of “MT-Spike”, the computation

of the error δ (see Equation. 11) can be further simplified as:⎧⎪⎨
⎪⎩
δlj∈Γ = da(j∈Γ) − dt(j∈Γ) , output layer

δlj =
∑

k∈Γ δl+1
k wl+1

jk , last hidden layer

δlj =
∑

k δ
l+1
k wl+1

jk , other hidden layer

(13)

where Γ is the set of involved neurons, rather than the whole neurons,

for a certain data pattern. In output layer, the weight updating will

be partially conducted on the pre-synaptic weights of participated

neuron(s):

Δwl
i(j∈Γ) = −η

∂Ej∈Γ

∂wl
ij∈Γ)

= δlj∈Γ

dl−1
i

n
(14)

Such a pattern dependent partial weights updating rule can signifi-

cantly reduce the weights competition, thus to boost the accuracy of

“MT-Spike”, as we shall show later.

IV. EVALUATIONS

In this section, we will evaluate the accuracy, model size and power

consumption of the proposed “MT-Spike” architecture. Experiments

are conducted in the platforms like MATLAB and heavily modified

open-source simulator–Brian [30].

A. Experiment Setup

Two representative datasets are selected as the benchmarks of

our experiments, including “Iris” [27] and “MNIST” [28]. “Iris”

consists of 3 classes, with 50 samples per class and 4 numerical

attributes per sample. Note the NOT-linear separable nature of the

3 classes can validate the functions of multilayer temporal-learning

based “MT-Spike”, as well as its classes readout based on the

multiple target delays of a single output neuron (see section III-D1).

We utilize 120 and 30 samples for training and testing purposes,

respectively. The “MNIST” dataset, which includes 10 handwritten

digits with 60K training images and 10k testing images, is adopted to

evaluate the visual recognition capability of “MT-Spike” in terms of

accuracy, model size and approximated energy consumption. Several

representative candidates, such as multi-layer ANNs, rSNNs and

tSNNs, are implemented for a comparison purpose. Batch training is

conducted in our evaluation. All the training samples are randomly

fed into the candidates per epoch with a batchsize = 30 (256) for

“Iris” (“MNIST”) until the networks converge, followed by a testing

iteration. Table. I shows the detailed configurations and network types

of all selected candidates. All “MT-Spikes” are implemented with a

same time window parameter T = 16 and learning rate η = 0.01.

The initial weights w ∈ (0, 1) are randomly generated before training.

B. Multilayer Validation on Iris Dataset

As shown in Table. I, “Iris” dataset is used to evaluate the

following four networks: “MT-1”– a multilayer MT-Spike imple-

mentation with only single output neuron and multiple target delays

setup;“SLMT-3”– A simplified version of MT-Spike without hidden

layer; “SpikeProp”–traditional bio-plausible multi-layer tSNN with

voltage modulation and thresholding process [14]; “MLP”–A Multi-

layer Perceptron based ANN [31].

Fig. 8 compares the testing accuracy of the four aforementioned

candidates. As expected, “SLMT-3” exhibits the worst accuracy

(56.7%) among all candidates because this single-layer tSNN cannot

93.3

56.7

86.7

96.7

0 25 50 75 100

MT-1

SLMT-3

SpikeProp

MLP

Testing Accuracy on Iris dataset %

Fig. 8. Testing Accuracies on Iris Dataset.
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TABLE I
STRUCTURAL PARAMETERS OF SELECTED CANDIDATES.

Candidate Types Dataset
Network
Structure

Number of
synaptic weights

Neural processing
time-frame T

MT-1 tSNN Iris 4-25-1 125 16+6
SLMT-3 tSNN Iris 4-3 12 16+4

SpikeProp tSNN Iris 4-25-3 3500 16+4
MLP ANN Iris 4-25-3 175 –

MT-1 tSNN MNIST 169-500-1 85000 16+9 (τ = 0.1)
MT-10(heu/noheu) tSNN MNIST 169-500-10 89500 16+4 (τ = 0.1)

SLMT-10(heu/noheu) tSNN MNIST 169-10 1690 16+4 (τ = 0.1)
SpikeProp tSNN MNIST 784-500-10 7940000 16+4 (τ = 0.1)

Diehl rSNN MNIST 784-6400 5017600 50 (τ = 0.1)
Minitaur rSNN MNIST 784-500-500-10 647000 –
Lenet-5 CNN MNIST 1024-C1-S2-C3-S4-C5-F6-10 60840 (340908 conn.) –

well distinguish the NOT-linear separable classes. On the contrary,

“MT-1” achieves much better accuracy than that of“SpikeProp”

(96.7% v.s. 86.7%), and can even approach that of “MLP”, demon-

strating the enhanced capability through the proposed multi-layer

temporal learning rule. Furthermore, as Table. I shows, “MT-1”

reduces the synaptic weights by ∼ 28× compared with the “Spike-

Prop”, which well validates the efficiency of single output neuron

readout and the Average Delay Response model when handling the

simple dataset.

C. Performance Evaluation on MNIST Dataset

To further evaluate the performance of our proposed “MT-Spike”

in a relative complicated dataset “MNIST”, seven different networks

with more network parameters are chosen, as shown in Table. I. Here

“ Diehl” is an rSNN trained by the unsupervised STDP learning [32].

