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Abstract—With many fabless companies outsourcing integrated
circuit (IC) fabrication, the extent of design information re-
coverable by any third-party foundry remains clouded. While
traditional reverse engineering schemes from the layout employ
expensive high-resolution imaging techniques to recover design in-
formation, the extent of design information that can be recovered
by the foundry remains ambiguous. To address this ambiguity,
we propose ReGDS, a layout reverse engineering (RE) framework,
posing as an inside-foundry attack to acquire original design
intent. Our framework uses the layout, in GDSII format, and
the technology library to extract the transistor-level connectivity
information, and exploits unique relationship-based matching to
identify logic gates and thereby, recover the original gate-level
netlist. Employing circuits ranging from few hundreds to millions
of transistors, we validate the scalability of our framework and
demonstrate 100% recovery of the original design from the layout.

To further validate the effectiveness of the framework in the
presence of obfuscation schemes, we apply ReGDS to layouts of
conventional XOR/MUX locked circuits and successfully recover
the obfuscated netlist. By applying the Boolean SATisfiability
(SAT) attack on the recovered obfuscated netlist, one can recover
the entire key and, thereby, retrieve the original design intent.
Thus ReGDS results in accelerated acquisition of the gate-level
netlist by the attacker, in comparison to imaging-based RE
schemes. Our experiments unearth the potential threat of possible
intellectual property (IP) piracy at any third-party foundry.

Index Terms—Reverse Engineering, Supply chain security,
Subgraph Isomorphism

I. Introduction

Advances in integrated circuit (IC) manufacturability and
the ability to outsource IC fabrication have accelerated tech-
nology research and development, resulting in reduced time-
to-market, and affordable products and services. However,
outsourcing fabrication has resulted in a significant increase
in intellectual property (IP) piracy concerns [1]. The emi-
nent IP piracy schemes could be broadly classified as chip
overbuilding [2], counterfeiting [3] and Reverse Engineering
(RE) [4]. Traditional imaging-based RE techniques involve IC
decapsulation and delayering, to obtain the transistor connec-
tivity information using high-resolution imaging techniques
[4]–[6]. Tools such as ‘Degate’ [7], have been developed to
assist image RE, that match the standard cell library against
the design layout to identify logic gates. From the transistor
connectivity information, one can retrieve the gate-level netlist
[8], to disclose design intent. Several approaches have been
explored for transistor-level to gate-level netlist conversion,
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Fig. 1: Potential threat of IP piracy at a third-party foundry.

such as Boolean logic analysis [9], graph-based pattern match-
ing [10], [11], hybrid approaches [12] and Genetic algorithm
[13]. In addition, there are also electronic design automation
(EDA) tools available for the same [14], [15]. With the gate-
level netlist, module/unit level information can be obtained
to recover original design intent [16], [17]. The RE schemes,
although primarily intended for legal verification of unlicensed
IP use and product failure analysis, have also been employed
for illicit purposes. With the escalation of IP piracy, developing
defending strategies at various levels has become fundamental.
Albeit several IP protection schemes have been devised to

thwart IP piracy, a foundry-level attacker is well-equipped to
be able to overpower the defense schemes [18]. The prominent
IP piracy prevention methods include IC Camouflaging, Logic
Locking and Split Manufacturing. While IC camouflaging
disables imaging-based RE schemes using look-alike standard
cells in layout [19], [20], the complete control on implemen-
tation by the foundry renders it ineffective to hide design
intent. On the other hand, Logic locking involves additional
functionality and key inputs to lock the original circuit, ren-
dering it non-functional in the absence of the original key
[21]. However, the improvement of attack schemes continue
to challenge the effectiveness of logic locking [18], [22]–[25].
Futhermore, Split manufacturing aims to avoid unintended
modifications to the original layout by an untrusted foundry,
by dividing the design layout into Front End of Line (FEOL)
and Back End of Line (BEOL) layers and manufacturing them
in different foundries [26].
As many companies choose to remain fabless due to the



expensive manufacturing costs, the security risk of loss of
control over the fabrication process is inevitable. While an
untrusted foundry may have hideous intent [18], the extent
of original design information available to a trusted foundry
remains unexplored. We explore the possibility of reverse engi-
neering within the foundry by an untrusted entity to understand
the extent of design information that is recoverable. The fabless
design house generates the layout GDSII after backend design
and sends it to a third-party foundry for fabrication. After
fabrication, the design house receives the IC for bring-up and
production, as shown in Fig. 1, where the solid blue arrows
show the intended design flow. With the technology library
available, it is plausible for any third-party foundry to recover
the original design intent by reverse engineering the design
layout, even without expensive imaging-based RE techniques.

