
A Proof-Carrying Based Framework
for Trusted Microprocessor IP

(Invited Special Session Paper)

Yier Jin∗ and Yiorgos Makris†
∗Department of Electrical Engineering and Computer Science, University of Central Florida

†Department of Electrical Engineering, University of Texas at Dallas
{yier.jin@eecs.ucf.edu, yiorgos.makris@utdallas.edu}

Abstract—We introduce a proof-carrying based framework for
assessing the trustworthiness of third-party hardware Intellectual
Property (IP), particularly geared toward microprocessor cores.
This framework enables definition of and formal reasoning on
security properties, which, in turn, are used to certify the genuine-
ness and trustworthiness of the instruction set and, by extension,
are used to prevent insertion of malicious functionality in the
Hardware Description Language (HDL) code of an acquired
microprocessor core. Security properties and trustworthiness
proofs are derived based on a new formal hardware description
language (formal-HDL), which is developed as part of the
framework along with conversion rules to/from other HDLs to
enable general applicability to IP cores independent of coding
language. The proposed framework, along with the ability of a
sample set of pertinent security properties to detect malicious IP
modifications, is demonstrated on an 8051 microprocessor core.

I. INTRODUCTION

Integrated circuits (ICs) are used in a wide range of applica-
tions ranging from military operations to consumer electronics.
Due to economic reasons and time-to-market pressure, the
circuit design process has changed drastically over the last
few decades. One major recent trend is the sharp increase of
application-specific integrated circuits (ASICs) and FPGAs,
which is supported by the widely available third-party intellec-
tual property (IP) cores. Indeed, more and more design houses
are dedicated to IP cores development nowadays. The use of
IP cores helps to lower the workload of designing large-scale
circuits, such as system-on-chips (SoCs), because IP cores
of microprocessors and their peripheral modules supporting
sophisticated instruction sets are now available. As a result,
lack of extensive design experience is no longer an obstacle
for circuit designers to rapidly develop systems.

However, extensive use of IP cores also brings about secu-
rity problems, making circuit designs vulnerable to malicious
modifications, for two reasons: (1) Because of the increasing
complexity of hardware IP cores and the pressure to lower
design cost, system designers are prone to treating IP cores as
black-boxes which are only verified through functional testing,
and (2) Even if IP cores are fully tested, module interfaces con-
necting IP cores and higher level logics are weak points of the
entire design. Attackers can easily contaminate circuit designs
by providing malicious IP cores or modifying genuine IP cores
through in-the-middle attacks to steal sensitive information or
even control a mission-critical device. These challenges create
an urgent need for trusted third-party IP cores. However, unlike
the software domain, where a large community has been long
established and numerous software protection methods have
been proposed, the work toward hardware IP trustworthiness
is far from complete, leaving the current IC supply chain

vulnerable to RT-level hardware Trojan attacks. Accordingly,
military and leading IC companies compromise by only using
IP cores from trusted contractors. Besides increasing design
costs, this practice is also becoming less secure because of
the difficulty of tracking the source of IP cores.

Towards assessing the trustworthiness of hardware IP cores
obtained from untrusted third parties and protecting manufac-
tured ICs against hardware Trojan attacks, we leverage the
body of work on proof-carrying code (PCC) in the software
domain and develop a proof-carrying based framework for
trusted hardware IP cores. Similar to PCC, the proposed
framework is constructed inside a formal environment, with
both security properties and hardware circuits being either
written in a formal language or translated into formal logic.
We use the Coq platform as the formal environment in this
paper, although other formal platforms could be used as well
[1]. Our contributions in this paper are as follows:

• The proposed proof-carrying based framework, different
from previously proposed proof-carrying hardware (PCH)
schemes [2], [3], can assess the trustworthiness of com-
plex IP cores and is particularly geared toward micro-
processor cores. We demonstrate the use of this method
in preventing and/or detecting malicious modifications on
an 8051 microprocessor core.

• A new hardware description language is developed as
part of the proof-carrying based framework, based on the
Coq functional language. Named formal-HDL, the new
HDL can represent hardware IPs in formal logic so that
security properties can be directly proven for these IPs.
Conversion rules are also developed between formal-HDL
and other HDLs to make the framework applicable to IP
cores, independent of coding languages.

