
Cycle-Accurate Information Assurance by
Proof-Carrying Based Signal Sensitivity Tracing

Yier Jin∗ and Bo Yang† and Yiorgos Makris‡
∗Department of Electrical Engineering and Computer Science, The University of Central Florida

†Department of Electrical Engineering, Zhejiang University
‡Department of Electrical Engineering, The University of Texas at Dallas

{yier.jin@ucf.edu, bo.yang.ts@gmail.com, yiorgos.makris@utdallas.edu}

Abstract—We propose a new information assurance model
which can dynamically track the information flow in circuit
designs and hence protect sensitive data from malicious leakage.
Relying on the Coq proof assistant platform, the new model
maps register transfer level (RTL) codes written in hardware
description languages (HDLs) into structural Coq representatives
by assigning all input, output, and internal signal sensitivity
levels. The signal sensitivity levels can be dynamically adjusted
after each clock cycle based on proposed signal sensitivity
transition rules. The development of data secrecy properties
and theorem generation functions makes the translation process
from security properties to Coq theorems independent of target
circuits and, for the first time, makes it possible to construct
a property library, facilitating (semi) automation of the proof.
The proposed cycle accurate information assurance scheme is
successfully demonstrated on cryptographic circuits with various
complexities from a small-scale DES encryption core to a state-of-
the-art AES encryption design prohibiting the leakage of sensitive
information caused by hardware Trojans inserted in RTL codes.

I. INTRODUCTION

The problem of maliciously intended modifications, com-
monly known as hardware Trojans, in manufactured inte-
grated circuits (ICs) has recently garnered interest not only
in academia but also in governmental agencies and industry.
Partly because of design outsourcing and fabrication migration
to low-cost areas around the world, and partly because of in-
creased reliance on third-party intellectual property (IP) cores
and electronic design automation (EDA) tools from various
vendors, the integrated circuit supply chain is now considered
far more vulnerable to malicious modifications than ever
before. In essence, the fundamental concern is that hardware
Trojan-infected chips might be capable of additional function-
ality that the designer, vendor, and customer are unaware of,
and this functionality may be exploited by the perpetrator
after chip deployment or FPGA implementation. Depending
on the field of application, the consequences of such attacks
can range from minor inconvenience to major catastrophes,
such as sabotaging or incapacitating a chip, stealing sensitive
data, etc. Motivated by this new circuit designing and semi-
conductor manufacturing concern, researchers have proposed
various methods for ensuring the security and trustworthiness
of integrated circuits, which mostly focus on post-silicon stage,
targeting attacks in untrusted foundry. These methods can be
categorized into three groups and can be applied based on
the availability of resources: reverse engineering, enhanced
functional testing, and side-channel fingerprinting [1].

Because of the time-to-market pressure and the request to
lower design costs, circuit designers and system integrators

rely more on third-party IP cores than ever before. However,
a full analysis of all previously proposed hardware Trojan
detection methods reveals that few efforts have been spent
in the area of pre-silicon hardware Trojan detection [2], [3].
Lacking of trusted RTL designs hampers with the effectiveness
of post-silicon hardware Trojan detection methods because
trusted RTL codes are often preliminary requests in these
methods. More specifically, the malicious modifications in
the circuit design written in hardware description languages
(HDLs) can easily invalidate the process of generating genuine
side-channel fingerprints or predicting low probability events
because no golden model is available given the threat from
RTL hardware Trojans. As a result, the protection of RTL
designs and the development of trusted HDL codes become an
urgent task among our efforts to protect the whole IC supply
chain.

II. DYNAMIC INFORMATION ASSURANCE SCHEME

The syntax similarity between hardware description lan-
guages and software programming languages opens the door
that we may protect third-party IP cores by exploiting software
program protection methods in which the well-known proof-
carrying code (PCC) serves as a good example. Originally
developed by G. Necula, PCC provides a way to determine
whether codes from potentially untrusted sources are safe
to execute [4]. The verification method is accomplished by
establishing a formal, automatically verifiable proof showing
that questionable codes obey a set of formalized properties.

Adapting principles of the PCC methodology in the hard-
ware domain, we propose a cycle accurate information as-
surance scheme performing data sensitivity tracking and in-
formation leakage prevention, which supports various levels
of circuit architectures, ranging from low-complexity single-
stage designs to large-scale deep-pipelined circuits. Similar
to the PCC in software domain, properties formalization and
proofs generation of the proposed scheme are also constructed
on the Coq proof assistant platform [5]. Further, a structural
Coq formal logic and a signal sensitivity transition model are
developed to represent circuit logic in the Coq platform and
to track information flow within the circuit, respectively. The
structural Coq formal logic is defined in such a way that
it can accurately map the data secrecy-related structure of
the original circuit to its Coq representative, leaving the cir-
cuit functionality unspecified. This signal sensitivity transition
model is used to facilitate dynamic information tracking in
multi-stage circuit designs.

