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Abstract—We introduce a novel hardware intellectual property
acquisition protocol, show how it can support the transfer of
provably trustworthy modules between hardware IP producers
and consumers, and discuss what it might mean for a device
to be considered “secure.” Specifically, we demonstrate the
applicability of previous work in the software field of Proof-
Carrying Code (PCC) to the problem of hardware trust and use
it to combat the threat of hardware IP-level Trojans. We outline
a semantic model representing the constructs permissible in a
Verilog hardware description language (HDL) and show how this
model can be used to reason about the trustworthiness of circuits
represented at the register-transfer level (RTL). A discussion of
“security-related properties” reveals how rules for trustworthy
operation might be established for a particular design without
necessarily specifying exact functionality. We then examine a
hypothetical scenario involving a consumer with certain security
needs and show how our system could be employed to guarantee
that these needs are met by a hardware IP vendor’s code.

I. INTRODUCTION

The problem of hardware security has grown more impor-

tant and more difficult with the emergence of an increasingly

globalized design process. The tight control manufacturers

once exerted over their devices is no longer possible when

more complicated systems now employ hardware components

from a variety of different suppliers whose trustworthiness

is unknown [1], [2]. Researchers have, accordingly, devised

techniques to diffuse the threat of malicious circuitry (a.k.a.

hardware Trojans) being inserted into the supply chain, relying

variously on physical, behavioral, and formal methods [3]–[8].

Our scheme is different from previous approaches to the

problem of hardware Trojans in that it does not concentrate

on the physical level of chip layout, but focuses instead on

the security of third-party Intellectual Property (IP) modules

commonly used in contemporary designs. Moreover, it differs

even from all other pre-silicon security methods, such as [9],

because it makes guarantees that are more expressive than

simple equivalence testing.

We imagine an attacker who makes malicious modifications

to a module’s HDL code in order to introduce the potential

for undesired behavior. This module may then be sold for

use in a larger system which, with the inclusion of tampered

IP, becomes itself vulnerable to attack. If, however, we can

guarantee that certain carefully specified properties hold across

the outputs of components from untrusted IP vendors, then we

may be able to guard against certain types of undesirable or

insecure behavior. These can include disruption of operation,

manipulation of signals, or misuse of sensitive data. Each case

Fig. 1. Module Design and Acquisition Protocol

requires different kinds of properties, but a strong specification

can render many modes of attack significantly more difficult

to implement. If these safeguards become integrated into the

design process, then when an IP consumer asks for some

module to be constructed, he will provide the vendor with

not only a functional specification, but also a list of specific

security-related properties that the desired module must obey.

It is then the vendor’s task to construct a formal proof

demonstrating adherence to these properties. Figure 1 outlines

such an interaction.

A similar idea has been proposed for software as Proof-

Carrying Code (PCC) [10]. In its original form, PCC required

the acceptance of a large, unverified code base at its core. As

a solution to this problem, researchers have developed Foun-

dational PCC (FPCC) which uses a universal logic framework

to model the semantics of all possible assembly language

instructions and is written in the same logical inference

language used to write correctness proofs, thereby subjecting

the entire system to validation by the proof checker [11]–[13].

Further work has led to the creation of a Certified Assembly

Programming language (CAP) [14], [15], upon whose con-

struction and application we model our reformulation of PCC

for use with hardware IP.

A parallel concept of Proof-Carrying Hardware (PCH) was

first proposed in [16], but the authors showed only that

correctness proofs could be generated for FPGA bitstreams

in order to provide assurance that the given gate configuration

implements a specific boolean logic function and therefore
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did not allow for true functional variation. Furthermore, their

method relied on a SAT solver rather than a formal high-level

proof assistant tool, and thus more closely resembles formal

verification than PCC. We, however, shift our analysis up to

the register-transfer level (RTL), expanding the domain of

provable specifications to include more complicated behavioral

properties given in a temporal logic, achieving for hardware

the same level of flexibility offered by PCC for software.

