
R2D2: Runtime Reassurance and Detection of A2 Trojan

Yumin Hou∗, Hu He∗, Kaveh Shamsi†, Yier Jin†, Dong Wu∗, Huaqiang Wu∗
∗Institute of Microelectronics, Tsinghua University, Beijing 100084, China

†Department of Electrical and Computer Engineering, University of Florida, USA
hou-ym12@mails.tsinghua.edu.cn, hehu@tsinghua.edu.cn, kshamsi@ufl.edu, yier.jin@ece.ufl.edu

dongwu@tsinghua.edu.cn, wuhq@tsinghua.edu.cn
Correspondent Author: Hu He

Abstract—With the globalization of semiconductor industry,
hardware security issues have been gaining increasing attention.
Among all hardware security threats, the insertion of hardware
Trojans is one of the main concerns. Meanwhile, many cur-
rent Trojan detection solutions follow the assumption that the
hardware Trojan itself should be composed of digital logic. This
assumption is invalidated by recently proposed analog Trojans
which are extremely small and can detect rare events. This paper
proposes a runtime hardware Trojan detection method which is
geared towards detecting such advanced Trojans. The principle
of this method is to guard a set of concerned signals, and initiate a
hardware interrupt request when abnormal toggling events occur
in these guarded signals. To prove the effectiveness of this method,
we design a processor based on ARMv7-A&R ISA, and insert
an analog Trojan into the processor. We fabricated the design in
the SMIC 130 nm process and demonstrate the effectiveness of
the proposed methodology.

I. INTRODUCTION

Today’s globalized semiconductor industry is facing critical
security, integrity, and privacy concerns. Among all hardware
security threats including reverse engineering, IP piracy, etc.,
the insertion of malicious logic (aka hardware Trojans) is still
one of the main concerns. The globalization of the integrated
circuit (IC) supply chain makes it difficult and costly for
regulations only to maintain the integrity of the IC design
through the design and fabrication process. This is especially
true for the case of third party components.

Upon this challenge, researchers from the government, in-
dustry and academia have proposed various techniques to help
identify malicious logic both pre-fabrication, on RTL, netlist,
and layout levels, as well as post-fabrication on manufactured
circuits, using a combination of special testing pattern gen-
eration techniques and side-channel analysis. A fundamental
limitation of all these schemes is that the effect of a small
enough Trojan on the logic and on the side-channel fingerprints
of the circuit, can be masked by process variation and noise.
This is exacerbated by the ever-increasing scale of integration
and process-variation in advanced nodes.

Recently proposed analog and RF Trojans [1] fall into this
category. An analog Trojan circuit can detect an extremely
rare sequential event with just a handful of transistors added
to the circuit. This hurdles even invasive detection techniques
and poses a real threat to the IC supply chain despite a decade
of research in the area.

In this paper, we present a novel on-chip hardware Trojan
detection mechanism called R2D2 geared towards such analog

Trojans. Since such analog Trojans are triggered by high fre-
quency wire-flops in the processor, we propose an abnormal-
toggling detection scheme that can easily be integrated into the
processor with low overhead and discuss why it is difficult to
remove it from the design. The main contributions of the paper
are listed as follows:

• We develop an on-chip Trojan detection method. This
method targets hardware Trojans triggered by a succes-
sive toggling events. We present an in-depth security
analysis of the scheme;

• We design a processor based on the ARMv7-A&R ISA,
and insert an analog Trojan (based on the A2 Trojan [1]),
into the ARM processor. We explore the architecture of
the processor and present various novel ways to integrate
the Trojan and its payload;

• We provide simulation results, which demonstrate that
the analog Trojan works on the ARM processor, and the
R2D2 method is effective in detecting the analog Trojan.
We also fabricate a proof-of-concept chip in the SMIC
130 nm Mixed-Signal 1P7M process with the hardware
Trojan and the detection mechanism.

The remainder of the paper is organized as follows: Section
II provides a background. Section III presents the R2D2
detection scheme. Section IV provides an overview of the im-
plemented processor. Section V presents experimental results,
and Section VI concludes the paper.