99978-1-4799-0601-7/13/$31.00 c©2013 IEEE

Fig. 1. Trusted Bundle Preparation by IP Vendors

The proposed information assurance scheme can be applied
to any kinds of circuit designs, but it mostly focuses on circuits
dealing with sensitive information, such as cryptographic
designs, because it sets data secrecy as the primary goal and
tries to prevent illegal information leakage from IP cores under
protection. To achieve this goal, the proposed scheme assumes
that the data secrecy property is agreed upon by both IP
vendors and IP consumers beforehand so that the procedure
of security property definition, a critical step when applying
PCC in software domain, becomes trivial. The information
assurance scheme, for the first time, sets up security property
basis that is independent of target designs and is obeyed by
any parties involved in the IP transaction process. Note that
the security property basis with the characteristic of circuit
functionality- and circuit structure-independence reveals our
efforts toward constructing a security property library, a key
component for proof automation.

Figure 1 illustrates the preparation process of the trusted
bundle, which will later be delivered to IP consumers from IP
vendors. As the figure shows, IP vendors will first design the
circuit in the form of HDL codes based on the specification
provided by IP consumers. Relying on the structural Coq
formal logic and the signal sensitivity transition model, IP
vendors then convert HDL codes into structural Coq repre-
sentatives (aka Coq circuits). As a parallel step, IP vendors
will translate the predefined data secrecy property from plain
English text into formal theorems so that the Coq platform is
able to recognize and later prove them.1 Hardware IP vendors,
unlike their counterparts in software domain, do not need to
communicate with IP consumers to decide security properties.
Furthermore, because the data secrecy property is independent
of circuit functional specifications, IP vendors can perform the
property conversion process before they finish writing HDL
codes and store the converted Coq property in a property
library, in the form of theorem generation functions, which we
will introduce shortly, for other designs. The development of a
Coq property library and the reuse of theorem proof contents
lowers the workload for IP vendors and stimulates wider
acceptance of the proposed proof-carrying based hardware IP
protection scheme.

Note that IP consumers’ absence from the duty for imposing

1In the scope of this paper, our information assurance scheme only supports
the data secrecy property for IP cores and assumes that both IP consumers
and IP vendors accept this property.

Fig. 2. Data Secrecy Property Verification by IP Consumers

security properties on IP cores does not mean that IP con-
sumers lose control of the proof construction process. Rather,
through defining the circuit initial secrecy status when the
circuit is powered on (or is reset) and checking the stabilized
circuit secrecy status after a finite number of operating clock
cycles, IP consumers actively monitor the proof generation
process for the data secrecy property. The circuit initial secrecy
status and the stabilized status are in the form of signal
sensitivity lists, named as the initial signal sensitivity list and
the fix point signal sensitivity list, respectively.

Figure 2 shows the data secrecy property verification proce-
dure performed by IP consumers upon receiving the delivered
trusted bundle. As the first step, IP consumers will check
contents of both signal sensitivity lists. The validity of the
initial list is checked to ensure that sensitivity levels are
appropriately assigned to all input/output/internal signals and
are not changed by IP vendors. The circuit’s stable sensitivity
status contains complete information of the distribution of
sensitive information across the whole circuit, so the stable
list will then be carefully evaluated to detect any Trojan
channels that may leak sensitive information. Even though it is
possible for IP consumers to detect information-leaking chan-
nels through either primary outputs or maliciously constructed
side channels by scrutinizing the circuit stable status, in this
paper we only discuss cases in which hardware Trojans try to
illegally propagate sensitive information to primary outputs.
Wider coverage of malicious data stealing will be presented
in our later work.

Only if both signal sensitivity lists pass the initial checking,
can IP consumers proceed to the next step to regenerate the
Coq circuit from the delivered HDL codes based on the same
Coq formal logic. Along with delivered theorem proofs, the
reconstructed Coq circuit is loaded into a formal property
checker, where an automatic checking process is performed. A
“PASS” output from property checker provides evidence that
HDL codes do not contain any malicious leaking channels
prohibited by the data secrecy property. However, a “FAIL”
result is a warning signal that the data secrecy property is
breached because of malicious logics (or design faults) in the
delivered IP cores. In the domain of hardware Trojan detection,
the failure to pass the property checker leads to the detection
of inserted hardware Trojans.

100 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

III. COQ FORMAL LOGIC

The framework of the proposed cycle accurate information
assurance scheme, depicted in Figures 1 and 2, shows that both
IP vendors and IP consumers should perform the conversion
process from HDL codes to their Coq representatives. This
conversion step becomes a necessity because the proposed
dynamic scheme is built on the Coq proof assistant platform,
which only supports Coq formal language. Although additional
efforts have been spent to develop a customized formal plat-
form supporting syntax and semantics of Verilog (and VHDL)
directly, we still presently rely on the Coq proof assistant
platform and Coq proof checker.

