
SIN2: Stealth Infection on Neural Network
– A Low-cost Agile Neural Trojan Attack Methodology

Tao Liu∗, Wujie Wen∗ and Yier Jin†
∗Florida International University, †University of Florida
∗{tliu023, wwen}@fiu.edu, †yier.jin@ece.ufl.edu

Abstract—Deep Neural Network (DNN) has recently become
the “de facto” technique to drive the artificial intelligence (AI)
industry. However, there also emerges many security issues as the
DNN based intelligent systems are being increasingly prevalent.
Existing DNN security studies, such as adversarial attacks and
poisoning attacks, are usually narrowly conducted at the software
algorithm level, with the misclassification as their primary
goal. The more realistic system-level attacks introduced by the
emerging intelligent service supply chain, e.g. the third-party
cloud based machine learning as a service (MLaaS) along with
the portable DNN computing engine, have never been discussed.
In this work, we propose a low-cost modular methodology–Stealth
Infection on Neural Network, namely “SIN2”, to demonstrate
the novel and practical intelligent supply chain triggered neu-
ral Trojan attacks. Our “SIN2” well leverages the attacking
opportunities built upon the static neural network model and
the underlying dynamic runtime system of neural computing
framework through a bunch of neural Trojaning techniques. We
implement a variety of neural Trojan attacks in Linux sandbox
by following proposed “SIN2”. Experimental results show that
our modular design can rapidly produce and trigger various
Trojan attacks that can easily evade the existing defenses.

I. INTRODUCTION

Deep Neural Network (DNN) is now infiltrating a wide
range of real-world applications like image recognition, nature
language processing, self-driving cars, etc [1]. However, the
ever-increasing computation and storage requirements of state-
of-the-art DNN models significantly challenge the accessibility
of DNN-based intelligent services on many resource-constraint
platforms such as smart devices and drone. For instance, the
classification of cutting edge ResNet [2] involves excessive
memory accesses and computations over ∼150-million param-
eters within 152 neural layers, while its training typically takes
many weeks even over expensive multiple-GPU clusters. Such
a concern has motivated tremendous investments to explore
affordable intelligent computing systems and business models.

The emerging machine learning as a service (MLaaS) offers
off-the-shelf intelligence services through cloud-based neural
computing frameworks [3]. Meanwhile, many tiny hardware
accelerated deep learning systems (DLS), e.g. Intel Movidius
Neural Compute Stick (NCS) [4], have been emerging as
mature consumer electronic products, drastically lowering the
entering barrier and incubating the supply chain of intelligent
services: commercial neural models can be usually trained by
neural intellectual property (NIP) vendors or individuals, and
then distributed and eventually consumed by end users through
their leased or purchased products.

However, such a new business model also brings ever-
increasing security concerns. Recent studies show that attack-

This work is supported by the 2016-2017 Collaborative Seed Award
Program of Florida Center for Cybersecurity (FC2).

ers can easily mislead the decisions of a normally trained
DNN model by exploiting specific vulnerabilities of classifiers
through carefully manipulated input (adversarial attacks) [5].
Meanwhile, DNN models can be also contaminated at the
training stage, leading to undesirable inference results at
testing stage (poisoning attacks) [6]. However, these algo-
rithmic attacks place the “misclassification” as their primary
adversarial goal, which apparently neglects the back-doors
inside neural computing frameworks.

In this work, we target the DNN attacking problem with
a specific perspective on intelligent supply chain – untrusted
individuals or NIP vendors may stealthily infect the legitimate
neural network models with malicious payloads to conduct
practical neural Trojan attacks on end user side without harm-
ing the quality of intelligent services. Our major contributions
can be summarized as follows: 1) We develop a low-cost
Trojan insertion framework, namely “SIN2”, to facilitate the
novel and practical intelligent supply chain triggered neural
Trojan attack; 2) We propose a bundle of Trojan insertion
techniques for agile and practical Trojan attacks; 3) We vali-
date our proposed SIN2 methodology with realistic malwares
and security engines and demonstrate a variety of neural
Trojan attacks in a prototype Linux sandbox. Experimental
results show that our modular design can bypass the defensive
detection and precisely trigger the neural Trojan within the
intelligent system.