In our system, proofs are written in the Coq proof assistant

language and are therefore easy to validate automatically,

allowing the consumer to know very quickly whether or not

the HDL code conforms to a given set of security-related

properties. Just as with PCC and PCH, the computational

burden of verification falls on the IP vendor, not the consumer.

The vendor must make a significant investment of time in the

construction of a proof, but the consumer’s task of verifying

it is trivial in comparison.

Our novel contribution is to create a set of definitions in

the Coq [17] language (Section IV) that models the behavior

of all possible statements in a domain-specific Verilog we

specify in Section III. We also describe, in Sections IV and V,

a set of rules to automatically generate the Coq representation

of any given Verilog module for use in security compliance

proofs. We then illustrate the usefulness of our framework

by way of a contrived design scenario in Section VI. We

present a model consumer with need for a specific component

and imagine what sort of security requirements this consumer

would have. The example covers formulation of security

properties, translation into the temporal logic model we have

implemented in Coq, sample HDL implementations, and the

construction of proofs.

II. DESIGN PROCESS & UTILITY OF PROOF-CARRYING

HARDWARE INTELLECTUAL PROPERTY

If the consumer wishes to order a component from the

IP vendor, our design framework requires that he decide

upon a set of security properties in addition to the standard

functional specification. Both parties must then agree upon a

fixed translation of these properties into a formal mathematical

codification in the theorem-proving language. As the vendor

writes HDL code for the final product he also produces a

formal proof as shown in Figure 1. This is not a type of testing

procedure, but rather a new stage of the hardware design

process to be carried out in addition to standard verification

and debugging. Although we will see that the temporal logic

used to specify security-related properties does resemble the

syntax of many hardware assertion languages, the verification

of these properties is not an assertion-based process. It is not

at all necessary to test the module in simulation or emulate

it on an FPGA to see that the properties are obeyed. Instead,

the vendor need only construct a valid formal proof to show

that these properties hold under all operational conditions.

This proof, once constructed, becomes a part of the finished

package delivered to the IP consumer who, in turn, may then

easily check the proof by running it through the Coq language

interpreter. If the proof is valid, then he can accept the

design, knowing that its operation stays within the functional

boundaries set by the security property list. If the consumer is,

say, a government or military organization, then he will have

a strong reason to negotiate the production of such assurances.

But it is also true that the vendor, too, will be able to assure

himself that no in-house manipulations of the design have

introduced functionality in violation of these safety rules.

It may also be the case that this delivered component will

itself be incorporated into a larger system. It may therefore

be worthwhile to consider, at the beginning of the design

cycle, whether some additional properties may be of use when

constructing a similar proof for the larger design into which

this sub-component is later integrated.

As a continuation of that idea, we fully expect proofs to

eventually be constructed modularly, much in the same fash-

ion as IP cores themselves. As smaller components become

embedded in larger systems, so too may the proofs of their

respective security properties be used to demonstrate that the

higher-level device is also subject to certain constraints in its

operation. As some devices become standardized, and general

consensus is reached on the sorts of relevant properties, a

library of code-proof combinations will slowly be built. This

will significantly simplify the task of proof construction while

still maintaining the integrity of the framework. Additionally,

some design teams may wish to engage a third-party proof-

writer to construct a separate correctness proof in a strategy

resembling N-version programming.

III. PROVABLE PROPERTIES AT THE RTL-LEVEL: A

VERILOG SUBSET FOR SAFE HARDWARE

Because every statement in a module’s HDL code must

translate into a corresponding declaration in the theorem-

proving language, it is necessary to specify this HDL and

describe how such a translation might be carried out. We

choose a fully functional subset of the Verilog language as

our HDL, which we call Compact Verilog.

This subset has three main components: combinational

logic, sequential logic, and module declaration and instantia-

tion. The combinational logic component consists of assign

statements incorporating any of the standard bitwise logical

and conditional operators, as shown in the complete syntactic

specification below.