The conversion process from HDL codes to Coq circuits,
though critical, is no more than a mapping procedure to rewrite
the circuit description from one language to another. This
conversion process can be finished either manually or automat-
ically, supported by two entities, a Coq-based formal semantic
model to describe circuit architecture and a set of HDL-to-Coq
mapping rules. The formal semantic model is designed only to
reflect the circuit structure but not to specify the functionality
for the following reasons: (1) The signal sensitivity transition
model, which tracks the information flow throughout the Coq
circuit, requires structural equality between HDL codes and
Coq representatives; and (2) The signal sensitivity transition
model does not impose any restrictions to the functionality
of Coq circuits, that is, functional definitions in the Coq
semantic model complicate the conversation process and add
unnecessary workload for IP vendors in preparing a trusted
bundle.2 Examples of conversion process and Coq circuits are
discussed in Section VI with all codes listed in Appendices A
and B.

IV. PROPERTY THEOREMS GENERATION

A. Signal Sensitivity Transition Model

Defined by the structural Coq formal semantic model, signal
values in Coq circuits represent their sensitivity levels, not
electronic values. Circuit signals are not just treated qualita-
tively as normal (not containing sensitive data) or sensitive
(containing sensitive data) [6] but are also quantitatively
allocated number 0 if they are normal or are allocated positive
integers if they are secure. A larger number indicates a higher
level of sensitivity so that the underlying signal requires
high-level protection. For example, noncritical controlling/data
signals, such as input clock signal, data loading signal, etc., are
set to value 0, whereas encryption/decryption key and plaintext
are assigned positive integers. We then need a mechanism to
depict the way in which signal sensitivity levels evolve during
circuit operation. The task is finished by a newly developed
signal sensitivity transition model that is constituted by a set of
signal sensitivity transition rules. These rules put restrictions
on how to upgrade/downgrade signal sensitivity levels during
the circuit operation. This model allows dynamic updating of
signal sensitivities after each clock cycle.

To ensure the integrity of the transition model and to prevent
sensitive information leakage from illegal signal sensitivity

2Note that the structural formal model may not apply to other security
properties in which complex Coq models are required.

downgrading operations, the Coq semantic model is adjusted
to be conservative so that only a small set of Coq circuit
operations are allowed to downgrade signal sensitivity levels.
The set of sensitivity downgrading operations can be further
divided into two groups: sensitivity downgrading expressions
and module instantiation.

• Sensitivity downgrading expressions. These expressions
are defined under similar syntax to other expressions
but often perform special operations with sensitive data
involved. For example, the permutation operation is the
only sensitivity downgrading expression in the Data
Encryption Standard (DES) core while XORing with
round keys is the only case for an Advanced Encryption
Standard (AES) circuit. Case studies of both DES and
AES encryption cores can be found in Section VI, with
codes in the Appendix.

• Module instantiation. Almost all modern designs are
of hierarchical structure with submodules instantiated to
perform various functionalities from round key generation
to memory control. It is quite difficult to track information
flow in and out of submodules if the whole design is
not flattened. To prevent attacks targeting the interface
between higher level modules and their submodules, we
propose a sensitivity reshuffling strategy under which out-
put signals from submodules are denoted as input signals
of the top module. These signals are called endogenous
inputs in contrast to primary inputs, which are hereafter
called exogenous inputs. All sensitivity assigning and
transition rules that apply to exogenous inputs are also
valid for endogenous inputs. This reshuffling strategy
eliminates the relation between inputs and outputs of
submodules so that submodules can adjust signal sensi-
tivity levels, including the sensitivity level downgrading
operation.

B. Signal Sensitivity List

To facilitate the operation of the signal sensitivity transition
model, all signal sensitivity levels in the target circuit are
managed in a centralized way such that the circuit’s entire
sensitivity status at a specified time t is stored in a signal
sensitivity list, where each element of the list represents the
sensitivity level of one signal–input, output, or internal signal.
IP consumers can easily check the validity of the secrecy
property by defining the initial status of the sensitivity list–the
starting point from which the sensitivity information spreads
across the whole circuit–and then monitoring sensitivity levels
of all output signals. Although the data secrecy property, which
serves as the basis of the proposed scheme, is independent
of the circuit functionality and architecture, the generation of
initial signal sensitivity list is closely related to the circuit
structure and the functional specification. Guidelines are de-
veloped for IP consumers to initialize signal sensitivities for
all signals, including inputs, outputs, and internal signals.