II. BACKGROUND

A. Hardware Trojan Detection

Hardware Trojans are typically categorized according to
a) their triggering method e.g. sequential or combinational,
b) their payload e.g. active modification of logic values,
or passive leakage of information through side-channels [2].
Post-fabrication detection mechanisms fall into testing-based
[3], [4], or side-channel-based [5], [6]. Various statistical
methods have been used to extract the side-channel traces of
a Trojan in a sea of other components. In addition, design
time techniques can also accompany post-fabrication detection
such as reducing rare-events in the circuit [7], or inserting on-
chip sensors that will be measured post-fabrication for Trojan
detection [8].

B. Analog Hardware Trojans

Sequentially triggered Trojans can be made extremely dif-
ficult to detect through testing patterns. A digital sequential
Trojan typically requires a large FSM to detect a rare sequence
of events, which in turn can reduce the Trojans resiliency
to side-channel detection techniques. Analog switch-capacitor
circuits on the other hand can be used to do signal shaping
and detection with a much lower transistor count. The analog
Trojan presented in [1] known as A2 uses a simple analog
circuit to detect high frequency toggling.

A2 is a small analog circuit, which can be inserted into
an already placed and routed design. It reads a digital pulse
signal (the trigger input), and triggers the payload when the
pulse signal has toggled with a high frequently for a certain
period of time. The trigger input is connected to a signal that
can be toggled with high frequency through a special code
snipper running on the processor. The attacker insures that
the trigger signal has a much lower toggle rate during typical
workloads. This makes detecting the hardware Trojan difficult
through testing, not to mention that there exists many low
toggling frequency bits in modern processors.

VDD

Trigger input

VDD

Trigger

output

Trigger circuit Detector circuit

M0

M1

M2

M3

M4

Cunit Cmain

Figure 1: Transistor schematic of the analog Trojan circuit from [1]

The transistor schematic of the A2 analog Trojan [1] circuit
is shown in Figure 1. When the trigger input is low, Cunit

is charged to VDD. When the trigger input switches to high,
Cunit shares its charge with Cmain. This will raise the charge
on Cmain by an amount controllable by the size ratio of Cmain

and Cunit. When the trigger input is stationary at either high
or low, the charge at Cmain dissipates through M2 and other
stray-paths. Hence, only with sufficiently frequent toggling of
the trigger input, one can raise Cmain’s voltage. This voltage
is fed to a detector circuit which is an imbalanced inverter
with a controllable switching threshold. The attacker connects
the trigger input to a software controllable bit which has a
low toggling rate, and uses the trigger output to launch the
payload.

III. THE R2D2 DETECTION SCHEME

In this paper, we propose an on-chip runtime hardware
Trojan detection method. The detection scheme targets A2-
alike analog hardware Trojans. The proposed detection method
aims to detect high frequency toggling on several signals
before they can activate the hardware Trojan.

M
o

n
it

o
ri

n
g

 M
ec

h
an

is
m

R0

Monitoring timing window (Tm)

R1 ... Rn

Monitoring scope window

R2

Attack threshold (Ath) interrupt

request

Add0 Add1 Addn...

...

Figure 2: Mechanism of the hardware Trojan detection method

Due to the small size of the A2 Trojan, and the fact that
it can be connected to any low toggling signal, we conclude
that runtime detection is more feasible. Figure 2 shows the
mechanism of the proposed runtime hardware Trojan detection
scheme. The principle of this method is to guard a set of
concerned software controllable registers or memory related
signals. A hardware interrupt will be generated if abnormal
toggling events occur in the guarded items. The mechanism
cannot be disabled through unprivileged software.

As shown in Figure 2, R2D2 has several parameters that
must be tuned in order to ensure the effectiveness of the
scheme and eliminate false positives. The first parameter is
the monitoring timing window size denoted by Tm. During
a monitoring window the detection unit counts the toggling
events on the concerned signal. Throughout this time window,
if the toggling frequency increases beyond the Attack threshold
parameter Ath the detection circuit will generate an interrupt
request. The other important parameter is the monitoring scope
which decides the signals to be selected for monitoring. These
signals must be ones that have a low toggling frequency during
normal processor workloads. Each guarded signal can have a
different attack threshold value.

