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Abstract

Without access to high-level details of commercialized integrated circuits (IC), it might be impossible to find potential design
flaws or limiting use cases. To assist in high-level recovery, many IC reverse engineering solutions have been proposed. This
paper focuses on a hard problem facing reverse engineering researchers, that of netlist partitioning. To assist in this endeavor,
we propose our own methods that focus on signal matching by analyzing fan-in trees. This analysis extends to representing
signal’s fan-ins numerically by their structural properties. These values go through certain common dimension reducing
algorithms; clustering practices are also leveraged to assist in our proposed partitioning process. Adversely researchers have
almost never agreed on the metric for evaluating such netlist partitioning methods. To keep our results unbiased, we leverage
the Normalize Mutual Information (NMI) to evaluate our proposed partitioning method and compare its results with other
techniques that aim to solve the same problem. Lastly, we show how our proposed methods are capable of effectively

partition netlists of larger scale than previously proposed schemes.

Keywords Reverse engineering - Gate-level netlist - Hardware Trojan - Structure analysis

1 Introduction

A potentially dangerous reliance on third party resources
has as of recent been largely fueled by a crucial need for
lower fabrication costs and smaller time-to-market (TTM).
This reliance and the ease of which a hardware Trojan can
be inserted into a netlist has facilitated an untrust that has
grown to epic proportions between intellectual property (IP)
vendors and consumers.
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Many methods for Trojan detection or removal has
been proposed [1, 2], and [3]. Researchers have shown
that some of these methods are ineffective at complete
prevention and detection [4]. Other Trojan defenses require
high level information about the circuit that might not
be available to all IP users. Thus, many researchers have
moved towards weaker defense models. At the heart of the
problem of Trojan detection lies a need for full function
recovery. Without complete IC comprehension, it would be
impossible to say for certain that an IC is Trojan free.

However, full function recovery has proved over the past
few decades to be a hard problem; the amount of research
is evidence of this [5-8]. Papers have shown the possibility
for accurate function identification on the module level,
which can easily allow for full function recovery, but the
research community lacks an accurate method for “netlist
partitioning”! that would allow identification methods to be
leveraged [11]. Even just high-level full function recovery
can allow any IC producers to more easily spot potential
back doors and hardware Trojans.

I'The netlist partitioning mentioned in the paper involves breaking the
signals of a netlist into smaller disjoint subsets that can represent either
different words, modules, or even IPs. It should not be confused with
the optimization problem presented in [9] or [10].
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For the aforementioned hardware Trojan detection
capabilities, this paper aims to pin-down an elusive sub-
problem for reverse engineering researchers focused on
solving full function recover. We plan to assist in laying
the ground work for a standardized method for evaluating
chip annotation while focusing on the netlist partitioning
problem. Past research on netlist partitioning has suffered
from two major problems,

— Alack of clarity regarding the problem itself;

— Although a plethora of research has been done in the
same thread as netlist partitioning, researchers have
either failed to openly and directly define their goals or
have not created an appropriate method for evaluating
the accuracy of their method.

Upon these challenges, we will re-investigate this “old”
problem of netlist partitioning. In addition, we will try
to develop metrics for gauging partitioning methods by
reintroducing previously developed clustering techniques
now for the sake of reverse engineering.

The main contributions of this paper are listed as follows:

—  We re-think the definition of netlist partitioning taking
into consideration the desire for reverse engineering
netlists, by demonstrating how state-of-the-art solutions
can fail under certain scenarios.

— We present several heuristic-based approaches for
netlist partitioning which aims to address the weak-
nesses associated with state-of-the-art partitioning
methods.

— We demonstrate a more effective method for evaluating
netlist word-level partitions and utilize it to provide
effective partitioning assessment.

The rest of this paper has the following structure. In
Section 2, we discuss precursors to, state-of-the-art methods
of, and methods reliant upon, netlist partitioning. We discuss
how certain state-of-the-art methods are not capable of,
nor have properly displayed the potential of, accurately
partitioning netlists. We discuss the reasoning behind our
methods and the reason for selecting our evaluation metrics
in Section 3. Section 4 presents our various partitioning
methods at varying levels of detail and discusses the
evaluation metric in greater depth. The results are presented
in Section 5. Section 6 discusses many possibilities an
extracted netlist provides and concludes the paper with a
summary of what was found in this paper.

2 Related Works

A major factor that spurred early development for reverse
engineering methods was the threat of hardware Trojans.
Many early hardware Trojans were inserted into FSMs at
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the RTL, which could allow, with certain input patterns,
behavior not within the original IC’s specification or
side-channel activity that could leak sensitive information.
Trojan detection methods in the form of logic structures
identification were proposed. An exemplary solution used
the topology and the knowledge of control signals to
help cluster signals into words [12]. The method of [12]
was originally designed with the intention of extracting
FSM words. Since many Trojans emulate such FSMs,
a simple extension to the paper would be to check the
effect of such words. The authors determined the method’s
effectiveness by considering the distribution of the sizes
of the generated words. The method showed promise, in
that many of the words generated were small, which allows
users to quickly determine their functionality. However, the
method’s accuracy was evaluated in any way which brings
into question its ability to correctly group wires. Due to the
method’s simplicity and justifications, a similar approach is
implemented and used for comparison in this paper.