In this paper, we examine the potential attack within a third-
party foundry, by reverse engineering of the original design
intent from the layout, depicted as the dashed red arrow in
Fig. 1. To investigate the possible attack at the foundry, we
develop the first layout reverse engineering framework ReGDS,
from layout GDSII to the gate-level netlist. The framework
employs the Layout vs Schematic comparison (LVS) tool used
for physical verification [27], and a graph matching algorithm.
Transistor-level connectivity information is extracted from the
layout, using the LVS tool. The existing transistor-level to
logic gate-level conversion schemes require prior knowledge
of original design information, which is unavailable during
layout RE [8]–[14], [28]. For digital circuits, the extracted
netlist, from the layout GDSII, does not contain explicit
power network information, resulting in inconsistent transistor
terminal connections. To compensate for this inconsistency,
we develop a novel connectivity representation for transistors
in digital circuits, to facilitate logic gate identification using
graph matching algorithm. As the proposed framework utilizes
the technology library as one of its input, it can be extended
to all digital transistor-based logic styles, such as CMOS, pass
transistor, etc.
ReGDS provides the capability of reverse engineering from

the layout to Register Transfer Level (RTL) by integrating
techniques that recover higher-level macro units from the
gate-level netlist [16]. This work opens the door for a new
direction in layout reverse engineering, paving the way for
gate-level security analysis using layout information. Our main
contributions are listed as follows:
• To the best of our knowledge, we are the first to develop
an end-to-end layout reverse engineering framework,
ReGDS, from GDSII to the gate-level netlist, to expose the
potential threat of IP piracy at any third-party foundry.

• For a unique representation of transistor connections, we
propose a novel digital connectivity index (DCI) coding
scheme to handle inconsistencies in transistor termi-
nal connections, to accelerate connectivity-based pattern
matching.

• In comparison to traditional imaging-based RE schemes,
the proposed ReGDS framework significantly accelerates
the process of layout reverse engineering to retrieve the

original gate-level netlist at the foundry.
• Experimental results demonstrate successful and com-
plete recovery of the original design from both unobfus-
cated and obfuscated layouts, affirming the inherent threat
of possible IP piracy at the foundry.

The rest of the paper is organized as follows: Section II
provides a background on the Layout vs Schematic comparison
check and graph matching algorithm, employed in the pro-
posed framework. Section III presents the ReGDS framework
and the experiments are reported in Section IV. Section V
demonstrates the effectiveness of the proposed ReGDS frame-
work even in the presence of obfuscation schemes, and finally,
Section VI concludes the paper.

II. Preliminaries
This section provides a brief overview to the Layout vs

Schematic comparison check, used in physical design veri-
fication, and graph matching problem, which form an integral
part of the proposed ReGDS framework.

A. Layout vs Schematic Comparison Check
Circuit connectivity at different stages of design - schematic

and layout, is widely represented in SPICE format [29],
comprising of subcircuit definition(s) referred to as ‘subckt(s)’.
We refer to leaf circuit elements such as transistors, resistors,
capacitors, and diodes, as ‘devices’. While Design Rule Checks
ensure manufacturability of the design layout, the Layout vs
Schematic comparison (LVS) check ensures the functional
correspondence of the design layout to the original design
intent. The LVS checker reads in a source database (circuit
schematic or gate-level netlist) and the corresponding layout
database (in GDSII format) along with the technology library
rule information, consisting of device recognition and layout
metal layer definitions, as depicted in Fig. 2.

Intermediate SPICE netlist are generated from both the
source and layout databases, and a one-to-one correspondence
matching is performed based on ‘device’ type and connec-
tivity. The generated intermediate SPICE netlists differ in the
hierarchical structure - the source extracted netlist is logic-
driven, while that of the layout is based on physical location
and connectivity. While the LVS tool allows both flat and
hierarchical modes of operation, the latter is preferred for
scalability. In hierarchical mode, the LVS tool runtime is in
the order of O (M), where M refers to the total hierarchical
units in the layout database. As the intermediate netlists are
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Fig. 2: Layout vs Schematic check.
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generated irrespective of whether the LVS check passes or
fails, we obtain the layout extracted SPICE netlist even in the
absence of the original source database.

The layout extracted netlist consists of the below three types
of subckts:
• Leaf subckts consists of devices,
• Mixed subckts comprising of both devices and other
subckt instances, and

• Hierarchical subckts contains instances of other subckts.
The top-level modules are hierarchical subckts, while the leaf
modules are leaf subckts. Mixed subckts are generally found
distributed at other levels.

B. Graph Isomorphism

Exact graph matching or graph isomorphism identifies the
unique one-to-one mapping between the sets of vertices of two
graphs. Graphs G(VG, EG) and H(VH, EH ) are isomorphic if
there exists a bijective mapping, between the sets of vertices,
f : VG → VH such that an edge (u, v) ∈ EG if and only if
( f (u), f (v)) ∈ EH , and is represented as G ' H. Subgraph iso-
morphism, a generalization of the graph isomorphism problem,
determines the existence of a subgraph, within the larger graph
G, that is isomorphic to H. However, as graph isomorphism
is a NP-problem and the subgraph isomorphism problem is
NP-complete, no known polynomial algorithms exist [30].

In this work, we employ the vf2 subgraph isomorphism
algorithm [30], which is based on Depth First Search and
backtracking, for logic gate identification. This algorithm has
a spatial complexity of O (|VG |) with a best and worst case
time complexity of O

(
|VG |

2) and O (|VG |! · |VG |), respectively,
where |VG | represents the number of vertices in the larger
graph G. To further improve the runtime of the subgraph
isomorphism algorithm, we incorporate partial matching and
a staggered approach, as discussed in Section III-C.