Clk

Guarded

Signal

combinational logic

if a = monitoring timing window

 b = 0

 else

 b = 1
a

b

c combinational logic

 if c = Attack Threshold

 detection output = 0

 else

 detection output = 1

MTW

register

AT

register

Detection

output

clock

counter

toggle

event

counter

Reset

Monitoring

Timing

window

Attack

Threshold

if b=0
c=0

Figure 3: Runtime detection circuit design

The detection circuit is shown in Figure 3. The window size,
Tm, and Ath are written into dedicated registers, Monitoring
Timing Window register (MTW) and Attack Threshold register
(AT) respectively. By keeping these values as software pro-
grammable registers, we can create flexibility and uncertainty
to the defence mechanism and prevent the attacker from
learning them through IC reverse engineering. We must ensure
that only privileged software can configure these registers. The

clock counter is used to count the clock cycle, and compare
with the value in the MTW register. The clock counter is reset
when its value reaches the value in the MTW register, and a
new monitoring window starts. The toggle event counter is
used to count the number of toggle events of the guarded
signal, and compare them with the value in the AT register.
This toggle event counter is reset when a new monitoring
timing window starts. In one monitoring window, if the toggle
event counter reaches the value in the AT register, the detection
output (the alarm signal) will be activated.

IV. DEMONSTRATION DESIGN

We demonstrate the effectiveness of the proposed detection
scheme and the operation of the hardware Trojan itself on
an in-house designed ARM-compatible processor which is
described herein. ARM processors are the most popular pro-
cessors in the mobile and embedded system domain. Hence,
the security of systems based on ARM architectures is of
critical concern.

A. The ARM-compatible Processor

We propose a fused microarchitecture based on the ARMv7-
A&R ISA [9]. ARMv7-A&R was the up to date ARM ISA
when we started this project. The fused microarchiecture [10]
was evaluated based on the gem5 simulator [11], and proved to
be feasible, before real hardware design. This ARM processor
is named Merlin. Using michroarchitectural techniques, Mer-
lin [12] expands the DSP capabilities of the ARM processor.
Merlin supports most traditional ARM instructions, but does
not support some ISA extensions, such as Thumb, ThumbEE,
Jazelle, Floating-point, and Advanced SIMD. We realize 181
ARM instructions in total, which is enough to run common
benchmarks, such as DhryStone, CoreMark, DSPStone, and
EEMBC telecom. There are 7 execution modes defined in
ARMv7-A&R ISA, while Merlin works only under user mode.

Program CACHE L1P

Data RAM

M
multiply

D
Load/Store

Branch

D
Load/Store

Branch

A
integer

A
integer

M
multiply

Register File

DMMU

PMMU

Program Memory

Data Memory

ins0 ins1 …… insN

Instruction Packet

A0_IR A1_IR M0_IR M1_IR D0_IR D1_IR

Instruction Dispatch

Figure 4: Architecture of Merlin processor

Merlin adopts a fused microarchitecture [13]–[15] integrat-
ing in-order superscalar and VLIW [16]. Normally, Merlin

works under dual-issue in-order superscalar mode. It can be
switched to 6-issue VLIW mode when the task is compute-
intensive. Mode switch can be performed through software.
The VLIW approach expands the ILP of the Merlin processor,
without modifying the ARM ISA. So Merlin can be used as
an MCU, or a DSP under different application scenarios. The
architecture of Merlin is shown in Figure 4. Merlin has 16 KB
of on-chip L1 instruction Cache, with a 256-bit wide port, and
32 KB dual-port data memory, with each port being 64-bits
wide. Merlin has 6 functional units, consisting of 2 arithmetic
units (A), 2 multiply units (M), and 2 load/store units (D).

