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ABSTRACT
The advancing of reverse engineering techniques has complicated the
efforts in intellectual property protection. Proactive methods have been
developed recently, among which layout-level IC camouflaging is the
leading example. However, existing camouflaging methods are rarely
supported by provably secure criteria, which further leads to over-estim-
ation of the security level when countering the latest de-camouflaging
attacks, e.g., the SAT-based attack. In this paper, a quantitative security
criterion is proposed for de-camouflaging complexity measurements and
formally analyzed through the demonstration of the equivalence between
the existing de-camouflaging strategy and the active learning scheme.
Supported by the new security criterion, two novel camouflaging tech-
niques are proposed, the low-overhead camouflaging cell library and
the AND-tree structure, to help achieve exponentially increasing secu-
rity levels at the cost of linearly increasing performance overhead on the
circuit under protection. A provably secure camouflaging framework is
then developed by combining these two techniques. Experimental results
using the security criterion show that the camouflaged circuits with the
proposed framework are of high resilience against the SAT-based attack
with negligible performance overhead.

1. INTRODUCTION
As IC design costs increase, intellectual property (IP) protection be-

comes a significant concern for the semiconductor industry. One of the
major threats arises from reverse engineering (RE) [1, 2]. By stripping
the integrated circuit (IC) layer by layer, gate-level netlist can be ex-
tracted and duplicated without the authorization of the IP holder [2,3]. To
protect IC design against RE, IC camouflaging is proposed as a layout-
level technique to hide the circuit functionality [4–7]. By synthesizing
circuits with logic cells that look alike but can have different functionali-
ties (aka camouflaging cells), the functionality of original circuits cannot
be determined from physical RE.

Existing works on IC camouflaging mainly fall into the following
three categories: fabrication level [4–6], cell level [7–9] and netlist level
[7, 10]. The fabrication-level camouflaging mainly focuses on develop-
ing fabrication techniques that can hide the circuit structure. In [4], a
doping based technique is proposed. By changing the polarity of dopant
for the source and drain of MOS transistors, always-on and always-off
transistors can be created. In [5], similar effect is realized by chang-
ing the type and length of the Lightly-Doped-Drain (LDD) implants. A
dummy contact-based method is also proposed to control the connection
between two adjacent layers [6]. By creating gaps in the middle of a con-
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tact, two layers that appear to connect are actually disconnected. Both
doping-based and contact-based method are shown to be robust against
existing RE techniques [4, 6]. The cell-level camouflaging leverages the
fabrication techniques to build camouflaging cells that look alike but may
have different functionalities. In [7], the proposed cell can function as
an XOR, NAND or NOR gate based on the configuration of the true and
dummy contact. In [8, 9], by controlling the doping scheme, a camou-
flaged lookup table (LUT) is created with more than hundreds of func-
tionalities. While these camouflaging cells can hide the real functionality
from physical RE, they usually incur large overhead in terms of power,
timing and area compared with regular cells. The netlist-level camou-
flaging seeks to develop camouflaging cell insertion algorithm to maxi-
mize the resilience of the circuit netlist against RE techniques given pre-
defined overhead constraints. For example, the authors in [7] claimed
that by inserting camouflaging cells that can interfere with each other,
the camouflaged netlists would require more than 1000 years to resolve.
The proposed technique is further improved in [10] with the fanin cone
based analysis.

Despite the extensive research on IC camouflaging, there are still fun-
damental problems that have not been properly solved. First, due to
the lack of provably secure criteria to guide IC camouflaging, existing
netlist-level methods usually tend to over-estimate the provided security
level and in fact have been shown vulnerable to the existing SAT-based
de-camouflaging attacks [11–13]. Second, the insertion of camouflaging
cells usually leads to large overhead, which places significant limits on
their usage in commercial applications.

In this paper, we propose a new criterion, defined as de-camouflaging
complexity, to directly quantify the security of the camouflaged circuit.
The proposed security criterion is defined as the number of input-output
patterns that an attacker has to evaluate to decide the functionality of the
original circuit. Because the proposed criterion is independent of the way
that a SAT-problem is formulated and the software package or computer
configuration that the attack is carried on, the camouflaged circuit that
achieves high enough de-camouflaging complexity is guaranteed to be
secure against de-camouflaging attack.

To formally analyze the de-camouflaging complexity, we build the
equivalence between SAT-based de-camouflaging attack and the active
learning scheme [14–16]. Based on the equivalence, the security crite-
rion can be analytically derived for camouflaged circuits and two key
factors that determine the security are revealed, i.e, the number of pos-
sible functionalities of the camouflaged netlist and the output hamming
distance among different functionalities. To enhance the two factors in
circuits, we propose two camouflaging strategies, including a novel low-
overhead camouflaging cell generation strategy and an AND-tree struc-
ture. We observe the overhead of a camouflaging cell is determined by
its actual functionality in the circuit, and thus, create a specific type of
camouflaging cell that incurs negligible overhead for one functionality
to allow for a large amount of insertion into the netlist and create a huge
number of functionalities. The AND-tree structure is proposed to control
the output hamming distance for better security. We analyze the stand-
alone AND-tree structure to prove its induced exponential increase of the
security level and further identify two important properties of the AND-



tree structure that are important to guarantee its effectiveness in general
circuits. An IC camouflaging framework is then proposed to combine the
two methods together. Experimental results demonstrate that the func-
tionality of the camouflaged netlist generated by our framework cannot
be resolved by existing de-camouflaging techniques and the overhead is
negligible. We summarize our contributions as follows:

• A new security criterion is proposed and formally derived, which
enables to capture the trade-off among security, output error prob-
ability and hardware cost analytically.

• Two factors that can enforce the security criterion in camouflaged
circuits are revealed, with two novel camouflaging strategies pro-
posed to enhance each factor in circuits.