• Input signals. The assignment of input signal sensitivity
levels, including both exogenous inputs (primary inputs)
and endogenous inputs (submodules’ outputs), can be
divided into two steps: (1) Decide whether input signals

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 101

contain secret information; and (2) Measure the sensi-
tivity level of input signals if they contain secret data.
The first task is mostly finished upon the analysis of
circuit functionality and is relatively easy for IP con-
sumers because the circuit specification originates from
them. For example, a DES encryption core would have
plaintext, key, clock signal, and reset signal as exogenous
inputs and round keys and encryption round count as
endogenous inputs, which are shown in Figure 3. From
the DES specification, IP consumers can recognize that
exogenous inputs (plaintext, key) and endogenous inputs
(round keys) contain sensitive information so that their
sensitivity levels should be positive integers requiring
protection against information leakage attacks. Other
inputs like clock signal, encryption round count do not
contain sensitive information whose sensitivity levels are
set to 0. After categorizing input signals into sensitive or
normal, we proceed to the second task to decide the actual
sensitivity levels for sensitive signals with a larger num-
ber indicating a higher sensitivity level and vice versa.
The calculation process is closely related to the circuit
architecture designed by IP vendors, particularly domi-
nated by (pipeline-)stages of the circuit implementation.
Although more complex sensitivity level determination
algorithms will be developed as our research proceeds
on, a sensitivity level downgrading counting method is
used and is proved effective in our later demonstrations.
According to this method, upon receiving the HDL codes
and the description of circuit architecture, IP consumers
will check all paths from sensitive inputs to primary
outputs and count the number of sensitivity downgrading
operations along each route. The sensitivity levels of input
signals are set equal to the smallest count of sensitivity
downgrading operations among all these paths. Because
IP vendors may sabotage the circuit by adding extra sensi-
tivity downgrading logics to “bleach” sensitive signals, all
downgrading operations will be clearly marked with notes
explaining why and how these operations are performed.

• Internal signals and output signals. All signals other
than input signals are treated as normal with a sensitivity
level 0 because all internal and output signals are of preset
(or random) values, which surely do not contain any
sensitive information after the circuit is reset or powered
off. Exceptions happen in storage elements. For example,
non-volatile memory can keep stored values at power-
off mode and may already contain sensitive information
at the moment the circuit is powered on. This problem
is nicely solved because memory is always treated as a
submodule with all outputs categorized as endogenous
inputs under the reshuffling strategy.

The determined initial signal sensitivity list, combined with
the signal sensitivity transition model, helps both IP vendors
and IP consumers track the progress of how sensitive infor-
mation is propagated and finally absorbed inside the chip.

C. Theorem Generation Function

In this section, we will introduce the process of converting
the data secrecy property from English text to Coq theorems

in the scope of the proposed information assurance scheme.
Because the data secrecy property itself is independent of
the target circuit but the value of the initial sensitivity list
is determined by circuit functionality and implementation
architecture, we propose the concept of theorem generation
function, for the first time, which takes Coq circuits and sen-
sitivity lists as parameters and generates formal data secrecy
theorems for target circuits in Coq platform. The proposal of
theorem generation function is a breakthrough in the field
of proof-carrying based hardware IP protection because it
simplifies the theorem generation process for IP vendors
but provides equivalent safety controlling capability for IP
consumers through the definition of initial sensitivity list.
The theorem generation function also separates the work of
circuit development and security property theorem generation,
a major step towards EDA tools development for theorem and
proof auto-generation and makes it possible to integrate proof
construction into the standard IC supply chain.

Before digging into details of the theorem generation
function, we need to introduce a special sensitivity list that
represents stabilized circuit security status, if it exists.

Definition 1: Fix point sensitivity list.
A fix point sensitivity list is a special sensitivity list con-

taining circuit secrecy status at a specified time t with the
key characteristic of stability. Denoting coq_circuit as the
converted Coq circuit and fix_list as the fix point sensi-
tivity list, if fix_list represents the current circuit secrecy
status, then the circuit status will not change until the circuit
is reset (or is powered off). In Coq platform, if the signal
sensitivity updating function is update_sensitivity, the
stability characteristic is presented in the form

update_sensivitity coq_circuit fix_list t

= coq_circuit fix_list (t+1).

The data secrecy property, if described in English, means
“no sensitive data has leaked through primary outputs”. Sup-
ported by the signal sensitivity transition model, the “no
leakage” property can be further elaborated into three sub-
properties: (1) There exists a fix point sensitivity list; (2) The
fix point sensitivity list is achievable from a legitimate initial
sensitivity list; and (3) The circuit secrecy status defined by
a fix point sensitivity list is trusted. These three subproperties
will then be translated into Coq theorems relying on three
theorem generation functions as long as the target circuit and
the initial sensitivity list are both specified.

• Theorem Generation Function I: Existence. The exis-
tence of fix point sensitivity list is a preliminary request
ensuring that data secrecy property can be proved for
the target circuit. If we cannot find one or more fix
point sensitivity lists, we believe that the target circuit
is untrusted because sensitive data can be leaked freely.

• Theorem Generation Function II: Accessibility. The
existence property demonstrates the availability of fix
point sensitivity list for the target circuit, but it does
not provide evidence that the fix point sensitivity list is
accessible from the circuit’s initial secrecy status. The
second theorem tries to solve the problem that given the
initial sensitivity list, the circuit will finally achieve stable

102 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

status after finite clock cycles.
• Theorem Generation Function III: Trustworthiness.