<assign-stmt> ::= <variable> "=" <assign-right>

<assign-right> ::= <expression> |

<expression> "?" <expression> ":" <expression>

<expression> ::= <variable> |

<expression> "|" <expression> |

<expression> "&" <expression> |

"˜" <expression> | "(" <expression> ")"

In Compact Verilog we support only synchronous sequential

circuits. This greatly decreases the complexity of many proofs,

but should still be sufficient for a wide variety of applications.

<always-block> ::=

"always @ (posedge clk)" <body>

<non-block-assign> ::= <var> "<=" <expr>

<body> ::= <stmt> |

"begin" <block> "end"

<block> ::= <stmt> | <stmt> <block>
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<stmt> ::= <non-block-assign> ";" |

"if" <cond> <body> [<elseif>]+ [<else>]

<elseif> ::= "else if" <cond> <body>

<else> ::= "else" <body>

<expr> ::= "˜" <expr> | "(" <expr> ")" |

<expr> "&" <expr> | <expr> "|" <expr> |

<expr> "+" <expr> |<expr> "-" <expr>

<cond> ::= <expr> "==" <expr> |

<expr> "<" <expr> | <expr> "<=" <expr> |

<expr> ">" <expr> | <expr> ">=" <expr> |

<cond> "||" <cond> | <cond> "&&" <cond> |

"!" <cond> | "(" <cond> ")"

Within the sequential logic we allow only if/else state-

ments (with the same logical and control operators as in

combinational assign statements) and non-blocking assign-

ment statements. As for the declaration of signals themselves,

we permit the wire and reg statements for both single-bit

signals and bus lines. We also allow for module instantiations

and definitions.

IV. PROOF FRAMEWORK IN COQ

Given the HDL specification presented in the previous

section, we derive a corresponding set of definitions in the

Coq theorem language to model the functionality of circuits

at the RT-level. This approach parallels [14]’s formulation of

inference rules for the instruction set of CAP.

A. Combinational Logic

We first define a value as an inductive set with two

constructors, called lo and hi, and a signal as a mapping

of time, specified in clock cycles and given as a natural

number, onto a value:

Inductive value := lo | hi.

Definition signal := nat->value.

On top of these we build “expressions” consisting of com-

binational logic and control operations on sets of signals. Also

defined as an inductive set, these expressions are essentially

equivalent to the parse tree generated by a Verilog compiler,

representing logical and arithmetic operations as a network

of symbols. These, in turn, are interpreted by the evaluate

function eval which recursively maps the expression tree

onto the values of signals at the specified time. Thus, for

instance, the logical AND of two signals causes first one signal

to be evaluated, followed by the second only if the first is

hi. In this way, the eval function defines the operational

semantics of expressions and is used to model the assign

statement:

Fixpoint eval (e:expr)(t:nat) {struct e} :=

match e with

| (econs sig) => (sig t)

| (and ex1 ex2) => match (eval ex1 t) with

lo => lo | hi => (eval ex2 t) end

| (or ex1 ex2) => match (eval ex1 t) with

hi => hi | lo => (eval ex2 t) end

. . .

The definition of eval provides the proof-writer (the IP

vendor) with a sufficiently precise definition of combinational

logic functionality to prove useful theorems about the behavior

of signals. To prove, for example, that a signal assigned to the

logical AND of two other signals is low at a given clock cycle,

he need only show that at least one input signal is also low at

this time and then “unfold” the definition in Coq to reveal the

underlying structural relationship between inputs and outputs.

For each Verilog assign we generate a corresponding

proposition with the assign function we have written in Coq

and express that proposition as a Hypothesis statement so

that the code vendor may refer to it in his proof:

Definition assign : signal->expr->Prop :=

fun (a:signal)(e:expr) =>

forall (t:nat), (a t) = (eval e t).

This yields a proposition that the value of the assigned

signal is equal to the value returned by calling eval on the

expression to the right of the assignment operator, for which it

also provides a Coq definition according to the rules outlined

above. Assignment statements for bus signals are modeled

with separate but analogous functions.

B. Sequential Logic

The fundamental inductive structure used to define sequen-

tial logic in Coq is what we have called the updateblock.