III. ReGDS Framework

With the availability of the design layout and the technology
library, we explore the extent of design information available
to a foundry, posing as an insider attack. The proposed layout
reverse engineering framework, ReGDS, is illustrated in Fig. 3.
Leveraging the LVS tool, we extract the transistor connectivity
information from the layout 1 , as described in Section III-A.
Due to the absence of power network information and thereby
the current flow direction, there are inconsistencies in the
transistor terminal connections. To overcome this, we develop
a novel connectivity-based representation for digital circuits
2 , as explained in Section III-B. Connectivity graphs are
constructed from the transistor network and pattern matching
is employed to identify logic gates and thereby recover the
original gate-level netlist 3 , as detailed in Section III-C.
As the proposed ReGDS framework considers the technology

library as an input for reverse engineering, it is applicable to all
digital transistor-based logic styles. In this work, we consider
CMOS technology implementation as a proof of concept.

A. Transistor Connectivity Extraction
The LVS check is employed to extract transistor connectivity

from the design layout, as discussed in Section II-A. A
synthetic source database is constructed that adheres to the
same technology as the design layout. For instance, a simple
inverter netlist is suffice to constitute the source database. With
the constructed source database and the available design layout
and technology library, the LVS check is run. Though the check
fails due to mismatches between the layout and the source
databases, the transistor-level connectivity information is com-
pletely extracted from the layout database, in SPICE format. A
post-processing step is applied on the layout extracted netlist,
consisting of the following operations:
• To reduce the problem size, multiple devices connected
in parallel, with similar physical features, are reduced to
a single device, and

• Mixed subckts, containing both hierarchical instances and
devices, are identified and flattened, to enable logic gate
identification.

B. Digital Connection Graph
The repetitive standard cell blocks in digital circuit facilitate

the use of pattern matching for logic gate identification. To rep-
resent connectivity between various circuit elements in a graph
G(V, E), P. Wu et al. introduced the Terminal Connectivity
Index (TCI) coding scheme [31], which represents transistors
as a set of vertices V and connections as a set of edges E , with
edge weights representing transistor terminal connectivity. The
lack of explicit power connectivity information in digital
circuits, results in the layout extracted netlist to have transistor
Drain/Source terminal connections that do not comply to the
current flow direction. For instance in CMOS technology, the
N-type transistor has the Source terminal at a lower potential
with respect to the Drain terminal, while the P-type transistor
has Source terminal at a higher potential in comparison to the
Drain. However, the inconsistency in transistor Drain/Source
terminal connectivity in the layout extracted SPICE netlist,
results in one-to-many mapping for the same affiliation, with
the TCI coding scheme [31].
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TABLE I: Digital Connectivity Index for transistors Mi and
Mj , where D, G, S and B represent Drain, Gate, Source and
Bulk terminals, respectively.

Terminals of Mj

DCIi, j D/S G D/S-B
D/S 8 2 -

Terminals of Mi G 2 32 -
D/S-B - - 1

Inspired by the TCI coding scheme, we develop a Dig-
ital Connectivity Index (DCI) coding scheme, to ensure a
bijective mapping between the transistor connectivity and its
corresponding graph representation. The edge weights for the
connection between any two transistors Mi and Mj , based on
the proposed DCI coding scheme, are enumerated in Table I.
We construct a labeled undirected weighted Digital Connection
Graph (DCG), GD(VD, ED), using the proposed DCI coding
scheme, where VD represents the set of transistors and the set
of weighted edges ED represent transistor connectivity. The
edge weight wi, j is the sum of all existing digital connectivity
indices between the transistors Mi and Mj ,

wi, j = αi, j
©«
∑
Mi

∑
Mj

DCIi, j + βiβj
ª®¬ (1)

where αi, j ∈ {0, 1} represents the existence of connection
between transistors Mi and Mj , and βi, βj ∈ {0, 1} represent
the existence of Drain/Source to Bulk terminal tie-off in
transistors Mi and Mj , respectively. For example, if transistors
Mi and Mj are connected, αi, j = 1, and when transistor Mi

has Drain/Source terminals connected to Bulk, βi = 1.
To ensure unique representation of transistor connectivity,

we assign same weights for Drain/Source terminal connec-
tions between transistors Mi and Mj , allowing the terminals to
be used interchangeably. As the connection between two logic
gates can be represented as the connection from Drain/Source
terminal of Mi to Gate terminal to Mj or vice versa, we
assign a minimum weight of 2. Next, we consider connections
between Drain/Source terminals of transistors and assign a
weight of 8; a weight of 4 is not assigned as it is possible to
have two connections between Mi and Mj each with weight
2, resulting in a total of 4. Similarly, connections between the
Gate terminals of transistors are assigned the largest weight
of 32, as they generally represent connectivity within a logic
gate. The additional weight of 1 is added if Drain/Source to
Bulk terminal tie-off exists in both the transistors, to signify
the end of the pullup/pulldown network in a digital circuit.

To understand the bijective mapping of the proposed DCI
coding scheme, we consider two different SPICE imple-
mentations of a 2-input NAND gate by interchanging their
Drain/Source terminal connections, as shown in Fig. 4(a).
Using the TCI coding scheme [31], we obtain two different
connection graphs as depicted in Fig. 4(b), while the proposed
DCI coding scheme results in a unique DCG, as shown in
Fig. 4(c). Although the Drain/Source terminal connections

are interchanged, the actual connectivity remains the same,
which is apprehended by our DCI coding scheme. For in-
stance, consider transistors M2 and M3, which have their
Drain/Source terminals connected to the same net and have
Bulk terminal tied off to Drain/Source terminals. This results
in edge weight of w2,3 = 1× (8+ 8+ 1) = 17 between M2 and
M3, as shown in Fig. 4(c).
Using the proposed DCI coding scheme, we generate DCGs

corresponding to the flattened Mixed and leaf subckts within
the layout extracted netlist. Hierarchical subckts, containing
only hierarchical components, are not considered for logic gate
identification. We annotate Γ to represent the collection of
DCGs that represents the logic gates in the technology library.