Evaluating the trustworthiness of the derived fix point
sensitivity list is the most critical step when validating
data secrecy property. Because the fix point sensitivity list
contains complete secrecy status of the target circuit, the
goal of the trustworthiness theorem is to ensure that no
sensitive information has leaked through primary outputs
when the target circuit is stuck in the stable status.3

V. PRIOR WORK

The first expansion of the PCC methodology in trusted hard-
ware designs appeared in [7], where the authors introduced
the application of Proof-Carrying Hardware (PCH) in the
increasing prominence of FPGAs and reconfigurable devices.
A proof is generated to demonstrate that an agreed-upon
specification function is combinationally equivalent to the
FPGA implementation (aka FPGA bitstream file). However,
this IP protection approach can be only applied in FPGA
domain, and it is also limited by the need to specify exact
Boolean functionality.

To better implement security property verification in IP
protection, the authors in [8] presented a new Proof-Carrying
Hardware Intellectual Property (PCHIP) framework that helps
guarantee that specified security properties are fulfilled by
HDL codes. An IP acquisition and delivery protocol is also
proposed on the Coq proof assistant platform to ensure
the trustworthiness of purchased IP cores from untrusted IP
vendors. PCHIP, for the first time, provides a general IP
protection framework relying on security property proofs, but
it does not specify details of security properties for individual
design. Along this direction, the authors in [6] enhanced the
Coq representative to include an information flow tracking
property, a mechanism supporting the proof generation to
demonstrate that the underlying IP cores will not leak sensitive
data. However, the proposed data secrecy protection scheme,
though effective in detecting any kinds of data leakage caused
by hardware Trojans and/or design faults, suffers from the
limitation that it cannot be implemented on multi-stage designs
directly and can only check circuit trustworthiness in a static
way.

VI. DEMONSTRATIONS

To demonstrate the capability of the proposed cycle accurate
information assurance scheme in protecting data secrecy and
also provide concrete evidences that the proposed method
can be applied to any IP cores with various circuit sizes
and complexities, we employ two circuit designs in our
demonstration, a DES encryption core representing small-
scale, one-stage circuit logic and an AES encryption core as
an example of medium-scale, multi-stage design. The DES
example shows a rare case in which the initial signal sensitivity
list is also a fix point sensitivity list. The AES example,
in contrast, demonstrates a general situation for multi-stage
designs that the fix point sensitivity list is different from the

3In this paper, we try to prevent data leakage from primary outputs and
leave more thorough analysis on the fix point sensitivity list to future work.

Fig. 3. Diagram of DES Encryption Core and Signal Sensitivity Levels

initial list. In both examples, we show how HDL codes are
converted into Coq formal logic, how the initial sensitivity
lists are constructed, and how three theorems are constructed
from the theorem generation functions. Circuit descriptions,
both in HDL codes and the converted Coq circuits, generated
data secrecy theorems, and their proofs can be found in the
Appendix.

A. DES Encryption Core

The architecture of DES encryption core is shown in Figure
3, where the top module instantiates two submodules perform-
ing the functionalities of Key Generation and Feistel transfor-
mation, respectively. Figure 3 also shows that two register files
(L and R) are used to store intermediate encryption results for
the purpose of area optimization.

Coq DES Circuit Generation/Conversion. Based on the
Coq formal logic and HDL-to-Coq conversion rules, the
converted Coq DES circuit is of the same structure as that
described by HDL codes. No functionality is specified for the
Coq circuit.

Initial Sensitivity List. The analysis of the DES specifica-
tion tells us that desIn and key among exogenous inputs and
the endogenous input K_sub contain sensitive information,
meaning their sensitivity levels should be positive. Further,
the DES circuit only finishes one round of DES encryption
operation, so we assign level 1 to all sensitive signals in
accordance with the rule developed in Section IV-B. For
internal/output signals, signal initialization rules already set
their sensitivity levels to 0. That is, both L and R registers as
well as the output desOut are of initial sensitivity level 0.
Part of the circuit initial security status is also shown in Figure
3.

Theorems Generation. Theorems generation and proofs
construction are key parts of the proof-carrying based IP pro-
tection scheme because they provide mathematical evidence
that data secrecy is fulfilled by the delivered IP core and they
are part of the trusted bundle prepared by IP vendors. Assisted
by the three theorem generation functions, we can easily
generate theorems representing the existence, accessibility, and
trustworthiness of a stabilized circuit secrecy status.

Because of page limitation, constructed theorems and their
proofs can be found in Appendix A.

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 103

Fig. 4. AES Circuit Architecture and Initial Sensitivity Status

B. AES Encryption Core

The diagram of the AES encryption core is shown
in Figure 4, where the top module only instantiates
AES key expand 128 to generate round keys. SubBytes

(non-linear byte substitution), ShiftRow (row shifting), and
MixColumns (column mixing), though shown in an abstract
way, represent top-level logics but not module instantiations.