• An IC camouflaging framework is proposed through the combina-
tion of these two techniques and is provably secure against existing
de-camouflaging attacks.

• The proposed security criterion and IC camouflaging framework
are verified with the state-of-the-art de-camouflaging technique
with great resilience and negligible overhead.

The rest of the paper is organized as follows. Section 2 provides a
review on existing de-camouflaging attacks and the preliminaries on ac-
tive learning scheme. Section 3 formally builds the equivalence between
de-camouflaging and active learning with key security factors revealed.
Section 4 and Section 5 describe two camouflaging techniques to en-
hance security in circuits. Section 6 proposes our overall IC camouflag-
ing framework. Section 7 demonstrates the performance of the proposed
framework, followed by conclusion in Section 8.

2. BACKGROUND
In this section, the de-camouflaging attack model and attack tech-

niques are reviewed. We also talk about the active learning scheme,
which lay the foundation for our analysis on de-camouflaging complex-
ity in Section 3.

2.1 Reverse Engineering Attacks
For an attacker, the main target of RE is to extract the original or

equivalent circuit with RE techniques. We follow the widely used attack
model as stated in [7]:

• The attacker has the techniques to reverse engineer an IC to get the
camouflaged netlist, including delayering, depackaging, imaging
and so on [2], which we refer to as physical RE techniques.

• The attacker can differentiate between a standard cell and a cam-
ouflaging cell, but cannot resolve the specific functionality of the
camouflaging cell.

• The attacker can acquire a functional circuit as a black box and get
the correct outputs for given input vectors.

To recover the original circuit functionality, after reverse engineering the
chip with physical techniques, the attacker will query the functional cir-
cuit to get the correct input-output patterns to decide the functionality of
camouflaged cells. To explore the input-output patterns, three different
methods have been proposed, including brute force attack [7], testing-
based attack [7, 17] and SAT-based attack [11–13].

Brute force attack proposes to enumerate the possible functionalities
for all the camouflaging cells. Then, input vectors are randomly sampled
for logic simulation to rule out the false functionalities until the original
or equivalent circuit is found. Brute force attack suffers from scalability
problem since the attack complexity increases exponentially with respect
to the number of camouflaging cells [7]. Testing-based attack targets at
one camouflaging gate at a time. For each target gate, input patterns
are generated so that the output of all camouflaging gates that interfere
with the target gate are known, denoted as justification, and a change at
the output of the target gate causes changes at circuit primary outputs,
denoted as sensitization. Here, two gates are said to interfere if their out-
puts are connected to the inputs of same gates, or if the output of one
gate is connected to the input of the other. However, when the justi-
fication and sensitization conditions cannot be satisfied simultaneously,

brute force attack has to be leveraged [7]. By deliberately inserting gates
that interfere with each other, the complexity of testing-based attack is
no better than the brute force attack.

SAT-based attack is currently the most powerful de-camouflaging at-
tack method. The algorithm starts by treating all the possible circuit
functionalities as candidates and collecting them into a set. Then, by
iteratively searching the input patterns that can have different outputs
for different candidates in the set, denoted as discriminating inputs [11],
false functionalities are identified and removed from the set. The process
continues until all the functionalities in the set have the same outputs for
all input patterns. The most important characteristic of SAT-based attack
is that instead of random sampling input patterns from the whole input
space, only discriminating input vectors are selected by solving instances
of the circuit satisfiability problem. Then, the black box functional cir-
cuit is queried to get the corresponding output vector, which are used
to rule out the false functionalities. Currently, the SAT-based attack has
been demonstrated to achieve great capability to resolve the camouflag-
ing gates and recover the functionality of the original circuits. No exist-
ing camouflaging strategy has demonstrated convincing resilience to the
SAT-based attack. In this paper, we will develop formal analysis on the
number of discriminating inputs required for the de-camouflaging attack
and propose camouflaging strategies that are provably secure against the
SAT-based attack.

2.2 Active Learning Scheme
In this section, we provide basic definitions concerning active learn-

ing. For more detailed description, interested readers can refer to [15].
Considering an arbitrary domain X where a concept h is defined to

be a subset of points in the domain, a point x 2 X can be classified by
its membership in concept h, that is, h(x) = 1 if x 2 h, and h(x) = 0

otherwise. A concept class H is a set of concepts. For a target concept
t 2 H , a training sample is a pair (x, t(x)) consisting of a point x,
which is drawn from X following distribution D, and its classification
t(x). A concept h is defined to be consistent with a sample (x, t(x)) if
h(x) = t(x).

The intuition of active learning is to regard learning as a sequential
process, so as to choose samples adaptively. Consider a set S of m sam-
ples. The classification of some regions of the domain may be implicitly
determined, which means all concepts in H that are consistent with S
will produce same classification for the points in these regions. Active
learning scheme seeks to avoid sampling new points from these regions,
and instead, samples only from the regions that contain points which
can have different classifications for different concepts in H , denoted as
region of uncertainty R(S). By iteratively sampling from R(S) and up-
dating R(S) with the new sample, t can be learned from H . We use the
following example to illustrate the concept of active learning.

Example 1. Consider a two-dimensional space, and the target t is a set

of points lying inside a fixed rectangular in the plane as shown in Figure

1. Assuming we already have some samples with their classification,

R(S) can then be decided accordingly. As in Figure 1, among s
1

,s
2

and

s
3

, only sample s
3

can provide further information to decide t from H .

: existing data
: new data

 : region of uncertainty

S1

S2

S3

: target

Figure 1: Example of sampling strategy for active learning.