• A new set of circuit security properties are also developed
to enrich the circuit security property library.1 They are
used to certify the genuineness and trustworthiness of
instruction sets and, by extension, to prove whether or not
an acquired microprocessor is trusted. The set of security
properties, if presented in English text, mean that, for all
registers and memory defined by the instruction set, (1)
instructions can only correctly modify values of registers
and/or memory to which they have access, according to
the specification; and (2) instructions are not allowed

1A property library is a collection of security properties. Specifications
for each property are provided, including appropriate target circuits, security
level, etc., so that both IP providers and IP users can select properties from the
library rather than construct security properties themselves. Construction of a
security property library is beyond the scope this paper and will be discussed
in future work.

824978-1-4799-1071-7/13/$31.00 ©2013 IEEE

to modify values in registers and memory besides those
that the specification allows, whether in a benign or
a malicious way. Powered by the set of these security
properties, our framework can detect most RTL Trojans
in microprocessor cores and improve the security level of
critical applications.

II. PROOF-CARRYING HARDWARE

Hardware IP cores, in the form of HDL code, shares
similar syntax with software programs. This similarity between
the process of IP core development and software program
composition implies that concepts from the software domain,
such as the proof-carrying code (PCC) paradigm, can be
ported to trusted IP core design. The first such attempt in
trusted hardware design appeared in [3], [4], where the authors
introduced Proof-Carrying Hardware (PCH) in FPGAs and
reconfigurable devices. Therein, a logic-level proof was gener-
ated to demonstrate that an agreed-upon specification function
is combinationally equivalent to the FPGA implementation
(aka FPGA bitstream file).

Subsequently, the authors in [2] expanded this method to the
ASIC domain through a RT-level Proof-Carrying Hardware
Intellectual Property (PCHIP) scheme which allows for for-
mal but computationally straightforward validation of security
properties prepared by IP vendors, such that IP consumers
can easily verify the trustworthiness of the delivered IP cores
through an automatic property-checking process. The authors
in [5] enhanced the PCHIP framework by tracking information
flow inside circuit logic to prove security properties related to
sensitive data leakage from contaminated IP cores.

III. CHALLENGES FOR TRUSTED MICROPROCESSORS

The above-mentioned proof-carrying hardware methodol-
ogy faces limitations when assessing trustworthiness of micro-
processor cores. The PCH scheme in [3] can only be applied
in FPGA bitstreams and is also limited by the requirement
to specify exact Boolean functionality. The IP transaction
model in [2] and information flow tracking in [5] cannot be
directly implemented in hierarchical circuit designs. Further-
more, previously proposed security properties, such as data
secrecy and logic level functional correctness, are either too
specific or too generic and cannot be used in designing trusted
microprocessors. Since both PCH and PCHIP limit themselves
from being extended into the area of trusted microprocessors, a
new proof-carrying based framework, particular geared toward
microprocessor cores, is required to assess trustworthiness of
acquired microprocessor cores. The key parts of the proposed
framework are security properties for trusted microprocessors
and a new formal hardware description language for represent-
ing hierarchical designs in formal logic, which are introduced
in this and the next section respectively.

A. Security Properties

Because the microprocessor architecture is largely decided
by its instruction set, we seek to ensure the security of micro-
processors by certifying the genuineness and trustworthiness
of the instruction set. We propose a set of security properties

Fig. 1. Trojan Detection through Proposed Security Properties

that can be grouped into two categories, i.e., functional prop-
erties and genuine storage properties. These properties mostly
focus on operations which write to registers and memory
because the outcome of all instructions is in the form of
register/memory value modifications.

The functional properties explicitly define the behavior of
the processor when an instruction is issued and operated.
It depicts the microprocessor behavior as defined by the
instruction set, meaning that instructions can only correctly
modify values of registers and/or memory to which they have
access, according to the specification. At the same time, the
genuine storage properties set the operation boundary of each
instruction by limiting its writing privilege to registers and
memory, meaning instructions are not allowed to modify val-
ues in storage cells other than those allowed by the instruction
set specification. These two types of security properties, when
combined, can provide a strong protection on microprocessors
against various types of hardware Trojans.