Coq AES Circuit Generation/Conversion. The procedure
to convert AES HDL code into AES Coq circuit is similar to
that in the DES case, with the difference being that the AES
core is of much larger circuit size and so are the converted Coq
circuits. For example, there are 95 signals in the AES circuit
versus 15 signals defined in the DES core, so the sensitivity
list in the AES design is longer than that in the DES design
(see Appendix B).

Initial Sensitivity List and Fix Point Sensitivity List. The
diagram of the AES design in Figure 4 also shows the initial
sensitivity levels of all circuit signals. Internal and output
signals are set to 0, whereas both endogenous and exogenous
inputs are assigned sensitivity levels depending on whether
or not they contain sensitive information. The key input and
internal round key are assigned sensitive level 1. Plaintext
input text_in is assigned level 2 because the plaintext,
before propagating to the output text_out, is XORed with
round keys twice.

The fix point list of the AES core is shown in Figure 5.
A comparison between Figure 4 and Figure 5 shows that the
fix point sensitivity list is different from the initial sensitivity
list in the AES design, a normal case for most medium- to
large-scale designs.

Theorems Generation. With the fix point sensitivity list
available, the task to generate theorems to prove the con-
sistence of the AES design with the data secrecy property
is simple and straightforward if assisted by the theorem
generation functions. Three theorems are generated to prove
the existence, accessibility, and trustworthiness of the circuit
stable status, with details shown in Appendix B.

VII. CONCLUSION

Compared with the work on preventing and detecting hard-
ware Trojans in post-fabrication chips, where many researchers
have already proposed possible solutions, the field of hardware
IP cores protection attracts less attention. The increasing

Fig. 5. Stable Sensitivity Status of the AES Circuit

reliance on third-party IP cores for hierarchical designs makes
it more important to protect IP cores against RTL Trojans. The
problem is also critical in the cryptography domain, where
IP cores run encryption/decrypiton operations serving as the
basis of system security. To protect IP cores dealing with
sensitive information, we proposed a cycle accurate infor-
mation assurance scheme within the scope of proof-carrying
based hardware protection, which can dynamically track the
spreading of sensitive information across the whole circuit
in a cycle accurate way and therefore detect any malicious
information leakage behaviors. Theorem generation functions
are also proposed to lower the workload of proof preparation
and pave the way toward the construction of a security
property library, a key step in proof generation automation.

ACKNOWLEDGEMENTS

This research was partially supported by the U.S. Army
Research Office (ARO) under grant W911NF-12-1-0091.

REFERENCES

[1] Y. Jin and Y. Makris, “Hardware Trojans in wireless crypto-
graphic ICs,” IEEE Design and Test of Computers, vol. 27, pp.
26–35, 2010.

[2] M. Banga and M.S. Hsiao, “Trusted RTL: Trojan detection
methodology in pre-silicon designs,” in IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST),
2010, pp. 56–59.

[3] S. Drzevitzky and M. Platzner, “Achieving hardware security
for reconfigurable systems on chip by a proof-carrying code
approach,” in 6th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011, pp.
1–8.

[4] G. C. Necula, “Proof-carrying code,” in POPL ’97: Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1997, pp. 106–119.

[5] INRIA, “The coq proof assistant,” September 2010,
http://coq.inria.fr/.

[6] Y. Jin and Y. Makris, “Proof carrying-based information flow
tracking for data secrecy protection and hardware trust,” in IEEE
30th VLSI Test Symposium (VTS), 2012, pp. 252–257.

[7] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying hard-
ware: Towards runtime verification of reconfigurable modules,”
in International Conference on Reconfigurable Computing and
FPGAs, 2009, pp. 189–194.

[8] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware
intellectual property: A pathway to trusted module acquisition,”
IEEE Transactions on Information Forensics and Security, vol.
7, no. 1, pp. 25–40, 2012.

104 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

APPENDIX A
CASE I: DES CIRCUIT

A. Full Version of HDL Codes
module des(desOut, desIn, key,

decrypt, roundSel, clk);

output [63:0] desOut;

input [63:0] desIn;

input [55:0] key;

input decrypt;

input [3:0] roundSel;

input clk;

wire [1:48] K_sub;

wire [1:64] IP, FP;

reg [1:32] L, R;

wire [1:32] Xin;

wire [1:32] Lout, Rout;

wire [1:32] out;

assign Lout = (roundSel == 0) ? IP[33:64] : R;

assign Xin = (roundSel == 0) ? IP[01:32] : L;

assign Rout = Xin ˆ out;

assign FP = { Rout, Lout};

crp u0(.P(out), .R(Lout), .K_sub(K_sub));

always @(posedge clk)

L <= #1 Lout;

always @(posedge clk)

R <= #1 Rout;

// Select a subkey from key.

key_sel u1(.K_sub(K_sub),

.K(key),

.roundSel(roundSel),

.decrypt(decrypt));