According to [15], if we define error rate erx⇠D(h, t) for a con-
cept h with respect to the target t and the distribution D of points x
as erx⇠D(h, t) = Prx⇠D[h(x) 6= t(x)], then, by adaptively sampling
from x 2 X , to guarantee erx⇠D(h, t)  ✏ with sufficient probability,



on average, the number of samples m needed for active learning is

m = O(✓dlog(
1

✏
)),

where d is a measure of the capacity of H . Speically, when X is boolean
domain with X = {0, 1}n and the concept class contains only boolean
function, we have d � log2|H|

n [18]. Here | · | denotes the cardinality of
the set. ✓ is the disagreement coefficient, defined as

✓ = sup✏

Prx⇠D[DIS(H✏)]

✏
,

where, H✏ = {h 2 H : erx⇠D(h, t)  ✏}, and DIS(H✏) = {x :

9h, h0 2 H✏ s.t. h(x) 6= h0
(x)}, and Prx⇠D[DIS(H✏)] = Prx⇠D[x 2

DIS(H✏)].

3. IC CAMOUFLAGING SECURITY
ANALYSIS

In this section, we formally analyze the proposed security criterion
for the camouflaged circuits. By building the equivalence between SAT-
based de-camouflaging strategy and the active learning scheme, the de-
camouflaging complexity is derived and key factors to enhance the secu-
rity criterion are revealed as well.

Let co be the original circuit before camouflaging. co has n input bits
with the input space I ✓ {0, 1}n and l output bits with output space
O ✓ {0, 1}l. During the process of IC camouflaging, em camouflag-
ing gates are inserted into the original netlist, whose functionalities can-
not be resolved by physical RE techniques. Let G denote the set of
all possible functionalities for the camouflaging gate, where 8g 2 G,
g : {0, 1}en ! {0, 1} with en as the input number of the camouflaging
gate. Let y denote em functions chosen from G, i.e. y 2 G em, which
assigns each camouflaging gate a function in G and let Y denote the set
of all possible y. Depending on y, a set of possible circuit functionalities
can be created, denoted as C. Note that co 2 C.

Based on the attack model described in Section 2, after physical RE,
the attacker can acquire the camouflaged netlist but cannot resolve the
functionality of the camouflaging cells. Equivalently, the attackers can
acquire C from physical RE. To resolve co from C, the attacker is able
to select input pattern i 2 I and apply to the black box circuit to get the
corresponding output co(i). The input-output pattern (i, co(i)) can be
used to rule out incorrect functionalities in C. As we have described in
Section 2, for the SAT-based attack, it leverages the SAT solver to decide
the input-output patterns that can help rule out incorrect assignments.

To evaluate the effectiveness of camouflaging and the hardness of de-
camouflaging, we define the de-camouflaging complexity as the number
of input-output patterns required to rule out the false functionalities in C
and resolve the co 2 C. To evaluate the de-camouflaging complexity, we
build the equivalence between the SAT-based de-camouflaging strategy
and the active learning scheme as follows:

• The input space I corresponds to the set of points X;
• The set of possible circuit functionalities C corresponds to the

concept class H;
• The original circuit functionality c corresponds to the target con-

cept t;
• The input-output pattern (i, c(i)) corresponds to the samples

(x, t(x));
• The SAT-based de-camouflaging strategy corresponds to the selec-

tive sampling strategy.

Based on the equivalence, the number of input-output patterns re-
quired to resolve the functionality of c with less than ✏ output error rate
and sufficiently high probability is

m(co, C) = O(✓dlog(
1

✏
)), (1)

where d � log2|C|
n is related to the number of functionalities in C and

✓ = sup✏
Pri⇠I [DIS(C✏)]

✏ is related to the output hamming distance for

dummy via

Layout 
Modification

(a)

Always-off
MOS

Always-on
MOS

(b)
Figure 2: Illustration of two different cell camouflaging strategies: (a) XOR-type
and (b) STF-type.

Table 1: Overhead characterization of XOR-type camouflaged cell.
BUF AND2 OR2 AND3

Function BUF INV AND2 NAND2 OR2 NOR2 AND3 NAND3
Timing 1.0x 2.0x 1.0x 1.5x 1.0x 1.9x 1.0x 1.8x
Area 1.0x 1.5x 1.0x 1.3x 1.0x 1.3x 1.0x 1.3x

Power 1.0x 1.5x 1.0x 0.9x 1.0x 1.1x 1.0x 1.0x

different functionalities, which is decided by the circuit structure. C✏

is adopted from the active learning scheme and corresponds to H✏. It
shall be noted that although the derived de-camouflaging complexity is
an average case estimation, it is a practical evaluation of the circuit se-
curity level. More importantly, it reveals the inherent trade-off among
output error rate, hardware cost and de-camouflaging complexity. That
is, to achieve large de-camouflaging complexity, more hardware cost is
required to increase the number of possible functionalities of the camou-
flaged circuits and the output error rate needs to be reduced to minimize
the hamming distance among different functionalities.

4. NOVEL CAMOUFLAGING CELL DESIGN
In this section, we target at increasing d as in Eq. (1). Because the

lower bound of d is in proportional to |C|, we choose to increase the
possible functionalities of the camouflaged netlist to increase d. To ac-
complish this, traditional methods usually target at increasing the possi-
ble functionalities for the camouflaged cell. However, this usually causes
large overhead in terms of power, area and timing, which largely limits
the number of camouflaging cell that can be inserted into the netlist, and
thus, limit the total number of possible functionalities. We propose two
camouflaging cell design strategies, termed as XOR-type strategy and
stuck-at-fault-type (STF-type) strategy based on the observation that for
one camouflaging cell, its overhead is determined by its functionality in
the netlist. By creating camouflaging cells with negligible overhead for
one specific functionality, we are able to insert large amount of camou-
flaging gates, most of which functions with negligible overhead, into the
original netlist.