Like the expression definition for combinational logic,

updateblocks are constructed as trees of operations on

signals and bus lines. In this case, the permitted operations are

non-blocking assignment (to an expression), and conditional

assignment for bus lines, as shown below:

Inductive updateblock :=

| upd : signal->expr->nat->updateblock

| upd_bus : bus->bus->nat->updateblock

| upd_bus_cond : expr->bus->bus->

bus->nat->updateblock

| upd_bus_add : bus->bus->bus->

nat->updateblock

| upd_bus_sub : bus->bus->bus->

nat->updateblock

| updcons : updateblock->

updateblock->updateblock.

Every sequential block which appears within a Verilog

always statement generates a corresponding hypothesis in

our Coq model to capture the meaning of non-blocking as-

signment. As an example, suppose the following assignment

is to take place, as a result of some condition, in clock cycle

n:

x <= x + 1;

For this expression, our semantic model would evaluate to

a proposition that the value of x in cycle n + 1 is equal to

x + 1 (note that (x n) represents the value of x at cycle n

and S n is the successor function):

(x (S n)) = (x n) + 1

V. AUTOMATIC PROOF VALIDATION

Figure 2 shows the procedure for proof checking and

module validation by the consumer upon receipt of the product

from the vendor. The proof is first stripped of any circuit

definitions declared with the Hypothesis statement in Coq.

These are the generated Verification Hypotheses used to model

Verilog code based on the semantic representation described in
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the previous section. These hypotheses, once declared, admit a

proposition as true so that it may be used as a precondition for

a proof. They must therefore be deleted at the start of proof

checking and then regenerated automatically from the provided

HDL code. This is a necessary step because otherwise there

is no guarantee that the circuit behavior defined in the IP

vendor’s proof actually matches that of the coded circuit.

The IP consumer recombines this “clean” version of the

proof with the regenerated Coq circuit model and the frame-

work of definitions already described. At this point, the entire

assemblage of Coq code is given to the interpreter to be

checked. The consumer simply executes the Coq interpreter

program, and if execution passes through to the end of the

proof, then the proof is valid and the code obeys the security-

related properties.

Fig. 2. Automated Verification

VI. EXAMPLE DESIGN SCENARIO

In order to demonstrate the capabilities of our proposed

methodology, we describe a sample design scenario where an

assurance of trustworthiness is desired. By way of this example

we will show how intelligently-selected security-related prop-

erties can prevent certain kinds of malicious behavior, how

these properties are translated into a formal logic, how the

vendor of code that conforms to these properties can construct

a correctness proof, and, finally, how the consumer can check

this proof against the code.

Of particular noteworthiness in this example is the rela-

tive freedom granted to the HDL coder in deciding how to

implement the desired circuit, following as a consequence

of the higher level of sophistication allowed in our property

specification model as compared to others. We develop an

abstract notion of a “protocol” which delimits a range of

acceptable behaviors. This is in contrast to [16]’s proposal for

Proof-Carrying Hardware which allowed only for proofs that

an FPGA layout implements a specific boolean logic function,

requiring a level of specificity that precludes any functional

differences between implementations and does not really bring

the full potential of software PCC into the hardware domain.

A. Register File Copy Controller

Our example is the following: suppose that the client needs

a circuit which controls access to two register-files. Moreover,

suppose that this controller is required to have a special

mode called “copy” which, when activated by a special flag

signal, CF, causes the controller to transfer the contents of one

register file into the other. The sequence of reads and writes

is not important, and neither are the addresses at which any

individual value is stored; it is only required that each value

in the first register file be copied, unchanged, to some location

in the second. The illustration in Figure 3 shows how such a

component appears in block form.

A possible application for this module could be in an

automatic teller machine (ATM) where it will be used to create

and maintain two lists of account numbers for transaction

processing. Such a setting provides ample motivation for

strengthening security, since a nefarious hardware coder could

exploit his control of the circuitry for financial gain or to obtain

access to otherwise confidential information.