B. Anti-Trojan Mechanism

Considering the fact that transistor level modifications can
hardly be done in RTL code, hardware Trojans inserted in
IP cores most often cause functional modifications. In the
case of microprocessor cores, they are typically designed to
perform additional functionality which attackers can rely on
in order to change circuit status, steal internal information, or
even take control of the microprocessor [6]. In the following,
five Trojan types are covered, representing the majority of
malicious functional modifications. We also discuss whether
these five types will be detected by the proposed security
properties. An illustrated version is provided in Figure 1.

C. Microprocessor Malfunction

The first type of inserted hardware Trojan is triggered by
rare events, such as special datapath signal patterns, a sequence
of control signals, or even internal registers manipulated by
sequences of previous instructions, and will cause malfunction

825

to internal modules/datapath. In this case, whether or not
instructions are involved in Trojan triggering and payload, the
Trojan affects the instruction operation in an indirect way. For
example, if the ALU module is modified such that the addition
functionality will not correctly performed when the Trojan is
triggered, any ADD instructions that need to use the ALU
module will fail the proof for functional property. No matter
how the Trojan is triggered or whether or not it is activated,
it results in existence of a case where the ADD instructions
cannot be correctly performed (or additional conditions are
required ensuring that the Trojan is not activated, in order
to have the ADD instruction operate correctly). This will be
detected, since the proof process will explore all possible
outcomes of the ADD instruction. More specifically, the
functional property goal and the actual proving process cannot
converge given the presence of hardware Trojans because the
Trojan-infected design will only perform the addition correctly
when the Trojan is not activated, an extra condition that is
not available for genuine microprocessors. This condition is
called a suspicious condition and will reveal the location and
functionality of the inserted Trojan for further diagnosis.

D. Explicit Information Leakage

The second type of inserted hardware Trojan, in contrast to
the first, does not interfere with the original functionality but
tries to leak internal information. When triggered, the Trojan
will store sensitive information in predefined registers or mem-
ory (we assume attackers are smart enough to identify sensitive
information). Attackers can later use legitimate instructions
to read out the stored data from contaminated registers or
memory. Because the Trojan does not cause malfunction to
any instructions and the final read-out process is performed
through genuine instructions, the functional property is not
violated by the Trojan-infected microprocessor. However, the
Trojan’s behavior violates the second type of security proper-
ties, i.e., genuine storage. Similar to the functional property,
the genuine storage property also applies to every instruction to
define writing privileges when each instruction is performed.
Again, let us used the ADD instruction as an example, which
places its calculation result in the Accumulator and also affects
some flag bits in Program Status Word (PSW), including
carry, overflow, and auxiliary carry flags. Note that the PC
pointer is also modified in the way PC <= PC + 2 for
an ADD instruction. Other than these registers, all other
registers and memory defined by the instruction set cannot be
accessed if the genuine storage property holds. If the inserted
Trojan, under certain circumstances, modifies values in these
registers/memory, the writing operation will be easily detected
when we try to prove genuine storage property for the ADD.

E. Implicit Information Leakage

The third type of Trojan is derived from the finding that
our properties only cover registers/memory which are defined
in the instruction set. This leaves internal registers in sub-
modules and Trojan registers–the registers inserted by the
malicious party–unprotected. The third type of Trojan, when
triggered, stores internal data in those registers. We should
admit that the writing operations to internal registers or Trojan

registers cannot be detected through the proposed properties.
However, the inserted hardware Trojan is useless for attackers
because the sensitive information is leaked internally. To
make the hardware Trojan practical, attackers need to move
data from internal registers or Trojan registers to primary
outputs or communication channels. Because all legitimate
primary outputs and communication channels are defined by
the instruction set, the malicious data-transferring behavior
will be detected by the genuine storage property. It is also
possible that the leaked data is moved to legitimate output
registers, but the Trojan will then be detected when we try to
prove the functional property for the instruction with which
the malicious data-transferring behavior is associated.