II. BACKGROUND

DNN introduces multiple layers with complex structures to
model a high-level abstraction of the data [7], and exhibit
high effectiveness in cognitive applications by leveraging the
deep cascaded layer structure [2]. The convolutional layer
extracts sufficient feature maps from the inputs by apply-
ing kernel-based convolutions. The pooling layer performs a
downsampling operation (through max or mean pooling) along
the spatial dimensions for a volume reduction, and the fully-
connected layer further computes the class score based on the
final weighted results and the non-linear activation functions.

Fig. 1 depicts an overview of a commercial intelligent
system, which incorporates two integrated components: neu-
ral network model and neural computing framework. As
shown in Fig. 1(a), the neural network model consists of a
comprehensive layer topology and associated parameters (or
weights) in each layer. Fig. 1(b) presents the generalized ar-
chitecture of neural computing framework, including runtime
system and computing substrate. We define the runtime sys-
tem as a middleware that can drive heterogeneous computing
substrates (i.e. CPU, GPU, FPGA and ASIC etc.) to conduct
neural processing (i.e. Convolution, Activation, Pooling and

BA

CD

A1 B1

C1D1

BA

CD

A 1 B1

C1D1

BA

CD

A 1 B1

C1D 1

BA

CD

A1 B1

C 1D 1

BA

CD

A

1

B

1

C

1

D

1

Input

Convolution 1 Pooling 1 Convolution 2 Pooling 2 Fully Connected Softmax

Lilium (56.25%)

Lotus (27.5%)

Narcissus(16.25%)

Lilium (56.25%)

Lotus (27.5%)

Narcissus(16.25%)

Lilium (56.25%)

Lotus (27.5%)

Narcissus(16.25%)

Flatten

Feature Extraction Classification

(a) Neural Network Model - the deep cascaded layer structure and probability-based classification.

(b) Neural Computing Framework – substrate and runtime system (with built-in neural processing functions).

GPUGPU FPGAFPGA ASICASIC DLSMLaaSMLaaS Convolution Pooling

Activation Softmax

GPU FPGA ASIC DLSMLaaS Convolution Pooling

Activation Softmax

System Integration and Runtime SupportSystem Integration and Runtime Support

Fig. 1: The architecture of commercial intelligent system.

Softmax etc.) through integrated application programming
interface (API). Computing substrates are dedicated hardwares
that can execute and accelerate DNN computation. For ex-
ample, Jouppi et al. [8] demonstrate the Tensor Processing
Unit (TPU), which is now integrated with Google Cloud
to provide on-demand MLaaS [9]. Barry et al. [10] present
the Vision Processing Unit (VPU) housed inside the Intel
Movidius NCS [4], to run real-time neural processing directly
from the USB device.

III. SIN2 METHODOLOGY

A. Attack Model

We assume the attacker (untrusted individuals or NIP ven-
dors) can provide the neural network computing services to
the victim (end users). To lower the cost, victim will directly
consume the services by leasing or purchasing the commer-
cial intelligent system which includes the neural computing
framework (computing substrate and runtime system) and the
pre-trained neural network model. As an intelligent service
provider, attacker possesses the full knowledge of the runtime
system and neural network model. The purpose of neural
Trojan attack is to threaten the victim by performing more
diversified malicious payloads on top of the original misclas-
sification in such an intelligent service. The proposed approach
will create the neural Trojan by exploiting the vulnerabilities
of the specific architecture of intelligent system.

Attack Vector. We design two types of attack vector to
facilitate the neural Trojan activation and payload extraction:
1) through the legitimate input (e.g. a normal image) provided
by the victim; 2) through the illegitimate input (e.g. a special
pattern) selected by the attacker, during the follow up service
on the pretext of “model upgrading” or “troubleshooting”.