Fig. 3. Register File Controller Module

B. Choosing Security-Related Properties

One can easily imagine several types of behavior a malev-

olent supplier might introduce into his implementation of this

circuit; he could scan incoming data for a specific trigger value

to activate a special mode, selectively block certain registers

from being copied, enter an infinite loop on yet another trigger,

and so on. With carefully-crafted security properties, however,

the consumer can successfully safeguard against each of these.

Being aware of these possible modes of attack, the consumer

will probably choose a set of properties such as the following:

1.) Stability: do not enter copy mode unless the copy flag

has been raised, 2.) Transparency: when not in copy mode,

simply pass control signals through to both RFs, and 3.)

Termination-Transfer: when the copy flag is raised, enter

copy mode, transfer all values, unmodified from RF1 to RF2,

and then exit copy mode within a certain predefined number

of cycles.

These properties outline the limits of acceptable circuit

behavior, and so a proof of compliance with them will guard

against the kinds of attacks enumerated in the previous section;

any circuit engaging in such behavior clearly breaks the rules.
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We will now see how these properties may be translated

into a formal mathematical logic. Below is our rendering of

the specification into a set of Coq theorems (the bodies of

each proof are blank initially–these are to be filled in by the

vendor). Stability is easily expressed as a proposition that we

must remain outside of copy-mode in all cycles for which the

controller is not already in copy mode and for which the copy

flag is low:

Theorem stable_c : forall t:nat, t > 0 ->

c t = lo -> cf t = lo -> c (S t) = lo.

The definition of Transparency is similarly straightforward

in that it simply asserts an equality of the input and output

control signals.

Theorem transparency : forall t:nat,

t > 0 -> c t = lo ->

a1 t = a1_in t /\ d1 t = d1_in t /\

we1 t = we1_in t /\

a2 t = a2_in t /\ d2 t = d2_in t /\

we2 t = we2_in t.

The last property exhibits significantly greater complexity,

revealing where our framework can be most versatile. We

define Termination-Transfer–which contains the bulk of our

specification–as a hierarchy of sub-properties. For example, to

define the operation of reading from an address a, we create a

property called read which asserts that the value sent on the

address line to RF1 during the stated clock cycle is equal to

a. We also pass a variable, X , to capture the value returned

from RF1, allowing us to refer to this value when we show

that it is written to RF2.

Definition read := fun (a n t X : nat) =>

(a1 (t+n)) = a /\ (q1 (t + n)) = X.

The write operation is defined in a similar fashion, stipulat-

ing that write-enable is high during cycle t + n and that the

value sent on the data line to RF2 is equal to some value X . In

defining the complete transfer operation predicate, we link the

read and write properties together, asserting that the read X is

also the X to be written. But before we can describe the top-

level transfer property, we complete the write definition by

specifying write-uniqueness. Given as the unique property,

this asserts that a value, once stored, will not be overwritten.

That is, there exists no index nm > n in the current copy

at which write-enable is high and the same address is sent to

RF2.

Finally, transfer is defined to indicate a counter index

nf by which all possible addresses have been read from RF1

and written to RF2. We make this assertion with a universal

quantifier over all addresses a, requiring the existence of some

index n such that at time t + n we read the value X from

address a and for which there also exists some other index

nw at which we write X to RF2:

Definition transfer := fun (t nf : nat) =>

forall a:nat, a <= regs -> exists n:nat,

n > 0 /\ n < nf /\ exists X:nat,

(read a n t X) /\ exists nw:nat, nw > 0

/\ nw < nf /\ (write X nw t nf).

In specifying the security properties as we have done with

a complicated property-tree, we have paralleled the work

presented in [14], which also constructs an elaborate series of

quantified predicates in order to define a “valid free list” for

a memory allocator. We claim that this structural similarity

provides evidence for our framework’s unique success in

porting the flexibility of PCC into the hardware domain.

C. Proving Security Compliance

To see what might constitute an acceptable implementation

of the Register File Copy Controller circuit, we have crafted

two security-compliant examples. The first performs the copy

operation by sequentially reading register values from RF1,

saving them for one clock cycle, and then writing them to the

register at the same address in RF2. The second completes this

task in reverse order, counting down from the highest register

address to the lowest. Due to space constraints, we omit the

code for both circuits as it can be inferred from this description

and the architecture of the block diagram in Figure 3.