F. Undefined Instructions

The undefined instruction is the fourth type of hardware
Trojan targeting microprocessors because the instruction set
does not always explicitly describe behaviors for such in-
structions. The mechanism to deal with undefined instructions
varies among different microprocessor cores so undefined
instructions may be simply ignored or cause interrupts. For
the 8051 microprocessor, we employ the method that treats all
undefined instructions as NOP such that for every instruction
which is not defined by the instruction set, no register/memory
writing operations are allowed, a behavior consistent with the
genuine storage property.

G. Trojan Side Channels (TSC)

The discussion above demonstrates that most RT-level hard-
ware Trojans can be detected when the functional property and
the genuine storage property are applied, but it does not mean
that the set of security properties is comprehensive in fully
ensuring trustworthiness of any microprocessors. There exist
hardware Trojans that can escape detection, such as Trojan
side channels (TSC). TSC does not rely on primary outputs or
any legitimate communication channels to leak/steal internal
information and will not cause malfunction when triggered
[7], so neither the functional property nor the genuine storage
property can detect them. The threats from TSC indicate that
more security properties are required for microprocessor cores,
and we believe that a comprehensive property library intro-
ducing various security properties, as well as their application
domains for both IP vendors and IP consumers, will ultimately
be required.

IV. INTRODUCTION TO FORMAL-HDL

Another challenge for assessing the trustworthiness of mi-
croprocessors is to represent large-scale hierarchical designs
in a formal platform so that designs can be recognized by the
formal environment but still keep their circuit level function-
ality and structure [8]. To solve this problem, we developed
a new formal hardware description language (formal-HDL)
with similar syntax and semantics to other HDLs to support
hierarchical architecture. Different from previously proposed
formal circuit representatives [2], [5], the formal-HDL directly
supports hierarchical structures for RTL models. Conversion
rules for hardware codes written in the proposed formal-HDL

826

and other HDLs are also developed as supplementary materials
so that we can prove security properties written in other HDLs
(mostly in Verilog and VHDL).2 Lacking of compiling and
synthesis EDA tools supporting formal-HDL codes is another
reason for circuit code conversion between Verilog (or VHDL)
and formal-HDL. Meanwhile, formal-HDL codes need to be
first converted to Verilog (or VHDL) codes to be merged into
the current IC manufacturing process.

The definition of formal-HDL follows similar rules to
other HDLs with two major differences. First, formal-HDL is
constructed in the Coq formal platform and is itself a subset
of the Coq language, so any operations valid in Coq programs
also apply to formal-HDL. Second, formal-HDL is defined
in the way that updating of IP cores can be easily achieved
based on previous version IP cores. Formal-HDL also allows
users to freely develop special operations tailored to specific
circuits and then reuse those operations in similar designs to
make code composition flexible. The full definition of formal-
HDL contains three components: basic circuit units, combina-
tional and sequential logic, and module definition/instantiation,
which are introduced below with sample codes. A combination
of these components can easily represent circuit designs of
various complexities.

A. Basic Circuit Units

Basic circuit units should be defined as a preliminary step,
wherein signals and buses are the most important components.
In formal-HDL, which is exclusively used in the digital do-
main, three levels of electrical values are defined, high voltage,
low voltage, and unknown status to cover most synthesizable
and behavioral logic. To support temporal logic, the bus
type is defined as a function which takes one parameter, a
timing variable, and returns a list of signal values. Under this
definition, any attempt to acquire bus values should provide a
timing variable t first. All circuit signals are of type bus, so
their electrical types can only be concluded from their behavior
of whether their values are modified during combinational
operations or sequential operations. Inputs and outputs are also
defined to be bus type.

Inductive value := lo|hi|x.
Definition bus_value := list value.
Definition bus := nat -> bus_value.
Definition input := bus.
Definition output := bus.
Definition wire := bus.
Definition reg := bus.