// Perform initial permutation

assign IP[1:64] = {

desIn[06], desIn[14], desIn[22], desIn[30],

desIn[38], desIn[46], desIn[54], desIn[62],

desIn[04], desIn[12], desIn[20], desIn[28],

desIn[36], desIn[44], desIn[52], desIn[60],

desIn[02], desIn[10], desIn[18], desIn[26],

desIn[34], desIn[42], desIn[50], desIn[58],

desIn[00], desIn[08], desIn[16], desIn[24],

desIn[32], desIn[40], desIn[48], desIn[56],

desIn[07], desIn[15], desIn[23], desIn[31],

desIn[39], desIn[47], desIn[55], desIn[63],

desIn[05], desIn[13], desIn[21], desIn[29],

desIn[37], desIn[45], desIn[53], desIn[61],

desIn[03], desIn[11], desIn[19], desIn[27],

desIn[35], desIn[43], desIn[51], desIn[59],

desIn[01], desIn[09], desIn[17], desIn[25],

desIn[33], desIn[41], desIn[49], desIn[57] };

// Perform final permutation

assign desOut = {FP[40], FP[08], FP[48], FP[16],

FP[56], FP[24], FP[64], FP[32], FP[39], FP[07],

FP[47], FP[15], FP[55], FP[23], FP[63], FP[31],

FP[38], FP[06], FP[46], FP[14], FP[54], FP[22],

FP[62], FP[30], FP[37], FP[05], FP[45], FP[13],

FP[53], FP[21], FP[61], FP[29], FP[36], FP[04],

FP[44], FP[12], FP[52], FP[20], FP[60], FP[28],

FP[35], FP[03], FP[43], FP[11], FP[51], FP[19],

FP[59], FP[27], FP[34], FP[02], FP[42], FP[10],

FP[50], FP[18], FP[58], FP[26], FP[33], FP[01],

FP[41], FP[09], FP[49], FP[17], FP[57], FP[25] };

endmodule

B. Full Version of Coq Representatives
Definition desIn : bus := 0. (* #0 *)

Definition key : bus := 1. (* #1 *)

Definition decrypt : bus := 2. (* #2 *)

Definition roundSel : bus := 3. (* #3 *)

Definition clk : bus := 4. (* #4 *)

Definition K_sub : bus := 5. (* #5 *)

Definition IP : bus := 6. (* #6 *)

Definition FP : bus := 7. (* #7 *)

Definition L : bus := 8. (* #8 *)

Definition R : bus := 9. (* #9 *)

Definition Xin : bus := 10. (* #10 *)

Definition Lout : bus := 11. (* #11 *)

Definition Rout : bus := 12. (* #12 *)

Definition out : bus := 13. (* #13 *)

Definition desOut : bus := 14. (* #14 *)

Definition des_signals : signal :=

outb desOut & (* #14 *)

inb desIn & (* #0 *)

inb key & (* #1 *)

inb decrypt & (* #2 *)

inb roundSel & (* #3 *)

inb clk & (* #4 *)

wireb K_sub & (* #5 *)

wireb IP & (* #6 *)

wireb FP & (* #7 *)

regb L & (* #8 *)

regb R & (* #9 *)

wireb Xin & (* #10 *)

wireb Lout & (* #11 *)

wireb Rout & (* #12 *)

wireb out. (* #13 *)

Definition des : code :=

assign_ex Lout (cond (eq (econb roundSel)

(econv (0))) (econb (IP @ [33, 64])) (econb R));

assign_ex Xin (cond (eq (econb roundSel)

(econv (0))) (econb (IP @ [1, 32])) (econb L));

assign_ex Rout (exor (econb Xin) (econb out));

assign_ex FP (eapp Rout Lout);

module_inst2in out Lout K_sub;

nonblock_assign_ex L (econb Lout);

nonblock_assign_ex R (econb Rout);

module_inst3in K_sub key roundSel decrypt;

assign_ex IP (perm (econb desIn));

assign_ex desOut (perm (econb FP)).

C. Data Secrecy Theorems and Proofs
Definition des_sen_initial : code_sen :=

1::1::0::0::0::1::0::0::0::0::0::0::0::0::0::nil.

Lemma fp_list_existence :

update_sensitivity des des_sen_initial = des_sen_initia

Proof. intros. reflexivity. Qed.

Definition des_sen_stable : code_sen:=des_sen_initial.

Theorem fp_list_accessability :

forall t : nat, t > 0 -> (check_sensitivity t

des des_sen_initial) = des_sen_stable.

Proof.

intros. induction H. reflexivity.

unfold check_sensitivity. rewrite fp_list_existence.

simpl. apply IHle.

Qed.

Fixpoint nth (n:nat) (l:list nat) {struct l}:nat:=

match n, l with | O, x :: l’ => x

| O, other => 999

| S m, nil => 999

| S m, x :: t => nth m t end.