Fetch

PCG PCS PWT FPR EXP DDP IDC EX1 EX2 EX3

Dispatch Decode Exexute

Pro
gr

am
 C

ou
nt

er
 G

en
er

at
e

Fet
ch

 P
ac

ke
t R

et
ur

n

Pro
gr

am
 C

ou
nt

er
 S

en
d

Pro
ce

ss
or

 W
ai

t

In
st
ru

ct
io

n
Exp

an
si
on

Exe
cu

tio
n

Sta
ge

1

D
yn

am
ic

 D
is
pa

tc
h

In
st
ru

ct
io

n
D

ec
od

e

Exe
cu

tio
n

Sta
ge

2

Exe
cu

tio
n

Sta
ge

3

Figure 5: Pipeline of Merlin processor

PC
branch

prediction

predicted

direction/address

+
offset

M
U

X

branch

module

branch prediction control unit

update BTB

… …

correct

direction/address

fault request
PCG|PCS IDC|EX1

Figure 6: Branch prediction processing flow
As shown in Figure 5, Merlin has a 10-stage pipeline.

At the dispatch stage (DDP), the instructions are dispatched
using in-order superscalar or VLIW, which is decided by the
user. Branch prediction plays a significant role in improving
the processor performance, especially for processors with
deep pipeline stages. In this design, we propose a combined
Bimodal and PAp branch prediction method [17]–[20]. This
method achieves 94% prediction accuracy, with limited hard-
ware budget. Figure 6 shows the branch processing flow for
Merlin. Branch prediction mainly solves two problems: predict
the branch direction, and recover from mispredictions. For
Merlin, branch prediction happens at the PCG stage, which
is the first stage of the pipeline, as shown in Figure 5. At EX1
stage, the correct branch direction can be acquired, and the pre-
dicted direction can be verified to be correct or not. If not, the
pipeline will be flushed, and restarted from the correct place.
Afterwards, the corresponding branch information recorded in
the BTB (Branch Target Buffer) should be corrected.

An SoC is designed [21], where Merlin is used as an
MCU. The chip diagram is shown in Figure 7. On this chip,
Merlin is integrated with DMA, ROM, SRAM, four 128KB
embedded ReRAM, and a variety of peripheral I/O. The
Dhrystone performance of Merlin is 1.9 DMIPS/MHz, which
is comparable to ARM Cortex-A8 processors.

B. A2-like Analog Trojan in Merlin

When inserting the analog Trojan trigger circuit into the
Merlin processor, we should first select a viable trigger input.

ROM
ITCM

SRAM

system

SRAM

AHB

SPI0

system

control
AHB2APB

SD Host

Controller
DMA

PLL

RRAM

4×128KBMerlin

UART0

UART1

SPI1

TIMER

I2C

GPIO

RTC

JTAG CPU_SELECT

3.3V/4V

outside

CLK

RSTN

AHB BUS 1

AHB BUS 2

APB BUS

Figure 7: The SoC chip diagram

The trigger input should have low toggling rate in common
cases. It should be controllable through software, so that the
trigger code can make it toggle at high frequency to launch
the attack. We also discuss what can be utilized as the payload
of the trigger in the Merlin processor.

N Z C V Q
IT

[1:0]
J I F T M[4:0]Reserved GE[3:0] E AIT[7:2]

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

S

Figure 8: ARM CPSR register

1) Select the Trigger Input: In ARMv7-A&R ISA, there
are 16 core registers including R0-R12, SP (Stack Pointer),
LR (Link Register), and PC (Program Counter) under user
mode. For each core register, it is possible that the register
is frequently used during a time period. So it is not safe to
utilize these registers to trigger the attack.

Another software reachable register is CPSR (Current Pro-
gram Status Register). The definition of CPSR is shown in
Figure 8. APSR (Application Program Status Register) is the
same register as the CPSR in ARMv7-A&R ISA, but the
APSR must be used only to access the N, Z, C, V, Q, and
GE[3:0] bits. N, Z, C, and V are condition flags. Q is the
overflow or saturation flag. GE[3:0] are the greater-than or
equal flags. In the Merlin processor, we realize all these flag
registers as part of APSR. All the flag registers can be modified
directly using the MSR instruction, or be modified indirectly
using arithmetic or logic instructions.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

N Z C V Q GE

Figure 9: Toggling rate of the NZCV, Q, and GE registers when
running the MFCC program