C. Logic Gate Identification
Logic gates are identified by connectivity-based matching

of each subckt digital connectivity graph (DCG) GD(VD ,ED),
against the set of technology library logic gate DCGs Γ. Net
renaming is employed for tie offs in the layout netlist to avoid
mismatches during pattern matching. As the worst case time
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Fig. 4: (a) Two implementations of 2-input NAND gate by
interchanging transistor Drain/Source terminal connections.
(b) Terminal connectivity graphs using TCI [31] coding scheme.
(c) Unique Digital connectivity graph using the proposed DCI
coding scheme.
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complexity for subgraph isomorphism is O (|VD |! · |VD |), as
mentioned in Section II-B, we employ Partial match and logic
stitch, and a Staggered approach to further speed up the logic
gate identification process.

1) Partial Match & Logic Stitch: To accelerate the pattern
matching process, we break down large complex gates and
identify them as a combination of multiple simpler gates. For
example, a 2:1 multiplexer (MUX) can be built using one
inverter and two transmission gates, which can be individually
identified and grouped together, as shown in Fig. 5. We
extend Partial match and Logic stitch to implement frequently
occurring complex gates such as MUX, XOR/XNOR, majority
gates, and adders.

2) Staggered Pattern Matching: A straightforward way for
logic gate identification is to arrange the set of library logic
gate DCGs in decreasing order of size, as Γ′, and compare
with the subckt DCG GD . We refer to this approach as the
Baseline. Although the technology library consists of several
logic gates, only a portion is generally utilized for physical
design implementation. For instance, complex logic gates with
six or more inputs are less probable, while basic logic gates
such as NOT, NAND, NOR, XOR, XNOR, and flipflops are
highly likely to be used in the design implementation. We im-
plement a Staggered approach which exploits the frequency of
logic gate occurrence and the dependency of pattern matching
algorithm time complexity on the vertices of the larger graph.
The set of library DCGs Γ, is divided into smaller k non-
overlapping sets of DCGs Γx based on the graph size and logic
gate frequency of occurrence, such that Γx ⊂ Γ, where x=1, 2,
..., k. After each iteration of pattern matching, the identified
vertices in subckt DCG, GD , are removed and a new DCG G′D ,
is generated such that |V(G′D)| ≤ |V(GD)|. This reduction in
problem size helps to further reduce the logic gate extraction
runtime. As only the identified vertices in the graph at any
stage are removed before the next stage, there is no loss of
information, and the solution obtained remains optimal.

After logic gates are identified in all the subckts (flattened
mixed and leaf ) within the layout extracted netlist, a gate-level
HDL netlist is written out. The pseudo-code of the logic gate
extraction (LGE) algorithm is summarized in Algorithm 1.
OnlyMixed and leaf subckts are considered for LGE (lines 1-2)
and the Mixed subckts are flattened (line 4). Digital Connectiv-
ity Graphs are constructed for flattened Mixed and leaf subckts
(line 6). Logic gates are identified using a subroutine (line 7),
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Fig. 5: Partial match and logic stitch of 2:1 MUX.

Algorithm 1 Logic Gate Extraction
Input: Layout extracted SPICE netlist with N subckts

SD1, SD2, . . . , SDN ; Technology library-based DCGs Γ
Output: Gate-level Netlist
1: for i ← 1 to N do
2: if SDi contains device(s) then
3: if SDi is a Mixed subckt then
4: Flatten SDi ;
5: end if
6: Construct DCG GDi from SDi ; . Section III-B
7: LogicGateIdentification (GDi , Γ);
8: end if
9: end for
10: return Gate-level Netlist;

11: function LogicGateIdentification(GDi , Γ):
12: for x ← 1 to k do . Staggered matching
13: subGraph Isomorphism (GDi , Γx);
14: Remove matched vertices;
15: Construct G′Di

3 |V(G′Di
)| ≤ |V(GDi )|;

16: end for
17: end function

which incorporates vf2 subgraph isomorphism algorithm [30]
(line 13). The matched vertices in the subckt DCG, GD , are
then removed to reconstruct smaller DCG, G′D (lines 14-15).
The steps are repeated for all k groups of library DCGs Γ for
all subckts, to obtain the gate-level netlist (line 10).
The time complexity of Algorithm 1, dominated by the

graph matching algorithm, is O (|VS |! · |VS |), where VS denotes
the set of vertices in the largest subckt among the flattened
Mixed and leaf subckts. However, as |VS | << TCNT , where
TCNT is the total transistor count in the design, the overall
LGE runtime is empirically in the order of O (TCNT ), based
on experiments in Section IV. The space complexity of the
LGE algorithm is O (|VS |).
To evaluate the effectiveness of the logic gate extraction, we

employ Recovery ratio γ ∈ [0, 1], defined as,

γ =

(
ηG
ηT

)
(2)

where ηG is the number of transistors identified as logic
gates and ηT is the total transistor count in the layout ex-
tracted SPICE netlist. The unique mapping of the proposed
DCI coding scheme ensures accurate identification for pattern
matching, resulting in better runtime compared to the TCI
coding scheme with multiple representations for the same
connectivity [31].