B. Combinational and Sequential Logic

Combinational and sequential logic are higher level logic
descriptions constructed on top of buses. The basic blocking
and non-blocking assignments are listed below with key words
assign and update, meaning whether the bus value will be
updated during the current clock cycle or the next clock cycle.
Because we define combinational and sequential logic sepa-
rately, all complex operations, such as if-else statement, case
statement, etc., have two symmetric versions that share the

2We only demonstrate the conversion rules from Verilog to formal-HDL
since the 8051 microprocessor core we use is written in Verilog.

same format with the only difference at the final assignment
stage (either an assign or an update is used). For example,
two types of IF blocks are introduced below for combinational
or sequential logic, aifblock and ifblock.
Fixpoint assign (a:assignblock)(t:nat) {struct a} :=
(* Blocking assignment *)
match a with
| expr_assign bus_one e => bus_one t = eval e t
| assign_useless => True
| assign_cons a1 a2 =>

(assign a1 t) /\ (assign a2 t)
end.

Fixpoint update (u:updateblock)(t:nat) {struct u} :=
(* Non-blocking assignment *)
match u with
| (upd_expr bus exp) => (bus (S t)) = (eval exp t)
| (updcons block1 block2) =>

(update block1 t) /\ (update block2 t)
| upd_useless => True

end.

Inductive aifblock :=
| anoif : assignblock->aifblock
| aifsimple : expr->aifblock->aifblock
| aifelse : expr->aifblock->aifblock->aifblock.

Inductive ifblock :=
| noif : updateblock->ifblock
| ifsimple : expr->ifblock->ifblock
| ifelse : expr->ifblock->ifblock->ifblock.

C. Module Definitions/Instantiations

Module definition/instantiation is critical when dealing with
hierarchical circuit structures, but it is never a problem for
Verilog (and VHDL), as long as interfacing signals and their
timing are correctly defined. Concerning the task of security
property verification, however, treating a sub-module as a
functional unit by ignoring its internal structure may cause
problems. Security properties that are proven for the top level
module and all its sub-modules do not guarantee that the same
properties will hold for the whole hierarchical design, whereas
attackers can easily insert hardware Trojans to maliciously
modify the interface without violating security properties
proven for all modules separately. As a result, the operation of
module definition/instantiation should be defined in a way that
the details of sub-modules are visible from the view of the top
level module so that any security properties, if proven, remain
valid for the whole design. So, we adopt a design flattening
methodology by putting the full logic description of sub-
modules in their interface when instantiating these modules
to make the whole hierarchical circuit design transparent from
the view of the top module. module and module-inst are
key words for module definitions and instantiations.

V. PROOF-CARRYING BASED FRAMEWORK

Supported by the formal-HDL and the set of security
properties, a proof-carrying based framework for assessing
the trustworthiness of IP cores, particularly microprocessor
cores is then constructed. Figure 2 outlines the basic procedure
for microprocessor vendors to prepare the trusted micropro-
cessor bundle for end-users. The vendors will first design
the circuit architecture and compose HDL codes according
to the microprocessor instruction set. The formal-HDL codes

827

Fig. 2. Trusted Microprocessor Construction

Fig. 3. Security Properties Verification

can be constructed directly or converted from codes in other
HDLs according to conversion rules. Traditional functionality
testing relying on testing programs will be performed for the
microprocessor as the preliminary step before proving security
properties. Then for each instruction, IP producers need to
formalize security properties from English text into theorems
in the formal platform (we use the Coq platform here). Proofs
will then be constructed in the form of a list of tactics, showing
that formal theorems hold for the microprocessor core. A
trusted bundle containing HDL codes, formal theorems, and
their proofs will then be delivered to end-users.

Upon receiving the trusted hardware bundle from IP produc-
ers, end-users will verify security properties after performing
traditional functional/structural testing to assess trustworthi-
ness of the acquired microprocessor core. The procedure
for property verification is depicted in Figure 3. Because
formalized security theorems are easy to read and understand,
the checking process of the correctness and accuracy of the
formalized theorems is not shown in Figure 3. The micropro-
cessor core written in formal-HDL will then be loaded into
the formal property checker, along with the delivered formal
theorems and their proofs. A “PASS” signal from the property
checker provides strong evidence that the acquired micro-
processor is trusted because it is consistent with the defined
security properties. However, a “FAIL” signal triggers an alarm
that security properties cannot be proven; violation of security
properties leads to detection of malicious modifications in the
scope of trusted circuit designs.