Figure 9 shows the toggling rate of the NZCV, Q, and GE

Table I: Some special instructions in ARMv7-A&R ISA

Instruction Introduction
PLD, PLDW, PLI Preloading caches

CLREX Clear local exclusive access record
DBG Provide a hint to debug and related systems

DMB, DSB Memory barriers that regulate memory accesses

registers when running MFCC, which is a speech recognition
program. We can see that the toggling rate of N, Z, C registers
are all below 5%. V, Q, GE registers does not toggle at all in
this benchmark. So these registers can be utilized as the trigger
input. We also utilize one reserved bit, CPSR[23], as the mode
switch flag in Merlin. We name it CPSR S. The toggle rate
of CPSR S is decided by the users. CPSR S always has very
low toggling rate, since it may degrade the performance if the
processor is to switch between the two modes too frequently.
So the CPSR S bit can also be used as the trigger input.

The bits in CPSR that we do not implement in Merlin
include IT[7:0], J, T, E, A, I, F, and M[4:0]. These bits cannot
be modified by MSR instruction directly, but some of these
bits can still be used as the trigger input. J and T compose the
instruction set state register. It indicates whether the processor
is working under ARM, Thumb, ThumbEE, or Jazelle mode.
The BLX instruction calls a subroutine at a PC-relative address,
and changes instruction set from ARM to Thumb, or from
Thumb to ARM. Exchange of the instruction set between
ARM and Thumb can make the T bit toggle frequently. While
there is little chance that this happens in common cases. So the
BLX can be utilized to trigger a Trojan in an ARM processor.
IT[7:0] is the IT block state register. This field holds the If-
Then execution state bits for the Thumb IT instruction. It is
possible to make one bit in IT[7:0] toggle by exchanging
between IT mode and normal mode. E is the endianness
mapping register. Normally, endianness is not changed in one
application, so the E bit almost does not toggle at all. But
we can use the SETEND instruction to set and clear this bit,
to make E bit toggle frequently. A (Asynchronous abort), I
(IRQ), and F (FIQ) are mask bits. These bits are less software
controllable, and it could be dangerous to use these bits to
trigger a Trojan attack.

There are also many special instructions which are rarely
used in common programs. Signals related to these instructions
are predicted to have low toggling rates. So these instructions
can also be used to trigger the attack. We list some of the spe-
cial instructions in Table I. For example, the PLD instruction
signals the memory system that data memory accesses from a
specified address are likely to happen in the near future. The
memory system can respond by preloading the cache line into
the data cache (pre-fetching). In Merlin, PLD is decoded in the
D unit, and then it signals the DMMU. Continuous execution
of PLD can make the related signals toggle frequently.

Regarding Merlin, there is another method to trigger the
attack. As we mentioned before, Merlin adopts a combined
Bimodal and PAp branch prediction method. Merlin fetches
256bit instructions each time, including 8 to 16 instructions.
This is called an instruction packet. Once branch instructions

Clock

Bp_en

Figure 10: Branch prediction enable signal toggling rate when run-
ning MFCC program

Clock

Bp_en

Figure 11: The branch prediction enable signal toggles more fre-
quently if triggered by software

are found in the instruction packet, the branch prediction
mechanism is enabled. As shown in Figure 10, Bp en stands
for branch prediction enable signal. We can see that the
Bp en signal rarely toggles when running MFCC program.
Whereas, we can make the branch predictor work more fre-
quently simply by adding branch instructions into the program.
Figure 11 shows that, when running the designed program, the
Bp en signal toggles more frequently than running the MFCC
program.

while success==0 do

 i ← 0

 R0 ← 0

 while i<200 do

 CPSR_J ← 0

 CPSR_J ← 1

 i ← i+1

 end while

 if read(R0) ≠ 0 then

 success ← 1

 end if

end while

Figure 12: Trojan trigger code

2) Select the Payload: In the hardware implementation, we
select the CPSR J bit as the trigger input. Since Merlin does
not support ISA extensions, this bit has no function. We use R0

as the attack payload. Once the attack is triggered, the value
store in R0 will be modified. The trigger code is shown in
Figure 12. We generate the trigger input by frequently writing
0 and 1 to CPSR J alternatively. When the Trojan is triggered,
it changes the value stored in R0 from 0 to 1 so that we can
observe the change through a register read.