4.1 XOR-type Cell Camouflaging Strategy
The XOR-type camouflaging strategy leverages the dummy contacts.

As shown in Figure 2 (a), for a BUF cell, we modify the shape of the
polysilicon to create extra overlap between polysilicon and metal layer.
Then, a contact is inserted to connect the two layers. Depending on
whether the contact is real or dummy, the cell functions either as an INV
or a BUF.

To evaluate the overhead of the XOR-type camouflaged cells, standard
cells from Nangate 45nm Open Cell Library [19] are modified according
to the strategy and scaled to 16nm technology. Then, Calibre xRC [20]
is used to extract parasitic information of the cell layouts. We use SPICE
simulation to characterize different types of gates, which is based on
16nm PTM model [21]. As we can see from Table 1, when the contact
is dummy, the overhead induced by the layout modification is negligible
compared with original standard cells. However, when the contact is
real, large overhead can be observed for timing, area and power. Note
that for the XOR-type cell camouflaging strategy, when the attacker mis-
interprets the contact, the probability of logic error at the output of the
cell is 1.

4.2 STF-type Cell Camouflaging Strategy



The STF-type camouflaging strategy leverages the doping-based tech-
nique. The camouflaging cell generated with the STF-type camouflag-
ing strategy has exactly the same metal and polysilicon layer compared
with the existing standard cells in the library. The only difference comes
from the type and the shape of the LDD, which makes it very difficult to
distinguish a regular MOS transistor with the Always-on and Always-off
MOS transistor. The STF-type camouflaging strategy fully leverages this
flexibility to create camouflaging cells with different functionalities.

For example, as shown in Figure 2 (b), for a two-input NAND cell, we
can use Always-on doping scheme for the NMOS transistor and Always-
off doping scheme for the PMOS transistor associated with input A. This
is equivalent to creating a stuck-at-1 fault at input A and the functionality
of the NAND cell becomes an INV for input B.

Table 2: Overhead characterization of STF-type camouflaged cell.
AND2 OR2 NAND2 NOR2

Function AND2 BUF OR2 BUF NAND2 INV NOR2 INV
Timing 1.0x 1.4x 1.0x 1.4x 1.0x 1.6x 1.0x 1.6x
Area 1.0x 1.3x 1.0x 1.3x 1.0x 1.5x 1.0x 1.5x

Power 1.0x 1.2x 1.0x 1.2x 1.0x 1.5x 1.0x 1.5x

It is obvious that the STF-type camouflaging strategy does not impact
the timing or performance when it functions normally since the layout is
not modified. However, when Always-on or Always-off scheme is used,
the overhead needs to be characterized. We use similar method as de-
scribed for the XOR-type camouflaging strategy and the overhead results
is listed in Table 2. Note that unlike the XOR-type, a mis-interpretation
of the doping scheme may not always lead to incorrect logic value at
the output of the gate. Consider an AND gate with en inputs, denoted as
i
1

, i
2

, . . . , ien, and first en0 inputs are dummy. Then, the probability of
logic error at the output of the cell can be calculated as

Prerror = Pr
i⇠I



( [
k2[en0

]

ik = 0) \ ( \
k2[en]\[en0

]

ik = 1)

�

where [en] = {1, 2, . . . , en}.
Meanwhile, compared with XOR-type camouflaging strategy, the gen-

erated dummy inputs enable us to create dummy wire connections be-
tween different nodes that are not connected originally in the circuit,
which further hides the circuit functionality.

The proposed camouflaging cell design strategy enables us to create
a huge amount of possible functionalities for the camouflaged circuit
because 1) combination of two techniques greatly increase the number
of possible configurations for each camouflaging cell, and 2) negligi-
ble overhead enables much more insertions of camouflaging cells into
original netlist. We verify the effectiveness of the proposed method in
Section 7. However, simply leveraging the camouflaging cell generation
strategy is not secure enough since 1) evaluating the size of C can be
computationally intractable and thus, it is hard to provide provably se-
cure guarantee; 2) the camouflaging strategy is usually more effective for
large circuits while for small circuits, the circuit functionality can still be
completely or partially resolved. To overcome the listed problems, we
will propose another techniques based on AND-tree structure, which will
provide us provably secure guarantee with negligible overhead.

5. AND-TREE CAMOUFLAGING STRATEGY
In this section, we target at increasing ✓ as in Eq. (1). ✓ is related to

the output hamming distance for different functionalities and is mainly
decided by the circuit structure. In [13], AND-tree structure is noticed
to achieve good resilience to SAT-based de-camouflaging attack when
the input pins are camouflaged as shown in Figure 3. In this section, we
provide formal analysis for the AND-tree structure and further identify
two important characteristics of the AND-tree structure, denoted as input
bias and tree decomposability, to characterize its effectiveness in general
circuits.

5.1 Security Analysis of AND-Tree Structure

Figure 3: Example of a camouflaged and-tree structure.

Consider the AND-tree structure with n input pins shown in Figure
3 where all the input pins are camouflaged with the XOR-type camou-
flaging BUF. Recall from Section 3 that I ✓ {0, 1}n and Y ✓ Gn

represents all the possible combination of functions for the camouflag-
ing cells. For any input i 2 I and for any y 2 Y , the output of the
AND-tree structure can be expressed as

fy(i) = g
1

(i
1

) ^ g
2

(i
2

) ^ . . . ^ gn(in),

where ik denotes the kth entry of input i, and yk = gk denotes function-
ality of the kth camouflaging BUF. If gk(ik) = ik, the kth camouflaging
cell functions as BUF while gk(ik) = ik if the kth cell functions as INV.

Let y⇤ 2 Y denote the correct configuration for all the camouflaging
cells. Then, depending on the value of y, there are 2

n different circuit
functionalities. For any y 2 Y , there exists exactly one input i 2 I such
that fy(i) = 1, denoted as iy . Therefore, we have Pri⇠I [fy(i) = 1] =

Pri⇠I [i = iy]. Further, any false configuration y is different compared
with y⇤ for exactly two input vectors.