B. The Overview of SIN2 Methodology

Attacker will train a clear neural network model to fulfill
the intelligent service required by the victim. The binary codes
of malicious payloads will be injected into the original neural
network model by replacing the LSBs of carefully selected
weight parameters through proposed embedding technique.
Meanwhile, attacker will then place awaken functions such
as triggering and extracting into the regular neural processing
(e.g. convolution, pooling, softmax etc.). These functions will

be later used to “awaken” the neural Trojan once the selected
inputs are involved in the regular neural processing; The neural
Trojan, i.e. the infected neural network model and runtime
system, will be delivered to victim through the intelligent
supply chain and disguised as a normal service. The victim will
directly consume the service (i.e. performing image recogni-
tion task) with legitimate input without compromising the user
experience (i.e. expected classification accuracy). Once the
neural Trojan has been triggered, malicious payloads will be
extracted from the infected neural network model and executed
through runtime system on victim side.

IV. ATTACK DESIGN

A. The Objective of Attack Design

A successful attack should satisfy following constraints:
Confidentiality. The neural Trojan should not impact the
quality of intelligent services and can evade existing security
detections from the victim side. Since the DNN parameter
manipulation during payload embedding can easily degrade
the classification accuracy of an intelligent system. Integrity.
The extracted payloads must be structurally executable when
the attacker activates the neural Trojan. Therefore, securing
the integrity of payloads during the embedding and extracting
process is essential to exert the attack. Efficiency. The practical
neural Trojan attack should be very efficient. Ideal Trojan
insertion methods should maximize the efficiency of payloads
embedding, e.g. more payloads but less number of modified
parameters for a DNN model. Following the aforementioned
unique design constraints, we present the technique details of

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
o
tr

m
a
li

ze
d

 A
cc

u
ra

cy

Fix-point bit width

Normalize to TOP-1 Accuracy 76% (ImageNet@ResNet50)

AlexNet GoogLeNet VGG-16 ResNet-50

Fig. 2: Inference accuracy affected by different fix-point bit width.

Runtime System
B. rec1 rec2

L
in

e
a
r m

o
d
e
l –

 ∑
 W

X

S
o
ftm

a
x

H1

H2

A1

A2

Layer (l-1) Output layer (l)

H2

Fully connected layers

w22

w32

x1

x2

x3

w12

w22

w32

x1

x2

x3

w12

w21

w31w31

x1

x2

x3

w11w11

w21

w31

x1

x2

x3

w11

net1

net2

before

activation

C
o

m
p
a

re

p1

p2

probabilities

T
a
rg

et C
la

ss

Payloads

3.

1.

2. OS

API

A.

legitimate

illegitimate

legitimate

illegitimate

A.

legitimate

illegitimate Extracting

Fig. 3: Illustration of triggering function based on activations in neural processing.

our SIN2 Methodology.

B. The Embedding and Extracting Technique

To embed (extract) the binary payloads into (from) the
neural network model is in analogy to digital steganogra-
phy [11]. However, this method cannot be directly applied
to payloads embedding in neural network model because
improperly binary data injection or replacement of DNN
parameters can easily degrade the quality of service (e.g. lower
the classification accuracy), thus to harm the attack confiden-
tiality. Therefore, we first explore the redundancy space, i.e.
the largest capacity of removable bits in weight parameters
without accuracy degradation, for several mainstream DNN
models [2], [12]–[14]. As shown in Fig. 2, though the required
bit widths for achieving the full accuracy of each individual
model are quite different, all models can eventually reach
the upper bound of inference accuracy at a much smaller
bit width (∼16-bit) instead of the original 32-bit, thus to
ensure the user experience. Algorithm 1 further presents the
details of proposed embedding (extracting) technique. We use
the index “layer-parameter-[start bit-end bit]” to indicate
an embedded binary block in neural network model. Note
that payload extracting follows a reversed operation of the
embedding process.

C. Triggering and Executing Through Neural Processing

Once the malicious data package has penetrated into the
static DNN model, our next step is to activate the neural Trojan
by leveraging the attack vector and runtime system. Fig. 3
shows the detailed procedures of triggering and executing.