Once the circuit has been coded, the first step of any proof

construction is the generation of Verification Hypotheses.

Figure 4 shows examples of both combinational and sequen-

tial Compact Verilog code (taken from one of our sample

implementations) and their corresponding Coq Verification

Hypothesis representation.

With this generation having been completed, we may now

begin construction of a proof. The first two required properties

are trivial, so we will not describe their proofs here. For

the more complex Termination-Transfer rule, however, we

are forced to adopt a more elaborate plan of attack; just as

the property itself was stated as a combination of smaller

definitions, so too will the proof be constructed from a set

of more primitive lemmas. Although this proof is much too

large to be presented in its entirety, we will give a high-level

overview of our approach.

The method of induction on clock cycle informs our general

technique. Most lemmas rely on a “transition cycle” t which

marks the transition into copy-mode, and an index n which

counts a certain number of cycles after this transition. Thus,

if the transition occurs at time 15, then time 18 could be

represented as t = 15 and n = 3.

We write a lemma called read_eq to establish inductively

that the current read address remains one less than the write

address for the duration of copying. Other lemmas are then

constructed on top of this, proving for example that the

uniqueness sub-property holds on all writes and that the

sequence of operations performed in copy mode is a complete

transfer.

It is easy to imagine a parallel proof for the second circuit

and, indeed, we have constructed one using the same structure

of lemmas. To do this, we simply rewrote most of the lemmas

in a manner consistent with the new direction of operation,

changing definitions too where appropriate.

VII. CONCLUSION

While traditional approaches to hardware security have

focused on leveraging assertion-based testing and formal veri-

fication methods, we have shown that work done by computer
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� � � �. . . �
 (ifelse (and (bus_eq cur_write (const regs)) (not (econs cf)))�
      (noif (updcons�
        (updcons �
        (updcons �
          (upd_bus cur_read (const 0) t)�
          (upd_bus cur_write (const 0) t))�
        (updcons�
          (upd c (econs Gnd) t)�
          (upd cprev (econs Gnd) t)))�
        (upd_bus stored_value (const 0) t)))�
� � � �. . . �

� � �. . . �
�  if (cur_write == 5'b11111 & ~cf) begin�
� � cur_write <= 5'b00000;�
� � cur_read <= 5'b00000;�
� � c <= 1'b0;�
� � cprev <= 1'b0;�
� � stored_value <= 32'd0;�
�  end�
� � �. . . �

� �. . .�
Hypothesis assign_we2 : (assign we2 �
  (cond (and (econs cprev) (econs c)) �
    (econs Vdd) �
    (cond (econs c)�
      (econs Gnd)�
      (econs we2_in)))).�
� �. . . �

assign we2 = (cprev & c) ? 1'b1 : (c ? 1'b0 : we2_in);�

Fig. 4. Top: A Compact Verilog combinational assign statement and corresponding Coq definition. Bottom: Sequential Compact Verilog code and Coq
definition.

science researchers on PCC can be successfully translated to

the domain of hardware trustworthiness in order to provide a

definitive guarantee that HDL code obeys a set of security-

related properties.

By assigning vendors the task of constructing compliance

proofs for their hardware IP, we allow consumers to know

quickly and easily that the hardware they purchase operates

within the parameters they have chosen as provable security

properties. With a set of well-formulated and proven proper-

ties, the consumer will know that he cannot be the victim of

certain varieties of attack, as it will be impossible to prove

adherence to the rules for any module that engages in the

undesired behavior.

It is not difficult to imagine an extension of our framework

for use in other applications beyond the example design

scenario presented above. We believe that the current needs

of many hardware IP-consuming organizations could be better

served with such a framework for provably trustworthy hard-

ware acquisition as an established component of the design

cycle. Future work will include the production of an automated

verification generator, expansion of Compact Verilog into the

full Verilog language, a more thorough analysis of the sound-

ness of our inference rules, and the development of a better

behavioral circuit model in the theorem-proving language.
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