Moreover, for any y 6= y⇤, the output error rate becomes

er

i⇠I
(y, y⇤

)

=Pr
i⇠I

[fy(i) 6= fy⇤
(i)]

=Pr
i⇠I

[fy(i) = 1 ^ fy⇤
(i) = 0] + Pr

i⇠I
[fy(i) = 0 ^ fy⇤

(i) = 1]

=Pr
i⇠I

[fy(i) = 1] + Pr
i⇠I

[fy⇤
(i) = 1]. (2)

Note that er

i⇠I
(y, y⇤

) = 0 when y = y⇤. The Eq. (2) implies that,

C✏ =

n

fy 2 C : Pr
i⇠I

[fy(i) = 1] + Pr
i⇠I

[fy⇤
(i) = 1]  ✏

o

[ {fy⇤}

=

n

fy 2 C : Pr
i⇠I

[i = iy]  ✏� Pr
i⇠I

[i = iy
⇤
]

o

[ {fy⇤} (3)

Claim 1. If fy 2 C✏, then iy 2 DIS(C✏).

PROOF. 8fy 2 C✏ and y 6= y⇤, we always have fy(i
y
) = 1 and

fy⇤
(iy) = 0. Meanwhile, for fy⇤ 2 C✏, we have fy⇤

(iy
⇤
) = 1 and

fy(i
y⇤
) = 0 8y 6= y⇤. Therefore, 8fy 2 C✏, i

y 2 DIS(C✏).

Because Pri⇠I [fy(i) = 1] = Pri⇠I [i = iy], the Eq. (3) implies

DIS(C✏) =

n

iy 2 I : Pr
i⇠I

[i = iy]  ✏� Pr
i⇠I

[i = iy
⇤
]

o

[ {iy
⇤
}. (4)

For primary inputs, we can assume that their logic values follow in-
dependent Bernoulli distribution with probability 0.5. Then, for any
y 2 Y , we have

Pri⇠I [i = iy] =
1

2

n
.

Therefore, if we set ✏ =

1

2

n�1 , then, we have C✏ = C and based on
Claim 1, DIS(C✏) = {fy 2 C : Pr

i⇠I
[i = iy]  1

2

n } = I . According to
the definition of ✓, we have

✓ =

Pri⇠I [DIS(C✏)]

✏
= 2

n�1.

Therefore, to decide y⇤, the de-camouflaging complexity increases ex-
ponentially with the circuit size, which makes it intractable for the SAT-
based method to resolve the functionality of the large AND-tree struc-
ture.
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Figure 4: Two situations that can impact the security of AND-tree structure: (a)
overlapped fanin cone for input pins leads to correlation; (b) extra path to primary
outputs from internal node makes it possible to decompose the tree.

5.2 AND-Tree Structure in General Circuits
While a stand-alone AND-tree structure can lead to exponential in-

crease of de-camouflaging complexity, in general circuits, the following
points should be considered:

• The input pins to the AND-tree structure may not be primary in-
puts to the circuit. This can result in bias in the input distribution.

• There are usually more than one primary outputs in the circuit
and more than one paths from each internal node to the primary
outputs. This can reduce the effective size of the tree.

The two situations are illustrated in Figure 4.
As shown in Figure 4 (a), the logic value of input pins is determined

by the primary inputs and logic gates in the fanin cones, which makes the
original assumption on independent Bernoulli distribution for input pins
invalid. We denote this as input bias since the probability for different
logic values are not uniform. Input bias mainly impact C✏ and DIS(C✏).
According to Eq. (4), to decide DIS(C✏), we need to calculate the proba-
bility of each input vector, which, however, becomes intractable for large
circuits. We instead propose the following methods to decide the impact
of input bias:

• Because ✏ � Pri2I [fy⇤
(i)] and Pri2I [i 2 DIS(C✏)]  1, the de-

camouflaging complexity is upper bounded by 1/Pri2I [fy⇤
(i)].

Therefore, we can first calculate Pri2I [fy⇤
(i)] with the method

shown in [22]. If the upper bound is smaller than the predefined
de-camouflaging complexity, the requirement is not satisfied.

• When the upper bound is large enough, we further adopt normal-
ized Kullback-Leibler (KL) divergence [23], which is widely used
to evaluate the distance between the two distributions. Normalized
KL divergence for two discrete probability distribution, P and Q,
is calculated as

KL(P |Q) =

1

n

X

i

P (i)
P (i)
Q(i)

.

In our case, since Q is uniform, KL(P |Q) = (n�Ep)/n, where
Ep is the total entropy of distribution P . The underlying assump-
tion is that large distance between the input distribution and the
ideal uniform distribution implies smaller ✓. Note that the larger
the KL divergence, the closer KL(P |Q) approaches to 1.

To evaluate the KL divergence, sampling method can be applied to
ensure accurate estimation with smaller number of samples in the input
space [23]. Note that the proposed methods do not guarantee accurate
estimation of de-camouflaging complexity. However, as we will show in
our experimental results, the proposed methods can help evaluate the de-
camouflaging complexity of the AND-tree structure. We leave in-depth
research towards this direction as our future work.

To characterize the impact of multiple paths to primary outputs, we
propose the concept on tree decomposability.

Definition 1 (Decomposable Tree). An AND-tree structure is decom-

posable if the internal node of the tree can bypass the root of the tree and

be observed at the primary output.