D. Summary
ReGDS provides an efficient layout reverse engineering

framework to recover the gate-level netlist from the design
layout, in GDSII format, with the availability of the technology
library. The proposed framework leverages the Layout vs
Schematic comparison tool, used for physical verification, to
extract transistor-level connections from the design layout. A
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unique representation for transistor-level affiliation, the DCI
coding scheme, is developed to overcome the transistor termi-
nal connectivity inconsistencies due to the absence of explicit
power network information. Logic gates are identified using
pattern matching to reconstruct the original gate-level netlist.

For an inside foundry attack, ReGDS framework significantly
accelerates the process of layout RE to obtain gate-level netlist,
in comparison to imaging-based RE schemes. Due to the
utilization of the technology library in the proposed layout
RE framework, it is applicable to all digital transistor-based
logic styles and technologies. The effectiveness of our ReGDS
framework is demonstrated and verified in Section IV.

The proposed layout RE framework, ReGDS, is developed
to analyze the extent of design information retrievable by
any third-party foundry, and thus assumes the availability of
the standard cell library. However this might not always be
the case. In the absence of the library, layout RE becomes
very challenging without the layer, device and connectivity
information, to retrieve transistor connections.

IV. ReGDS Methodology & Evaluation

Though the proposed ReGDS framework is applicable to all
digital library-based logic styles, herein, we consider CMOS
technology for evaluation. ISCAS benchmarks [32], [33] and
the modules of Common Evaluation Platform (CEP) SoC
platform [34], were employed to validate the proposed layout
RE framework. Experiments were performed on a 4-core
Linux machine powered by Intel i7-3770 CPU, running at
3.40GHz. All the circuits were synthesized using Synopsys
Design Compiler [35] and physical implementation was facili-
tated through Cadence Innovus [28] tool to generate the layouts
in GDSII format. Commercial TSMC 40nm library [36] was
employed to emulate an insider foundry attack.

The extraction of transistor-level connectivity information
from the design layout, using the LVS tool, is described in
Section IV-A. Section IV-B reports the identification of logic
gates from transistors to reconstruct the original gate-level
netlist, using the custom C++ tool. A library independent
version of the C++ routine is open sourced1. Comparisons,
in terms of runtime and recovery, have been made between
the different connectivity coding schemes - TCI [31] and the
proposed DCI schemes. Finally, Section IV-C concludes with
empirical time and space complexity analysis for the proposed
layout RE framework.

A. SPICE Netlist Extraction
With the design layout, in GDSII format, and the technology

library available, an inverter SPICE netlist was constructed to
serve as the synthetic source database for all the experiments.
Mentor Graphics Calibre LVS tool [27] was employed, in
hierarchical mode, to extract the transistor-level connectivity
information from the layout, in SPICE format. We refer to the
time taken by the LVS tool as the SPICE Netlist Extraction
(SNE) runtime and is in the order of O (M), where M is

1https://github.com/rachelselinar/ReGDS-Logic-Gate-Extraction.

the total hierarchical units in the layout. A post-processing
step was performed on the layout extracted SPICE netlist, as
mentioned in Section III-A, to facilitate logic gate extraction.
To validate the precision of the layout extracted netlist, LVS

check was run to compare the former with the original gate-
level netlist. LVS check passed for all the circuits [32]–[34],
affirming the complete extraction of transistor-level connectiv-
ity information from the layout.

B. Connectivity-based Logic Gate Extraction
A custom tool was implemented in C++, for logic gate

identification based on Algorithm 1. Using the proposed DCI
coding scheme, we construct DCGs corresponding to the
flattened Mixed and leaf subckts in the layout extracted netlist.
As the technology library contains several gates with both in-
verting and non-inverting variants, for example, NAND/AND,
we construct DCGs only for the inverting variants and identify
the non-inverting variant with an inverter, as AND+NOT for
NAND. The DCGs for NAND/NOR/AOI logic gates were con-
structed instead of AND/OR/AO, and DCGs were constructed
for other logic gates such as FlipFlops, adders and majority
gates, that only have non-inverting variant. Thus we obtain a
set of DCGs Γ, based on the logic gates in the technology
library. With two sets of DCGs from the layout extracted
netlist and the technology library, graph matching was done to
recover the gate-level netlist as per Algorithm 1. We refer to
the time taken by our custom tool as the Logic Gate Extraction
(LGE) runtime.
While a Baseline approach arranges the logic gates in

decreasing order of size to construct the set of technology
library DCGs Γ′, the proposed Staggered approach organizes
the library gates into smaller k non-overlapping sets of DCGs
Γx, x = 1, 2, . . . k, based on size and frequency of occurrence,
such that Γx ⊂ Γ. We compare the impact of Staggered
approach on the LGE runtime on selected benchmark circuits
[32]–[34], as tabulated in Table. II. It is important to note
that both the approaches employ Partial match & Logic stitch,
without which the runtime of Baseline approach would further
increase. It is evident that the proposed Staggered approach
outperforms the Baseline resulting in an average of 1.5×
runtime reduction across all the benchmarks.
The logic gate composition of sample ISCAS circuits [32],

[33], for the original (Ω) and the corresponding recovered
(Υ) gate-level netlists, are compared in Table III. It can be
noticed that the number of complex gates, such as Flipflops,
XOR/XNOR, adders, multiplexers and majority gates, remain
the same for both the original and recovered netlists. The
difference in total logic gate count arises due to the difference
in logic gates such as AND/OR, AND-OR-INVERT, inverters
and buffers, caused by our initial consideration of inverting
logic gate variants over their non-inverting counterparts.
We compare the performance of the proposed DCI coding

scheme with the TCI coding scheme [31] in terms of LGE
runtime, and the Recovery ratio γ as per Eqn. (2). The results
of the experiments on all the considered circuits [32]–[34]
were terminated after a timeout (TO) of 1 week and are
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TABLE II: Impact of Staggered approach on LGE runtime using the proposed DCI coding scheme.