“Minitaur” is a hardware-oriented rSNN towards power optimization.

Besides, the CNN implementation – “Lenet-5” is included as well

for a comparison purpose. For a fair comparison with other SNN

candidates, the minimal time interval is set as τ = 0.1 to provide a

precise time-based processing for all “MT-Spike” candidates.

1) Model Size Reduction and Time-coding Efficiency: We first

demonstrate the advantages of model size reduction in “MT-Spike”

through the proposed “conv-like” time-coding scheme. As shown in

Table. I, the proposed “MT-10” achieves ∼ 4.6× reduction on the

number of input neurons (169 v.s.784) when compared with all the

other non-“MT-Spike” candidates (except the “Lenet-5” with 1024

neurons), which translates into an impressive model size reduction (or

the number of weights) over “SpikeProp”, “Diehl” and “Minitaur”,

that is, ∼ 88×, ∼ 56× and ∼ 7×, , respectively. Note the

“SpikeProp” suffers from the largest model size due to a substantial

number of sub-synapses between two connected neurons. As we shall

discuss later, “MT-10” can even maintain a very high accuracy despite

of the significant reduced model size.
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Fig. 9. Coding efficiencies of Conv-like and 1-1 mapping.

Fig. 9 also shows temporal mean-square error (MSE) v.s. training

epoch for two “MT-10” designs that employ the “conv-like” coding

and “1-1 mapping” coding, respectively. As Fig. 9 shows, the adopted

“conv-like” coding achieves a lower MSE than that of “1-1 mapping”

coding at the same epoch, due to its better utilization of temporal

information, e.g. the equally distributed spiking delays.

2) Accuracy Analysis on MNIST dataset: Fig. 10 shows the testing

results of MNIST dataset among all different designs. As expected,

“MT-1” with single output neuron readout is insufficient to handle

the complex dataset, resulting in the worst accuracy 63.2%, due to

its weak weighting efficiency.

We also evaluate the capability of the proposed heuristic loss

function. As Fig. 10 shows, under a single-layered structure “SLMT”,

such a technique can boost the accuracy from 80.7% on “SLMT-

10(nohue)” to 89.6% on “SLMT-10(hue)”, showing a consider-

able accuracy improvement by alleviating the neural competitions.

Moreover, by integrating the heuristic loss function with temporal

error backpropagation, the accuracy of “MT-10(hue)” can be further

increased to 99.1%, the best results among all candidates and even

comparable with the CNN–“Lenet-5”(99.05%). Note the heuristic

loss function can still introduce 2.3% accuracy improvement in

the multi-layer structure (“MT-10(hue)” 99.1% v.s.“MT-10(nohue)”

96.8%).

3) Energy Consumption: To estimate the energy efficiency of

“MT-Spike”, we adopt a similar estimation methodology presented

in [4], [12]. Measurement is conducted based on the following

assumption: a single spike activity consumes αJoules of energy.

The total spiking energy is calibrated based on the statistic of the

spikes in testing iterations. As shown in Fig. 11, “MT-10(hue)” saves

∼ 13× power over “SpikeProp”, indicating the efficiency of our

proposed average delay response model. Compared with rate-based

“Diehl”, a ∼ 42× energy reduction is further achieved by “MT-

10(hue)” through the efficient single spike temporal representation.

Moreover, “MT-10(hue)” can still achieve ∼ 6.3× power reduction

63.2
99.1

96.8
89.6

80.7
70.3

95
92

99.05

0 25 50 75 100

MT-1
MT-10(hue)

MT-10(nohue)
SLMT-10(hue)

SLMT-10(nohue)
SpikeProp

Diehl
Minitaur

Lenet-5

Testing Accuracy on MNIST dataset (%)

Fig. 10. Testing accuracy on MNIST dataset.
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Fig. 11. Energy analysis based on spiking activities.

compared with the hardware-oriented design “Minitaur”, indicating

an energy efficient solution for resource-limited embedded platforms.

V. CONCLUSION

Modern deep learning enabled neural networks are subject to great

challenges on resource-limited platforms due to the enormous compu-

tation and storage requirements. Time-based spiking neural network

(tSNN) has emerged as a promising solution, however, its capability

of handling realistic tasks is significantly limited by the expensive

biological plausible neural processing mechanism and theoretical

time-based learning approaches, leading to inefficient information

processing and impracticable multilayer-based deep learning. In this

work, we propose a multilayer time-based spiking neuromorphic

architecture, namely “MT-Spike”. Through a holistic solution set –

practical time-coding scheme, average delay response model, tempo-

ral error backpropagation algorithm and heuristic loss function, “MT-

Spike” can deliver impressive learning capability while still main-

taining its power-efficient information processing at a more compact

neural network. Our evaluations well demonstrate the advantages

of “MT-Spike” over other rSNN and tSNN candidates in terms of

accuracy, neural network model size and power.
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[26] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Spike-
timing dependent plasticity, p. 35, 2010.

[27] R. Fisher and M. Marshall, “Iris data set,” UC Irvine Machine Learning
Repository, 1936.

[28] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of hand-
written digits,” 1998.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[30] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, p. 26, 2009.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” DTIC Document, Tech. Rep.,
1985.

[32] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

457



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