For example, consider the AND-tree structure in Figure 4 (b). The
internal node Node

1

can bypass the root of the tree PO
2

and get ob-
served at the primary output PO

1

. Therefore, an attacker is able to first

de-camouflage the sub-tree structure rooted at Node
1

. After determining
the configuration of the input pins in the fanin cone of D, the attacker can
de-camouflage the remaining part of the tree, which is also an AND-tree
structure, but with fewer input pins. The number of input vectors needed
to de-camouflage an AND-tree is determined by the larger one of the two
sub-trees. Then, we have the following lemma on the de-camouflaging
complexity of AND-tree structure.

Lemma 1. The number of input vectors needed to de-camouflage an

AND-tree structure is determined by the size of the largest non-decomp-

osable sub-tree.

6. OVERALL IC CAMOUFLAGING
FRAMEWORK

In this section, we will leverage the proposed camouflaging cell gen-
eration method and the AND-tree structure to provide provably secure
camouflaging strategy. The overall flow of the proposed IC camouflag-
ing framework is illustrated in Figure 5. The first step is the camou-
flaging cell library generation with the proposed techniques described in
Section 4. Then, accurate characterization is performed to decide the
timing, power and area overhead for each cell in the camouflaging cell
library. In the third step, existing AND-tree structure is detected for the
original netlist. If the predefined de-camouflaging complexity is not sat-
isfied, new AND-tree structure needs to be inserted as in the fourth step.
Otherwise, we simply need to camouflage the input pins with XOR-type
camouflaging cells. In the sixth step, we further camouflage the fanin
cone of each primary output to ensure that at least one large AND-tree
structure exists in its fanin cone and that the attacker cannot resolve the
functionality for each primary output. After the sixth step, a camouflaged
netlist will be generated.

Standard Cell 
Library

Original 
Circuit Netlist

1. Camouflaged Library Generation

2. Camouflaged Cell Characterization

3. And-Tree Structure Detection

Enough de-camouflaging 
complexity?

4. And-Tree Structure Insertion

5. Input Pins Camouflage

6. Primary Outputs Fanin Camouflage

Yes

No

Camouflaged Netlist

Figure 5: The proposed IC camouflaging flow.

6.1 AND-Tree Detection in Original Netlist
The AND-tree structure represents a set of circuit structures that out-

put 0 (or 1) for only one input vector and output 1 (or 0) for all other input
vectors. We denote all the circuit structures that generate 1 as output for
only one input vector as AND-tree and those that generate 0 as output
for only one input vector as OR-tree. In this section, we will describe the
algorithm used for tree structure detection.

To detect the tree structure, we start from the primary inputs of the
circuit and traverse the circuit graph in a topological order. For each
node, we keep record of the tree rooted at the node by recording the input
pins of the tree. To decide the input pins, we consider the gate type of
the node and its predecessors in the circuit graph. We use the example in
Figure 6 to illustrate the algorithm, the pseudo code of which is shown
in Algorithm 1. For primary inputs, e.g. Node1 , the type of the tree
rooted at the node can be treated as either AND-type or OR-type. For
the internal nodes, depending on the type of the gate, there are following
possibilities:
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Figure 6: Detect tree structure in topological order: (a) circuit netlist; (b) (c) (d) (e) start from primary inputs to calculate tree structure in topological order.

stuck-at 0Node1

Node1 Node2

Figure 7: Insert AND-type tree structure to the circuit.

• If the gate is INV or BUF, e.g. Node5 , the node will have the same
tree as its input. For INV, function INVERT() is called to change
the tree type from AND-type to OR-type or vice versa.

• If the gate is AND or OR, e.g. Node7 and Node9 , the tree type
has to be the same as the gate type. When the predecessor’s tree
type is the same as the tree type of the node, larger tree structure
can be formed. In this case, function ADD() is called to add the
predecessor’s tree structure to the node. Otherwise, only the pre-
decessor itself can be added to the tree.

• If the gate is NAND or NOR, we can treat it as an AND or OR
connected with INV and follow the procedure above.

• For other type of gates, including XOR, XNOR, MUX and so on,
e.g. Node8 , no tree structure can be formed and the node itself is
added to the tree.

The algorithm is shown in Algorithm 1. Note that the constraints on the
output number of the predecessor is to ensure that no extra paths exist so
that the tree is non-decomposable.

After the calculation of the tree structure rooted at each node, we can
examine whether the predefined de-camouflaging complexity is satisfied
as described in Section 5.2. If the requirement is not satisfied, new tree
structures need to be inserted.

6.2 AND-Tree Insertion
The insertion of the AND-tree structure needs to satisfy the following

requirements:

• The functionality of the original circuit is not changed.
• The overhead induced by the insertion should be minimized, in-

cluding timing, power and area.
• A false interpretation of the AND-tree structure will lead to an

error at circuit primary outputs.

To satisfy the first requirement, we leverage the STF-type camouflag-
ing cells as described in Section 4. Consider an example circuit as shown
in Figure 7. To insert an AND-tree structure at Node1 , we first insert an
OR gate to Node1 with the other input Node2 as dummy pin. Then, an
AND-tree structure is created with Node2 being the root. The input pins
of the AND-tree structure is connected to the primary inputs and cam-
ouflaged with XOR-type cells. Note that the added tree-structure can
always be treated as non-decomposable with no input bias.

To detect the stuck-at 0 fault at Node2 , we again follow the same
analysis as in Section 5. The logic value of Node2 , which is 0 in reality,
can be expressed as

fy(i) = gn+1

(g
1

(i
1

) ^ g
2

(i
2

) ^ . . . ^ gn(in)).