Benchmark Suite ISCAS’85 [32] ISCAS’89 [33] CEP [34]

Circuit c3540 c5315 c6288 s953 s1423 s15850 s35932 SHA256 FIR IDFT RSA RISCV
#Transistors 2.28k 4.54k 8.94k 1.82k 3.28k 19.5k 69.1k 87.5k 118.6k 1.66M 2.48M 7.37M

LGE Baseline 0.3 0.22 0.5 0.13 0.3 2.5 0.7 3.5 4.5 485.0 265.0 1028.0
Runtime (s) Staggered 0.13 0.17 0.36 0.07 0.12 2.0 0.55 2.85 3.8 470.0 194.0 934.0
Runtime Improvement 2.3× 1.3× 1.4× 1.9× 2.5× 1.3× 1.3× 1.2× 1.2× 1.1× 1.4× 1.1×

tabulated in Table IV. Due to one-to-many mapping by the
TCI coding scheme [31], only circuits with less than 3k
transistors converge within the TO and the recovery ratio γTCI

is less than 0.5 for all experiments. The bijective mapping
of the proposed DCI coding scheme clearly outperforms the
TCI coding scheme in terms of both recovery ratio γDCI

and runtime. The empirical space complexity of the LGE
algorithm, employing the proposed DCI coding scheme, for
CEP modules [34] is recorded in Table V. The size of the
design layout, in GDSII format, and the memory usage of
LGE algorithm are listed with the total transistor count in the
considered benchmark.

In summary, based on the results, it is evident that:
• As TCI coding scheme [31] results in one-to-many map-
pings, only an average of γTCI = 0.4, i.e., 40% of
transistors are identified as simple logic gates, such as
INV/NAND/NOR. However, the unique representation
using the proposed DCI coding scheme ensures γDCI =

1.0, i.e., 100% recovery of logic gates for all the circuits,
facilitating the RE process.

• The Recovery ratio γ, directly affects the LGE runtime:
the proposed DCI coding scheme always ensures better
runtime than the TCI coding scheme, resulting in more
than three orders of magnitude runtime difference.

• The proposed Staggered approach results in 1.5× average
runtime reduction in comparison to the Baseline, with
Partial match & Logic stitch approach.

• Our ReGDS framework scales well for large designs, with
LGE runtime of ∼16 minutes for the CEP RISCV [34]
module with 7.37M transistors.

TABLE III: Comparison of logic gate composition.
Circuit #Gts #FFs #XRs #AOs #NDRs #IVBs #Ots

Ω 84 - - 44 19 21 -
c432 Υ 91 - - 43 21 27 -

Ω 135 - 24 79 23 8 1
c499 Υ 150 - 24 79 35 11 1

Ω 333 - 11 165 102 54 1
c3540 Υ 379 - 11 165 107 95 1

Ω 593 - 2 28 268 75 220
c6288 Υ 602 - 2 28 269 83 220

Ω 71 15 2 18 14 16 6
s349 Υ 81 15 2 18 14 26 6

Ω 171 32 1 59 45 34 -
s838 Υ 193 32 1 59 45 56 -

Ω 271 18 - 110 99 44 -
s1196 Υ 290 18 - 110 101 61 -

Ω 326 74 1 111 83 53 4
s1423 Υ 372 74 1 110 93 90 4
Ω and Υ represent the original and corresponding recovered netlists.
#Gts: Total logic gates; #FFs: Flipflop count; #XRs: XOR/XNOR gates;
#AOs: AND-OR/OR-AND gates; #NDRs: AND/NAND/OR/NOR gates;
#IVBs represents total inverter and buffer count in circuit;
#Ots represents complex gates such as adders, MUX and majority gates.

Validation of Recovered Gate-level Netlist: We verify the
equivalence of the recovered gate-level netlist with the original
netlist using Cadence Conformal Logic Equivalence Checker
(LEC) [28]. For all the considered circuits [32]–[34], LEC
check passed to ensure the functional equivalence between the
original and recovered netlists. Equivalence checking for some
of the CEP modules such as IDFT, DFT, RSA and RISCV
[34], containing more than 10k flipflops, was not feasible at
the top level due to the large number of unmapped flipflop
points (> 10k), and is beyond the scope of this work. Instead
subunit implementation and verification was done to ensure
equivalence between original and recovered netlists.