Algorithm 1: Payloads embedding and extracting
// w: substitution bit width
// e: end index
// s: splitter for multiple payloads if applicable
// P: binary payloads
// F : binary neural network model
Embedding(w, P, F):
// calculate the number of involved parameters
e ← sizeof(P)/w
// store configurations
F1-1-[0-7] ← (w)b

F1-2-[0-15] ← (e)
[16-31]
b ; F1-3-[0-15] ← (e)

[0-15]
b

// bit substitution with payloads
L ← 1; M ← 4; W ← w − 1// layer
for i = 1; i 6 e; i++ do
FL-M -[0-W] ← P [(w×(i−1))-(w×i−1)] // bit-wise
M = length(FL) ? L++; M ← 1 : M++ // layer-wise

To build the trigger event, the selected key “A” has been
sent to the infected neural network model, the associated
{netj}key ∈ R in output layer will be recorded as the lock
“B”, i.e. {recj}lock(= {netj}key), and stored in runtime
system. During the inference, once the key-lock paring(s) is
matched, trigger will extract the embedded payloads from the
weight parameters and execute them through build-in API in
the runtime system.

V. SECURITY ANALYSIS AND DEMONSTRATION

Real-world malwares and anti-malware engines are selected
to validate the proposed neural Trojan insertion techniques.
The uncovered malware candidates are embedded into the
DNN model individually by following our proposed em-
bedding algorithm. We submit the uncovered and embedded
malware samples to multiple security engines [15] for malware
detection. The uncovered one represents the malware in its
original format.

Confidentiality, Integrity and Efficiency. As shown in
TABLE I, all uncovered samples have been successfully
detected at different rates, e.g. 7.5%∼90%, by 40 differ-
ent mainstream security engines. Particularly, the uncovered
sample “ZeusVM” demonstrates the lowest detection rate
(7.5%) among all uncovered candidates, due to its obfuscated
structure–malicious code has been concealed in image through
traditional stenography [16]. However, our embedded mal-
wares can easily bypass all the detections regardless of ex-
isting defense mechanisms like signature-based and heuristics
detections [17].

Besides, as shown in Table II, the integrity of payloads
can be well preserved through our proposed embedding and
extracting algorithms, thus to maintain their executable struc-
tures. Our embedding technique can be more efficient than
the existing training-based watermarking approach [6], i.e.
∼ 5s per payload v.s.∼ 2500s per digit watermark (see
TABLE II). The reason is that our method can support any
new payload (or new malware) embedding simply based on
the same parameters trained from the clear neural network
model, while the watermarking approach relies on new model
parameters obtained from additional trainings whenever there
is a new digit watermark to be embedded.

Demonstration. We implement a proof-of-concept neural
Trojan attack prototyped in Linux sandbox by following the
SIN2 methodology. TABLE III shows the detailed setting of
our simulation environment. The neural computing framework
“Torch” [18] is adopted to provide the visual recognition ser-
vices through the infected neural model. A “fork bomb” [19],

Neural Network Model input-512-256-128-10 Model Size 2213KB Dataset Fashion-MNIST
Malware Samples Asprox Bladabindi Destover Dropper Kovter Nsis Stuxnet ZeusVM ZeusVM-decrypted

Size 91KB 105KB 90KB 1601KB 422KB 1746KB 25KB 54KB 405KB

Detection Rate (%) Uncovered 72.5 75 77.5 52.5 67.5 65 87.5 7.5 90
Embedded 0 0 0 0 0 0 0 0 0

TABLE I: Anti-malware detection on selected malware samples.

Integrity of Payloads
Sample Uncovered MD5 Extracted MD5
Asprox D062D420E2AC73B0211AFE30063807FA D062D420E2AC73B0211AFE30063807FA

Bladabindi 5A559B6D223C79F3736DC52794636CFD 5A559B6D223C79F3736DC52794636CFD
Destover E904BF93403C0FB08B9683A9E858C73E E904BF93403C0FB08B9683A9E858C73E
· · · · · · · · ·

Effciency
Embedding through Bit Substitution Watermarking through Training [6]

Time Consumed ∼5s per payload ∼2500s per watermark

TABLE II: Validations on integrity, efficiency and triggering.

i.e. a self-replicating malware to drain the process resources,
is selected as the neural Trojan payload for conducting the
DoS attack. As shown in TABLE III, 48 parameters in the
neural network model are selected to embed the 96-bit payload
binary code, i.e. from “1-4-[0-1]” to “1-51-[0-1]”, with a 2-
bit substitution bit width. The specific “illegitimate” input
in Fig. 3 is selected to generate the Key-Lock pairing for
triggering the neural Trojan.