Algorithm 1 Algorithm of And-Tree Detection

1: procedure AndTreeDetection(G)
2: // G is the original circuit netlist.
3: Let {AND,ANY,OR} denote a set of tree types.
4: U  TOPOLOGICALSORT(G)

5: for u 2 U do
6: if u is primary input then
7: u. treetype ANY
8: u. treeinput u
9: else

10: if u. gatetype 2 {BUF, INV} then
11: u. treetype u. fanin . treetype
12: u. treeinput u. fanin . treeinput
13: else if u. gatetype 2 {AND,NAND,OR,NOR} then
14: if u. gatetype 2 {AND,NAND} then
15: u. treetype AND
16: else if u. gatetype 2 {OR,NOR} then
17: u. treetype OR
18: end if
19: for v 2 u. fanin do
20: if v. treetype = u. treetype and

SIZE(v. fanout) = 1 then
21: u. treeinput .ADD(v. treeinput)
22: else
23: u. treeinput .ADD(v)
24: end if
25: end for
26: else
27: u. treetype ANY
28: u. treeinput u
29: end if
30: if u. gatetype 2 {INV,NOR,NAND} then
31: u. treetype INVERT(u. treetype)
32: end if
33: end if
34: end forreturn U .
35: end procedure

Note that gn+1

(i) = 0 when there is stuck-at-0 fault at Node
2

, and
gn+1

(i) = i otherwise. Among all the possible configuration y, there
are 2

n correct configuration with gn+1

interpreted as stuck-at-0 and 2

n

incorrect configurations with gn+1

(i) = i. Meanwhile, any false con-
figuration y outputs 1 for exactly one input vector and thus, is different
from y⇤ for one input vector. Therefore, for any y 6= y⇤, we have

er
i⇠I

(y, y⇤
) =Pr

i⇠I
[fy(i) 6= fy⇤

(i)]

=Pr
i⇠I

[fy(i) = 1 ^ fy⇤
(i) = 0]

=Pr
i⇠I

[i = iy]. (5)

Since the inserted tree has no input bias, we have

Pri⇠I [i = iy] =
1

2

n
.



If we set ✏ =

1

2

n , then, we have C✏ = C and DIS(C✏) = I . In this
case, ✓ = 2

n and the overall security level increases exponentially with
respect to the size of the AND-tree structure. The insertion of OR-tree
follows the same procedure except that we need to use an AND gate
with stuck-at-1 fault at the dummy input, which is the root of the OR-
tree structure.

The selection of the node to insert the tree structure is also crucial to
satisfy the second and third requirements. To ensure the smallest over-
head and largest impact of false interpretation, besides getting rid of all
the nodes on the critical paths, we propose a greedy method to select the
node for tree insertion. We define an insertion score (IS ) for an internal
node and select the nodes with lowest scores. IS considers the node’s
switching probability SA, observe probability Pob and number of pri-
mary outputs NO that have not been camouflaged in its fanout cone. IS
is calculated as

IS =

↵⇥ SA� � ⇥ Pob

NO
.

Equivalently, we look for node with lowest average cost to camouflage
one primary output each time. Then, to camouflage the inserted AND-
tree, we just need to insert XOR-type camouflaging cells at the input
pins of the tree structure. Meanwhile, to ensure the fanin cone of all the
outputs are camouflaged, new insertion node can be selected iteratively
based on IS and connected to the inserted AND-tree with the STF-type
cell until there is at least one tree structure in the fanin cone of each
primary output.

6.3 Performance Analysis
The insertion of the AND-tree structure can lead to timing, power

and area overhead. While the timing overhead can be small since the
nodes along critical paths are not changed, the introduced power and
area overhead cannot be avoided. However, it should be noted that the
size of the inserted tree only depends on the required security level and
is independent of the size of original netlist. Meanwhile, while the in-
duced area and power overhead increases linearly as the tree size, the
de-camouflaging complexity increases exponentially. Therefore, to en-
sure certain de-camouflaging complexity, as we will show, the overhead
is acceptable. For relatively large circuit, the overhead is even negligible.
More importantly, as we have pointed, provided that the requirements
on the non-decomposability and input bias of the inserted AND-tree are
satisfied, the proposed camouflaging framework is provably secure in-
dependent of how a SAT-problem is formulated and what software/com-
puter configuration is used.

It shall be noted that as the increase of the size of the inserted tree
structure, the error rate between the correct configuration y⇤ and any in-
correct configuration y decreases exponentially. An attacker may detect
the AND-tree structure in the camouflaged netlist and randomly assign
a configuration for it. We argue that this attack is not realistic from the
following two aspects: 1) For some critical bits in the system, even low
error rate can be unacceptable, e.g., the bits that control the "valid" sig-
nals for some security models or the bits that control the state transitions
between system privilege mode and user mode; 2) the AND-tree can be
camouflaged with the proposed camouflaging cells, which makes it func-
tions as an AND-tree but appears differently and thus, further makes it
impossible for the attackers to detect and resolve the inserted structure.

7. EXPERIMENTAL RESULTS
In this section, we report on our experiments to demonstrate the ef-

fectiveness of the proposed IC camouflaging strategy. The camouflaging
algorithm is implemented in C++. The SAT-based de-camouflaging al-
gorithm is adopted from [13] and tested on an eight-core 3.40 GHz Linux
server with 32 GB RAM. The area overhead is calculated in terms of gate
count while the timing and power overhead are evaluated with Synopsys
Primetime and Primetime-PX [24]. The benchmarks are chosen from
ISCAS and MCNC benchmarks [25, 26]. For the de-camouflaging algo-
rithm, we set the runtime limit to 1.5⇥ 10

5 seconds.
We first demonstrate the effectiveness of the proposed camouflaging

cell generation strategy. Because the generated camouflaging cells have

Table 3: Effectiveness of the proposed camouflaged cell generation strategy.
bench # input # output # gate time # iter Partial

ISCAS

c432 36 7 203 1.758 80 Yes
c880 60 23 466 1.2⇥ 10

4 148 Yes
c1908 33 25 938 N/A N/A No
c2670 233 64 1490 N/A N/A Yes
c3540 50 22 1741 N/A N/A Yes
c5315 178 123 2608 N/A N/A No