C. ReGDS Overall Assessment

The overall runtime of the ReGDS framework, comprising of
the SPICE Netlist Extraction (SNE) and Logic Gate Extraction
(LGE) runtimes, for selected benchmark circuits [32]–[34] is
plotted in Fig. 6. SNE runtime refers to the time taken by the
LVS tool in hierarchical mode, to obtain the layout extracted
netlist. LGE runtime is the time required by our custom tool,
employing the proposed DCI coding scheme, to identify logic
gates and recover the original netlist.
The SNE runtime depends on the total number of subckts or

hierarchical levels in the layout extracted netlist. For example,
consider the ISCAS and CEP benchmark circuits [33], [34]
containing 19k to 69k transistors: s15850 contains 189 subckts
and has larger SNE runtime, while s38417 and s35932,
containing 86 and 46 subckts, respectively, have lower SNE
runtime. Similary AXI2WB with higher subckt count of 183,
has larger SNE runtime in comparison to DES3 and MD5
modules with 125 and 96 subckts, respectively.
On the other hand, due to the hierarchical nature of the

layout extracted netlist, the LGE runtime depends on the
size of the largest subckt, among flattened Mixed and leaf
subckts. For instance, though CEP modules IDFT and DFT
have similar transistor count of 1.6 million transistors, IDFT
module has significantly larger LGE runtime compared to the
latter. This is due to the presence of 8 large flattened subckts
in IDFT, each containing about 100k instances, while DFT
only contains 3 large flattened subckts of similar size.

Thus the proposed layout RE framework unveils the possi-
bility of any third-party foundry to completely reverse engineer
the design layout and recover the original gate-level netlist. In
addition, ReGDS framework accelerates the reverse engineering
process at the foundry, in comparison to traditional imaging-
based RE schemes. On a further note, advanced process
technologies should not affect the LGE runtime as it depends
on the size of the largest subckt, amongMixed and leaf subckts.
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TABLE IV: Recovery and runtime evaluation of TCI [31] and the proposed DCI coding schemes.

Benchmark TCI Coding Scheme [31] DCI Coding Scheme Runtime Impr.†
Suite Circuit #Transistors #FFs Runtime (s) γTCI Runtime (s) γDCI DCI vs TCI

c432 478 - 32 0.26 0.02 1.0 3.2×
c1908 982 - 2,391 0.42 0.12 1.0 4.3×
c880 1,076 - 2,472 0.38 0.05 1.0 4.7×
c1355 1,394 - 15,031 0.42 0.03 1.0 5.7×

ISCAS’85 [32] c499 1,410 - 173,612 0.34 0.03 1.0 6.7×
c2670 1,962 - 4,708 0.41 0.09 1.0 4.7×
c3540 2,280 - 91,454 0.31 0.13 1.0 5.8×
c5315 4,541 - TO - 0.17 1.0 -
c6288 8,942 - TO - 0.36 1.0 -
s386 486 6 79 0.41 0.02 1.0 3.6×
s349 734 15 1,879 0.44 0.03 1.0 4.8×
s420 756 16 63 0.44 0.03 1.0 3.3×
s510 820 6 1,905 0.32 0.04 1.0 4.7×
s400 872 21 146 0.48 0.03 1.0 3.7×
s526 922 21 3,344 0.45 0.03 1.0 5.0×
s838 1,530 32 14,157 0.44 0.06 1.0 5.4×

ISCAS’89 [33] s953 1,824 29 33,034 0.46 0.07 1.0 5.7×
s1488 1,860 6 89,394 0.32 0.04 1.0 6.3×
s1196 1,908 18 20,785 0.38 0.07 1.0 5.5×
s1423 3,282 74 TO - 0.12 1.0 -
s13207 9,725 270 TO - 0.55 1.0 -
s15850 19,480 451 TO - 2.0 1.0 -
s38417 63,340 1,564 TO - 1.43 1.0 -
s35932 69,156 1,728 TO - 0.55 1.0 -
WB2AXI 9,344 188 TO - 0.6 1.0 -
DES3 25,240 394 TO - 3.5 1.0 -

AXI2WB 30,496 760 TO - 4.8 1.0 -
MD5 69,400 784 TO - 2.05 1.0 -

SHA256 87,456 1,556 TO - 2.85 1.0 -
FIR 118,614 2,608 TO - 3.8 1.0 -

CEP [34] IIR 132,242 2,831 TO - 4.65 1.0 -
AES128 1,224,034 6,726 TO - 31.0 1.0 -
GPS 1,463,746 9,213 TO - 21.0 1.0 -

AES192 1,480,104 9,382 TO - 12.0 1.0 -
IDFT� 1,661,567 42,819 TO - 470.0 1.0 -
DFT� 1,663,389 42,815 TO - 154.0 1.0 -
RSA� 2,483,773 58,034 TO - 194.0 1.0 -

RISCV� 7,374,469 185,849 TO - 934.0 1.0 -
Avg? - - - - 0.39 - 1.0 5.1×

†The runtime improvement for the proposed DCI coding scheme is represented as orders of magnitude difference.
�These benchmark circuits have more than 104 unmapped flipflops and equivalence verification was done at subunit level.
?The average values are computed for the available entries. #FFs is the total flipflop count in circuit. Timeout(TO) > 1 week.

TABLE V: Memory usage of LGE algorithm using the proposed DCI coding scheme on CEP benchmarks [34].