As Fig. 4 shows, the infected neural network model has been
loaded in “Torch” for the inference service. Two iterations
are performed in our demonstration – the former batch only
consists of normal inputs while the latter one includes the
key. At the second batch, the neural Trojan is triggered by
the key, i.e. the 101st input during the last Softmax through
our placed triggering function. The embedded “fork bomb”
are then extracted and reconstructed from the infected model
through the extracting algorithm, and eventually executed
in the runtime system to “freeze” the intelligent service.
Meanwhile, no more sessions can be established due to the
exhausted CPU resources (only half number of the cores are
assigned to the Sandbox), leading to a successful DoS attack.

VI. CONCLUSION AND FUTURE WORK

As the fast growing machine learning industry is subject
to ever-increasing security challenges, we for the first time
discover the vulnerabilities and potential threats introduced by
the emerging intelligent supply chain. In this work, a low-
cost modular methodology, namely “SIN2”, is proposed to
facilitate a novel and practical neural Trojan attack without
compromising the quality of intelligent services. Based on
a synthetic design built upon the neural network model and

Intelligent Application session

other sessions

neural Trojan has been triggered

Fig. 4: Demonstration on neural Trojan DoS attack.

Simulation Environment
Sandbox Intel(R) Core(TM) i7-6850K (using 6 of 12 cores)

Operating System Ubuntu Server 16.04.3.LTS
Runtime System Torch [18] API LuaJIT (C/CUDA backbone)

Dataset Fashion-MNIST (70K × 32× 32 samples)
Payload Binary

0110 0110 0010 1000 0010 1001 0111 1011
0010 0000 0110 0110 0111 1100 0110 0110
0010 0110 0111 1101 0011 1011 0110 0110

SIN2 Configuration
substitution bit width 2-bit parameter 1-1-[0-5] 0 0010

start parameter 1-4-[0-1] end parameter 1-51-[0-1]
parameter 1-2-[0-15] 0000 0000 parameter 1-3-[0-15] 0011 0000

TABLE III: Simulation environment and configurations.

neural processing paradigm, malicious payloads can be safely
distributed through provided intelligent services and precisely
activated on target while satisfying the confidentiality, integrity
and efficiency, indicating more flexible and practical attacking
strategies. In our future work, we will continue the research
on diversified neural Trojan attacks, i.e. hardware-based neural
Trojan attacks. Countermeasure techniques such as “enhanced
heuristic detection”, “neural model morphism” and “neural
behavior monitoring” will be explored to mitigate various
emerging neural Trojan attacks.

REFERENCES

[1] C. Szegedy, “An overview of deep learning,” AITP 2016, 2016.
[2] K. He et al., “Deep residual learning for image recognition,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[3] Amazon, “Amazon machine learning,” https://aws.amazon.com/
machine-learning/.

[4] Intel, “Movidius neural compute stick,” https://newsroom.intel.com/
news/intel-democratizes-deep-learning-application-development-
launch-movidius-neural-compute-stick/.

[5] I.J. Goodfellow et al., “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[6] Y. Uchida et al., “Embedding watermarks into deep neural networks,”
in Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval. ACM, 2017, pp. 269–277.

[7] G.E. Hinton et al., “Reducing the dimensionality of data with neural
networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[8] N.P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” arXiv preprint arXiv:1704.04760, 2017.

[9] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[10] B. Barry et al., “Always-on vision processing unit for mobile applica-
tions,” IEEE Micro, vol. 35, no. 2, pp. 56–66, 2015.

[11] S. Katzenbeisser et al., Information hiding techniques for steganography
and digital watermarking. Artech house, 2000.

[12] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[13] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[14] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] Metadefender, “Multiple security engines,” http://www.metadefender.
com/#!/scan-file/.

[16] XyliBox, “Zeusvm and steganography,” http://www.xylibox.com/2014/
04/zeusvm-and-steganography.html/.

[17] N. Idika et al., “A survey of malware detection techniques,” Purdue
University, vol. 48, 2007.

[18] R. Collobert et al., “Torch7: A matlab-like environment for machine
learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-192376, 2011.

[19] MalwareWiki, “Fork bomb,” http://malware.wikia.com/wiki/Fork
Bomb/.