VI. DEMONSTRATIONS ON AN 8051 MICROPROCESSOR

To better illustrate the working procedure of the proposed
proof-carrying based framework shown in Figures 2 and 3
and to demonstrate the effectiveness of the proposed security

properties in assessing the trustworthiness of microprocessor
cores, an open source pipelined 8051 core written in Verilog
is used as the experimental vehicle [9]. The block diagram
of the 8051 microprocessor is shown in Figure 4, which has
4KB on-chip program memory, 128B on-chip data RAM,
and supports 64KB memory address space. Most instructions
will be finished in 3 clock cycles. Details about the 8051
instruction set can be found in [10]. Although the 8051 is
of relatively small size, this pipelined version of 8051 core
contains the instruction decoding, execution, and memory
access procedures, which make it a good starting point for
our research in designing trusted microprocessors. Note that
even though the proposed methodology is valid for more
complicated processors, the proposed framework cannot be
directly applied to modern processors. The updated framework
will be addressed in our later work.

A. Functional Property

The functional property, meaning instructions can only
correctly modify values of registers and/or memory to which
they have access, according to the specification, ensures the
functional correctness of all instructions. It serves as the
basis for all other security properties because it is mean-
ingless to prove security properties on a malfunctioning IP
core. Because security properties apply to all instructions,
including undefined instructions that are treated as NOP, each
instruction has its own version of formalized theorem. Taking
one ADD instruction, ADD A, #data for example, it adds
an 8-bit number #data to the Accumulator and stores the
calculated result back to the Accumulator in the way that
(Accumulator) <- (Accumulator) + #data. The
carry, auxiliary-carry, and overflow flags of the PSW are also
set accordingly. The functional property of the instruction
ADD A, #data is proved in two parts: (1) the correctness
of the 8-bit addition result stored in the Accumulator and 1-bit
carry flag; and (2) the correctness of auxiliary carry flag and
overflow flag. The formalized functional theorem of the first
part is shown below, where the instruction itself is converted to
pre-conditions while a correctly performed addition operation
is converted to the post-condition. The functional theorems for
the second part follow a similar style.

Theorem ADD_A_DATA :
forall t:nat, forall dt:bus_value,(length dt)=8 ->
state_decoder t = lo::lo::nil ->
(op1 t) = OC8051_ADD_C ->
(op2 t) = dt ->
listvalue2nat (data_out (S (S t))) +

(listvalue2nat (desCy (S t)))*exp2 8 =
listvalue2nat (acc (S t)) + listvalue2nat dt.

More specifically, op1 and op2 indicate the instruction
type and the immediate data in the instruction, respectively.
The length dt = 8 requires the immediate data to be
8-bit long. Because we prove security properties for each
instruction separately, NOPs are inserted before and after
the target instruction. For example, one of the pre-condition,
state_decoder t = lo::lo::nil, exclude the situa-
tion that a JUMP instruction is previously issued. The post-
condition is derived ensuring the correctness of values in

828

the Accumulator and the carry flag. Proofs of this functional
theorem are omitted here due to page limit.

B. Genuine Storage Property

The genuine storage property –instructions are not allowed
to modify values in registers and memory besides those the
specification allows, whether in a benign or a malicious
way– provides a higher level protection of a microprocessor
from hardware Trojan attacks. In the 8051 microprocessor,
special function registers (SFR), internal memory, and external
memory are the storage elements defined by the instruction
set. Other storage cells, such as internal registers and Trojan
registers, are not considered by the genuine storage property
but this “omission” does not hamper the Trojan detection
capability as we discussed in Section III.

We use the ADD A, #data instruction again to demon-
strate how genuine storage property is formalized and then
proven to prevent insertion of malicious modifications in the
8051 microprocessor core. Defined by the instruction set,
values in the Accumulator and the PSW will be modified (note
that we do not consider the PC pointer because it will be
updated in every clock cycle).
Definition add_a_data_sfr :=

OC8051_SFR_ACC::OC8051_SFR_PSW::(nil)::nil.