Circuit DES3 SHA256 FIR IIR AES128 AES192 IDFT DFT RSA RISCV
#Transistors 25,240 87,456 118,614 132,242 1,224,034 1,480,104 1,661,567 1,663,389 2,483,773 7,374,469
GDS† (MB) 3.4 8.9 8.1 9.4 252.8 301.1 116.4 116.8 217.5 738.2
MU? (MB) 37.1 41.5 37.6 43.3 435.5 501.8 437.4 293.7 454.5 1291.5
GDS† refers to the file size (in Mega Bytes) of the generated design layout in GDSII format.
MU? refers to the total memory (in Mega Bytes) used by the LGE algorithm.

The impact of increased design rules in advanced process
technologies on SNE runtime requires further investigation.

V. ReGDS on Obfuscated Designs

The intention of this section is to evaluate the influence
of layout reverse engineering on obfuscated design layout
and to examine if the hierarchical differences between the
original netlist (logical) and layout RE’d netlist (physical),
challenge the retrieval process. ReGDS can also be employed
on obfuscated design layout to retrieve the obfuscated netlist,

on which attacks like SAT [22] could be applied to recover the
original netlist. The influence of IC camouflaging and Logic
locking schemes on layout RE are discussed in Section V-A
and Section V-B, respectively. While Split Manufacturing
[26] is generally employed when the foundry is considered
to be vicious, our work extends to any third-party foundry
irrespective of its trustworthiness.
A. IC Camouflaging
We consider camouflaging of the original design by em-

ploying look-alike standard cell layout implementations [19],
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Fig. 6: ReGDS framework overall runtime.

[20]. The look-alike standard cells are appended to the technol-
ogy library during physical implementation. Though imaging-
based RE schemes, post-fabrication, are hampered due to the
look-alike cells in the layout, the foundry has complete control
on the implementation. As ReGDS considers the technology
library as an input, to which the layout look-alike standard
cells have been appended, the layout RE is not affected due to
stand-alone camouflaging schemes.

The ReGDS graph formulation represents transistors as graph
nodes with labels to differentiate their types. The formulation
could be further extended to incorporate additional elements.
Other camouflaging schemes that utilize dummy vias [37],
varying functionalities based on device threshold voltage [38],
etc., require further investigation and are interesting future
directions to explore. Nevertheless, we speculate that dummy
contacts or vias could be represented as resistors or capacitors.

B. Logic Locking

Logic locking aspires to lock the original circuit, with addi-
tional functionality and key inputs, rendering it non-functional
without the original key [21]. To evaluate the effectiveness
of the proposed ReGDS framework on locked design layouts,
we consider ISCAS combinational benchmark c499 [32] and
apply random MUX and random XOR/XNOR locking schemes
[21], for different key sizes: 12, 24, 61 and 122 bits. Synthesis
and physical implementation was facilitated through Synopsys
Design Compiler [35] and Cadence Innovus [28] tools, re-
spectively, to generate layouts in GDSII format. Commercial
TSMC 40nm library [36] was employed for these experiments.
The proposed ReGDS framework was applied to the layouts of
locked designs to recover the obfuscated gate-level netlists, on

which SAT attack [22] was applied to completely recover the
key and thereby the original design.
The experimental results are tabulated in Table VI, where

%Tcnt refers to the total transistor count ratio with respect to
the original unlocked c499 benchmark circuit with 1410 tran-
sistors, and Key Recovery refers to the extent of original key re-
covered. We observe an increase in deobfuscation runtime with
increasing key size, especially for random XOR/XNOR locking
scheme. However, the increasing key size and the number of
transistors in the obfuscated design layout, only marginally
increase the RE runtime. Thus gate-level obfuscation schemes
do not increase the complexity of reverse engineering for the
ReGDS framework.
Similarly, a third-party foundry could also reverse engineer

obfuscated design layouts to obtain the obfuscated gate-level
netlist, using ReGDS, on which SAT [22], approximate [23],
[24] or genetic algorithm based [25] attacks could be applied
to recover the original design intent.

TABLE VI: ReGDS on locked ISCAS benchmark c499.

Locking Key RE Runtime (s) Key
scheme %Tcnt size ReGDS SAT Total size
None 1.00 - 4.03 - 4.03 -

1.32 12 4.04 0.05 4.09 100%
Random 1.40 24 4.04 0.07 4.11 100%
MUX 1.81 61 4.06 0.08 4.14 100%

2.30 122 4.08 0.15 4.23 100%
1.32 12 4.04 0.05 4.09 100%

Random 1.40 24 4.04 0.07 4.11 100%
XOR 1.73 61 4.05 6.30 10.35 100%

2.35 122 5.08 9.00 14.08 100%
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VI. Conclusion
In this paper, we present ReGDS, a layout reverse engineering

framework for digital circuits, to expose the potential threat of
possible IP piracy by untrusted entities within any third-party
foundry. Leveraging the Layout vs Schematic comparison tool,
we successfully extract transistor connections from the design
layout. We develop a novel Digital Connectivity Index coding
scheme to ensure unique transistor connectivity representation.
Graph pattern matching is then employed to extract logic
gates and completely reconstruct the original gate-level netlist.
In comparison to imaging-based RE schemes, the proposed
framework significantly accelerates the recovery of original
netlist at the foundry. On the other hand, design houses
can also evaluate the risks at the foundry. ReGDS forms a
platform for further development and evaluation of stronger
defense mechanisms against layout RE. In the future, we plan
to explore the extension of ReGDS to mixed circuits, and
investigate layout RE resilient obfuscation schemes based on
reconfigurable logic.
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