V. EXPERIMENTAL RESULTS

Considering that the MCU is digital logic, and the hardware
Trojan is analog circuitry, we use Synopsys CustomSim to run
simulation. By declaring the name of the analog top-level cell
and the analog netlist, CustomSim will simulate the digital
logic via VCS [22], and call the related analog simulator to
simulate the analog logic. In this section, we will give the
simulation result, and introduce the SoC fabrication.

A. Simulation Results

Figure 13 shows the simulation result of the A2 analog
circuit. The frequency of the processor is 150MHz. We choose

Trigger Time = 9μs

Rentention Time = 15μs

Trigger

Input

Trigger

Output

Cap

Voltage

Trigger

Input

Trigger

Output

Cap

Voltage

Figure 13: A2 Trojan simulation result

the CPSR J as the trigger input. The toggling frequency of
the trigger input signal is 20MHz. The trigger time is 9 µs. It
means that the analog Trojan is activated after 180 toggling
events of the trigger input. This result demonstrates that the
analog hardware Trojan works in the ARM processor.

Attack

Detect

Trigger

Input

Trigger

Output

Figure 14: R2D2 detection circuit simulation result

Attack

Detect

Trigger

Input

Trigger

Output

Figure 15: A2 attack simulation without detection

Figure 14 shows the simulation result of the R2D2 detection
circuit. The detection circuit guards the CPSR J register. We
set the attack threshold as 64, and the monitoring timing
window is 256 clock cycles. From Figure 14, we can see that
the attack-detected signal generates a low level pulse, after
several toggling events of the trigger input. No trigger output
is generated. It means that the Trojan is detected and the attack
is prevented. The simulation result when we turn the detection
circuits off is shown in Figure 15. The attack-detected signal
remains 1. Trigger output is generated after several number of
toggling events of the trigger input. The result shows that the
R2D2 detection method is effective in detecting the Trojan.

B. Fabrication

The demonstration SoC is fabricated using the SMIC 130
nm Mixed-Signal 1P7M process. The layout of the MCU and
the analog hardware Trojan is shown in Figure 16. Figure 17
shows the photo of the SoC silicon die. In the SoC, the MCU
is integrated with 16 KB on-chip L1 program Cache, and 32
KB dual-port data SRAM. ROM is used to store the boot

6
.5

m
m

5μ
m

9.2mm

31μm

Figure 16: The SoC chip layout

MCU

D
a

ta
 S

R
A

M

ReRAM
array

ReRAM
array

ReRAM
array

ReRAM
array

Decoder Decoder Decoder Decoder

Driver Driver Driver Driver

L1 Program Cache

ROMPLL
System SRAM

B
T

B
 T

a
b

le

Figure 17: Photo of SoC silicon die

loader. It also embraces 4Mb embedded ReRAM. As shown
in Figure 16, the chip area is 9.2 mm by 6.5 mm. The area
of the analog hardware Trojan is 31 µm by 5 µm. Trojan-to-
circuit ratio is 2.6× 10−6.

The detection circuitry is also included in the fabricated
SoC, and it is guarding the CPSR J signal in the MCU. The
detection circuit is included in the MCU, by automatic place
and route, the gates composing the detection circuits are scat-
tered in the layout. The post-layout area of the detection circuit
is about 2225 µm2. Detection-to-circuit ratio is 3.7×10−5. For
the detection circuit, the main area consumption comes from
the counters. The size of the counters is related to parameters
setting. We set Tm=256, Ath=64, so the clock counter width
is 8, and the toggling event counter width is 6. This includes
about 70 gates. The AT register and MTW register include
about 12 gates. With these parameters we were able to verify
the operation of the Trojan and detection circuitry successfully.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implement an analog Trojan in a in-house
designed ARM processor. We also propose a runtime Trojan
detection method. The method targets Trojans triggered by
toggling events, overcoming a significant limitation of existing
Trojan detection schemes in detecting A2-alike Trojans. This
method is proved to be effective in detecting an analog Trojan
inserted in the ARM processor. The chip is also fabricated
using SMIC 130 nm Mixed-Signal 1P7M process. We intend
to continue this research direction by exploring topics such as
optimal parameter tuning, post-fabrication configuration using
ReRAMs, and split-manufacturing.

ACKNOWLEDGEMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61502032, and
by Tsinghua and Samsung Joint Laboratory.

REFERENCES

[1] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in Security Privacy, 2016, pp. 18–37.

[2] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” Design Test of Computers, IEEE, vol. 27, pp.
10–25, 2010.

[3] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), 2008, pp. 51–57.

[4] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachris-
tou, K. Roy, and S. Bhunia, “Hardware Trojan detection by multiple-
parameter side-channel analysis,” IEEE Transactions on Computers,
vol. 62, no. 11, pp. 2183–2195, 2013.

[5] M. Banga and M. Hsiao, “A novel sustained vector technique for the
detection of hardware Trojans,” in 22nd International Conference on
VLSI Design, 2009, pp. 327–332.

[6] S. Saha, R. S. Chakraborty, S. S. Nuthakki, D. Mukhopadhyay et al.,
“Improved test pattern generation for hardware trojan detection using
genetic algorithm and boolean satisfiability,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2015,
pp. 577–596.

[7] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan activation
time,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 1, pp. 112–125, 2012.

[8] S. Kelly, X. Zhang, M. Tehranipoor, and A. Ferraiuolo, “Detecting
hardware trojans using on-chip sensors in an asic design,” Journal of
Electronic Testing, vol. 31, no. 1, pp. 11–26, 2015.

[9] ARM, “ARM information center,” 2017. [Online]. Available: http:
//infocenter.arm.com

[10] Y. Hou, H. He, X. Yang, D. Guo, X. Wang, J. Fu, and K. Qiu, “Fumicro:
A fused microarchitecture design integrating in-order superscalar and
vliw,” VLSI Design,2016,(2016-12-15), 2016.

[11] N. Binkert, B. Beckmann, G. Black, A. Saidi, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, and S. Sardashti, “The gem5
simulator,” Acm Sigarch Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[12] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2012.

[13] C. Villavieja, J. A. Joao, R. Miftakhutdinov, and Y. N. Patt, “Yoga: A
hybrid dynamic VLIW/OoO processor,” 2014.

[14] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous block
architecture,” in IEEE International Conference on Computer Design,
2014, pp. 386–393.

[15] Khubaib, M. A. Suleman, M. Hashemi, W. Chris, and Y. N. Patt,
“Morphcore: An energy-efficient microarchitecture for high performance
ILP and high throughput TLP,” in Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 305–316.

[16] Z. Shen, H. He, X. Yang, D. Jia, and Y. Sun, “Architecture design
of a variable length instruction set VLIW DSP,” Tsinghua Science &
Technology, vol. 14, no. 5, pp. 561–569, 2009.

[17] J. K. F. Lee, “Analysis of branch prediction strategies and branch target
buffer design,” Computer, vol. 17, no. 1, pp. 6–22, 1984.

[18] J. E. Smith, “A study of branch prediction strategies,” Proceedings of
the 8th annual symposium on Computer Architecture, vol. 29, no. 6, pp.
135–148, 1981.

[19] J. Hoogerbrugge, “Dynamic branch prediction for a vliw processor,”
in International Conference on Parallel Architectures & Compilation
Techniques, 2000, pp. 207–214.

[20] G. Palermo, M. Sam, C. Silvan, V. Zaccari, and R. Zafalo, “Branch
prediction techniques for low-power vliw processors,” in ACM Great
Lakes Symposium on Vlsi 2003, Washington, Dc, Usa, April, 2003, pp.
225–228.

[21] S. Furber, “ARM system-on-chip architecture,” Network IEEE, vol. 14,
no. 6, p. 4, 2000.

[22] G. Nunn, F. Delguste, A. Khan, A. Verma, and B. Geden, “White
paper using digital verification techniques on mixed-signal socs with
customsim and vcs,” Synopsys, Tech. Rep., 2011.