MCNC

i4 192 6 536 1.9⇥ 10

3 743 Yes
apex2 39 3 652 N/A N/A Yes
ex5 8 63 1126 6.9⇥ 10

2 139 Yes
i9 88 63 1186 2.1⇥ 10

4 81 Yes
i7 199 67 1581 1.5⇥ 10

2 225 Yes
k2 46 45 1906 N/A N/A Yes

Table 4: Existing tree structure in benchmark circuits.
bench decom tree non-decom tree norm KL div

ISCAS

c1908 14 12 0.339
c2670 34 34 0.640
c3540 10 9 0.671
c5315 10 9 0.093

MCNC

i4 7 7 0.732
ex5 6 6 0.589
i7 4 3 0.612
k2 175 39 0.968

negligible overhead for some specific function, we are able to insert a
large amount of camouflaged cells into the netlist. Table 3 shows the
de-camouflaging complexity and the time required for the SAT-based al-
gorithm to recover the functionality of the original netlist. N/A indicates
that the camouflaged netlist cannot be resolved within 1.5⇥105 seconds.
As we can see, the SAT-based algorithm can still de-camouflage some
small circuit benchmarks with number of gates less than 1600. Even for
those large circuits that cannot be de-camouflaged completely, resolving
the functionality of some primary outputs is still possible.

We then evaluate the effectiveness of the tree structure. We start from
simple stand-alone tree structures. As in Figure 8 (a), we show the in-
crease in the de-camouflaging complexity and time with respect to the
tree size. As we can see, both the de-camouflaging time and complexity
increase exponentially as we expect. To examine the impact of tree de-
composability, for an AND-tree with 15 input pins, we change the size
of the largest non-decomposable tree size and show the change of de-
camouflaging time and complexity in Figure 8 (b). The results prove
the lemma that the de-camouflaging complexity is determined by largest
non-decomposable tree. The impact of input bias is also examined by
changing the normalized KL divergence by adding extra circuits to the
fanin cone of input pins. As we show in Figure 8 (c), as the increase
of normalized KL divergence, both the de-camouflaging time and input-
output patterns decreases.

Next, we camouflage the benchmark circuits with the AND-tree based
method. Specifically, we pay attention to the camouflaging of small cir-
cuit since for large circuits, the proposed camouflaging cell generation
strategy can already provide good resilience against the SAT-based at-
tack. We first examine the existing non-decomposable tree structure in
the original netlist and calculate the normalized KL divergence for the
tree structure. We list the statistics of the largest tree structure for dif-
ferent benchmarks in Table 4. For most of the circuits, the existing tree
structure is very small. For benchmark c2670 and k2, large tree struc-
ture exists. The calculation of normalized KL divergence indicates that
high bias exists for the input pins of tree structure in k2 since the value is
very close to 1. We camouflage the input pins for tree structures in both
benchmarks and use SAT-based method to de-camouflage. For c2670,
original circuit functionality cannot be resolved while for k2, the de-
camouflaging algorithm finishes within 8.5 seconds and 70 iterations.
The results demonstrate the effectiveness of the proposed methods to
evaluate the input bias.

Then, we insert tree structure into the benchmark circuits. We show
the trade-off between the area overhead and the de-camouflaging time
and complexity in Figure 9 (a) for benchmark c880. As we can see,
the area overhead increases linearly to the size of inserted tree while
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Figure 8: Effectiveness of tree structure and impact of tree decomposability and input bias.

the de-camouflaging time and complexity increases exponentially. We
also insert AND-tree structure to other benchmarks and report the area,
power and delay overhead. The size of the inserted tree is 20. As we
can see, the main overhead comes from area and power while the impact
on timing is negligible. Meanwhile, for large circuit, the area and power
overhead is negligible as indicated by the last two benchmarks.
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bench # gate area power timing
c432 203 16.7 14.1 0.30
c499 275 5.83 4.32 0.00
c880 466 9.85 10.8 0.06

i4 536 12.0 8.73 0.00
i7 1581 5.41 4.02 0.15

ex5 1126 4.15 3.73 0.11
ex1010 5086 0.75 1.06 0.00

des 6974 0.64 0.23 0.00
sparc_exu 27368 0.22 0.05 0.00

Figure 9: Overhead of tree based camouflaging strategy: (a) trade-off between
overhead and de-camouflaging complexity (dotted lines indicate extrapolation);
(b) overhead for different benchmarks.

Finally, we demonstrate the effectiveness of combining the two cam-
ouflaging techniques together. Because of the proposed camouflaging
cell generation strategy, the attacker cannot decide the functionality of
each gate. Combined with the AND-tree structure, better security level
are provided. We examine the effectiveness by comparing the de-camouf-
laging complexity and time through the comparisons with the situation
when only AND-tree is inserted. As shown in Figure 10, the combina-
tion of two camouflaging methods can lead to higher de-camouflaging
complexity and time.
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Figure 10: Effectiveness of combining the proposed two camouflaging tech-
niques (dotted line indicate extrapolation).

8. CONCLUSION
In this paper, we propose a quantitative security criterion for de-camo-

uflaging complexity measurements. The security criterion is formally
analyzed based on the equivalence between the de-camouflaging strat-
egy and the active learning scheme. Meanwhile, two camouflaging tech-
niques are proposed, the low-overhead camouflaging cell library and the
AND-tree structure. A provably secure camouflaging framework is then
developed by combining the two techniques to achieve exponentially in-

creasing security levels at the cost of linearly increasing overhead. Ex-
perimental results using the security criterion demonstrates that the cam-
ouflaged circuits with the proposed framework achieve high resilience
against the SAT-based attack with negligible performance overhead.
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