Theorem sfr_protection :
forall t:nat, forall lv:bus_value,
state_decoder t = lo::lo::nil ->
op1 t = OC8051_ADD_C ->
op1 (S t) = OC8051_NOP ->
op1 (S (S t)) = OC8051_NOP ->
In lv ((bv_depend (wr_addr_m (S t)) (wr_r (S t)))

::(bv_depend (wr_addr_m (S (S t)))
(wr_r (S (S t))))::nil) ->

In lv add_a_data_sfr.

The add_a_data_sfr defines the list of registers and
memory addresses that will be updated when the ADD instruc-
tion is performed. As we mentioned earlier, NOP instructions
are issued before and after the ADD instruction, as shown
in pre-conditions of op1 (S t) and op1 (S (S t)).
In lv (...) -> In lv add_a_data_sfr means
that if any registers/memory addresses are write-enabled dur-
ing the operation of ADD instruction, these addresses must
be included in the address list add_a_data_sfr. Under
the proposed proof-carrying based framework, only if formal-
ized functional theorems and genuine storage theorems for
all instructions are proven can we trust the acquired 8051
microprocessor core.

VII. CONCLUSIONS

The increased use of IP cores in ASIC and FPGA applica-
tions brings about security problems because of the likelihood
that RT-level hardware Trojans may be inserted into third-party
IP cores and cause malfunction to the whole design through
the IP core instantiation process. Furthermore, Trojan-infected
IP cores also invalidate most of the previously proposed
post-silicon Trojan detection methods because many of these
methods are constructed upon the assumption that golden chips
are available, which does not hold under the threats of RT-level
hardware Trojans.

Fig. 4. Block Diagram of the 8051 Microprocessor [10]

To ensure the security of third-party IP cores, especially
microprocessor cores, a new proof-carrying based framework
which borrows concepts from software proof-carrying code
(PCC) is proposed herein. The framework leverages two
hardware security properties, the functional property and the
genuine storage property, to prove functional correctness and
legitimate register/memory access for each instruction. If both
security properties are proven to hold, we can exclude most
of RT-level hardware Trojans from the threat list of a micro-
processor core. Further work will include the development of
a property library so that both IP providers and IP users can
pick properties from the library rather than construct security
properties themselves, the expansion of the current framework
to cover modern processor cores, and the development of
automation tools for proof construction.

REFERENCES

[1] INRIA, “The coq proof assistant,” September 2010,
http://coq.inria.fr/.

[2] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware
intellectual property: A pathway to trusted module acquisition,”
IEEE Transactions on Information Forensics and Security, vol.
7, no. 1, pp. 25–40, 2012.

[3] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying
hardware: Towards runtime verification of reconfigurable mod-
ules,” in International Conference on Reconfigurable Computing
and FPGAs, 2009, pp. 189–194.

[4] S. Drzevitzky and M. Platzner, “Achieving hardware security
for reconfigurable systems on chip by a proof-carrying code
approach,” in 6th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip, 2011, pp. 1–8.

[5] Y. Jin and Y. Makris, “Proof carrying-based information flow
tracking for data secrecy protection and hardware trust,” in IEEE
30th VLSI Test Symposium (VTS), 2012, pp. 252–257.

[6] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities
of untrusted computing platforms,” in Computer Design (ICCD),
IEEE 30th International Conference on, 2012, pp. 131–134.

[7] L. Lin, M. Kasper, T. Guneysu, C. Paar, and W. Burleson,
“Trojan side-channels: Lightweight hardware Trojans through
side-channel engineering,” in Cryptographic Hardware and
Embedded Systems, vol. 5747 of LNCS, pp. 382–395. Springer-
Verlag Berlin, 2009.

[8] Thomas Braibant, “Coquet: A coq library for verifying hard-
ware,” in Certified Programs and Proofs, Jean-Pierre Jouannaud
and Zhong Shao, Eds., vol. 7086 of Lecture Notes in Computer
Science, pp. 330–345. Springer Berlin Heidelberg, 2011.

[9] http://www.opencores.org/projects.
[10] Intel Corporation, “Intel mcs51 family user manual,” 1981.

829

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