Theorem no_leaking : nth desOut des_sen_stable = 0.

Proof. trivial. Qed. (*Property Proved*)

2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) 105

APPENDIX B
CASE II: AES CIRCUIT

A. Segments of HDL Codes
‘include "timescale.v"

module aes_cipher_top(clk, rst, ld, done, key,

text_in, text_out);

input clk, rst;

input ld;

output done;

input [127:0] key;

input [127:0] text_in;

output [127:0] text_out;

wire [127:0] w;

wire [31:0] w0, w1, w2, w3;

reg [127:0] text_in_r, text_out;

reg [7:0] sa00, sa01, sa02, sa03;

reg [7:0] sa10, sa11, sa12, sa13;

reg [7:0] sa20, sa21, sa22, sa23;

reg [7:0] sa30, sa31, sa32, sa33;

...

assign w3 = w[127:96];

assign w2 = w[95:64];

assign w1 = w[63:32];

assign w0 = w[31:0];

always @(posedge clk)

if(!rst) dcnt <= #1 4’h0;

else

if(ld) dcnt <= #1 4’hb;

else

if(|dcnt) dcnt <= #1 dcnt - 4’h1;

always @(posedge clk)

done <= #1 !(|dcnt[3:1]) & dcnt[0] & !ld;

always @(posedge clk)

if(ld) text_in_r <= #1 text_in;

always @(posedge clk) ld_r <= #1 ld;

// Initial Permutation (AddRoundKey)

always @(posedge clk) sa33 <= #1 ld_r ?

text_in_r[007:000] ˆ w3[07:00] : sa33_next;

always @(posedge clk) sa23 <= #1 ld_r ?

text_in_r[015:008] ˆ w3[15:08] : sa23_next;

...

B. Segments of Coq Representatives
Definition aes : code :=

assign_b w3 (w[127, 96]);

assign_b w2 (w[95, 64]);

assign_b w1 (w[63, 32]);

assign_b w0 (w[31, 0]);

(* // Misc Logic *)

nonblock_assign_ex dcnt (cond (enot (econb rst))

(econv 0) (cond (econb ld) (econv 10)

(cond (eor_bit dcnt) (eminus (econb dcnt)

(econv 1)) (econb dcnt))));

nonblock_assign_ex done

(eand (eand (enot (eor_bit (dcnt[3,1])))

(econb (dcnt[0,0]))) (enot (econb ld)));

nonblock_assign_ex text_in_r

(cond (econb ld) (econb text_in)

(econb text_in_r));

nonblock_assign_b ld_r ld;

(* // Initial Permutation (AddRoundKey) *)

nonblock_assign_ex sa33

(cond (econb ld_r) (exor_key (text_in_r[7,0])

(w3[7,0])) (econb sa33_next));

nonblock_assign_ex sa23

(cond (econb ld_r) (exor_key (text_in_r[15,8])

(w3[15,8])) (econb sa23_next));

...

C. Data Secrecy Theorems and Proofs
Definition aes_initial_list : code_sen :=

0 :: 0 :: 0 :: 1 :: 2 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 ::nil.

Definition aes_stable_list : code_sen :=

0 :: 0 :: 0 :: 1 :: 2 :: 0 :: 0 :: 0 :: 0 :: 0 ::

2 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 ::

0 :: 0 :: 0 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 :: 1 ::

1 :: 0 :: 0 :: 0 :: 0 :: nil.

Lemma aes_sen_stable : update_sensitivity

aes aes_stable_list = aes_stable_list.

Proof.

intros. vm_compute. reflexivity.

Qed.

Lemma stable_code_sen_chk :

forall t:nat, check_sensitivity t aes aes_stable_list

= aes_stable_list.

Proof.

intros.

induction t. vm_compute. reflexivity.

unfold check_sensitivity. fold check_sensitivity.

rewrite IHt.

apply aes_sen_stable.

Qed.

Lemma stable_state : forall t:nat, t = 5 ->

check_sensitivity t aes aes_initial_list

= aes_stable_list.

Proof.

intros.

rewrite H. vm_compute. reflexivity.

Qed.

Theorem fp_list_accessability :

forall t : nat, t > 5 ->

(check_sensitivity t aes aes_initial_list)

= aes_stable_list.

Proof.

intros. induction H. vm_compute. reflexivity.

unfold check_sensitivity. fold check_sensitivity.

rewrite IHle.

apply aes_sen_stable.

Qed.

Fixpoint nth (n:nat) (l:list nat) {struct l} :nat:=

match n, l with

| O, x :: l’ => x

| O, other => 999

| S m, nil => 999

| S m, x :: t => nth m t

end.

Theorem no_leaking_1 : nth done aes_stable_list = 0.

Proof. trivial. Qed. (*Property Proved*)

Theorem no_leaking_2 :

nth text_out aes_stable_list = 0.

Proof. trivial. Qed. (*Property Proved*)

106 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