Other works have used information from input/output
words to stitch together the data paths that make up
the netlist, for example WordRev [13]. Using an idea
called forward and backward propagation and a modest
signal comparison, signal pairs were checked and merged
into large word sets. After which by leveraging function
identification methods, a rough high-level IC design was
constructed. For analysis, a topology comparison was
done manually, and although the number of words found
between the different netlists varied the authors claimed the
topology was the same across each benchmark. The authors
mentioned that in one of the optimization parameters for
synthesizing the netlist, only 4-bits of the 6-bit words were
found propagated by their method. The authors conjectured
the missing bits meant the method was susceptible to
changes in optimization parameters.

Some other, less elegant approaches have also used
known structures to perform IC slice identification. In [7],
the authors examined netlist slices that contained 6 inputs.
Using a permutation invariant function matcher, the found
bit-slices were grouped into equivalence classes. Then using
these classes, components were merged through two major
methods: either by common signals, such as ones that
could control data flow; or by signal propagation, like those
found in adders. The authors also used a QBF solver and
a set of known circuits to identify parts that behave in an
equivalent manner. The author’s methods were evaluated by
considering circuit coverage. Perhaps the biggest critique
of this method was the failure to show how much of the
coverage was correct.

One other notable work used hash of trees to determine
if two signals are similar enough to belong to the same
word [14]. The method was very simplistic; to their credit
their method was much quicker than trying to match via
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a graph isomorphism. The authors also provided a way
to measure their method’s accuracy by examining the
percentage of full words and fragments found. This can
be misleading, and we feel that a more appropriate metric
for analyzing clusters should be used. It is also unknown
whether the group took into account over grouping, as
inappropriately merging two words could have a negative
impact overall on a partitioning method.

The methods mentioned above all used some form of
netlist partitioning, each with the goal of high-level netlist
analysis. Other methods have been proposed to split netlist
into smaller parts for identifying where circuit components
might be borrowing logic from. Such methods have tried
to, with unsupervised learning techniques, broadly classify
components based on their graph structure. A recent
example of unsupervised circuit labelings is [15]. Their
benchmarks were composed of both differing IP and the
same IP synthesized via different methods. What the authors
found was that there was some IP overlap between circuit
component clusters. The authors suggested that the overlap
meant either pieces were identified across IPs or there
were errors. These “rogue segments” were not thoroughly
examined in the paper. The results, although not allowing
necessarily for matching each part to the appropriate
function, could help detect the presence of known hardware
Trojan structures. The major weakness of this method was
that novel or unknown structures could be easily mislabeled,
especially when learning is done on a small, misrepresented
set of netlists.

3 Motivation

Large SoCs can be easily composed of many different IPs,
and even worse each IP could have many different modules
creating very large, complex structures, which would be
difficult to reverse engineer as a whole. To reduce the
required effort for analyzing circuits a different approach
can be taken. Rather than attempting to determine the IC’s
functionality all at once, researchers, such as those that
authored WordRev [13], try to analyze pieces of the netlist
and then after figuring out the components try to determine

the full picture. To begin this process, it is required that
accurately or at least meaningfully breaking a circuit into
pieces can be done. As mentioned previously, there are
many abstractions and layers that can compose a large SoC,
as can be seen by Fig. 1. Partitioning can be attempted
at each of these levels and function/module matching
could be performed for each of these resulting partitions.
This paper will focus on word-level partitioning in gate-
level netlists. To address the issues plaguing other word
partitioning methods mentioned in Section 2, we develop
a formal procedure based on well-documented clustering
techniques that leverages the exact word-level information
of the original netlist. That is the resulting partition of our
methods will be compared to the original design’s intended
word sets.

As shown earlier, there exist a number of ways to
numerically evaluate a partitioning method. However, many
methods introduce bias that allows certain possibly flawed
methods to appear to work well. For example, counting the
number of complete words found can be very misleading.
If words A and B are found by merging all bits of A and
B, we could argue that A and B, were found. However,
information of the words’ separation gets lost by this
partition, so although by the metric the method might look
efficient, the partitioning method does not work perfectly. In
a similar line of thought, we need to be aware that the coarse
and fineness of the ground truths structure should be taken
into consideration when evaluating a method at partitioning.

Due to the vast differences in hierarchical structure
between ICs, it becomes difficult to develop an evaluation
that does not favor certain methods. To prevent this
bias, the method of normalized mutual information (NMI)
is leveraged, which although has roots deep within
information theory domain, has been shown to be a modest
method for evaluating clustering schemes regardless of the
entropy of the ground-truth [16].

Another difficulty associated with evaluation of such
partitioning methods is that of multi-interpretation of
ground truths. When working with the HDL, or a similar
high-level language, the ground truth partitioning becomes
even more difficult to infer due to a potential reliance
on semantics that could change the ground truth without

Fig. 1 Simplified hierarchical
view of an SoC
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changing the observed netlist. Barring the potential for
multi-interpretation, we can assume that there will be only
one unique ground truth partition per gate-level netlist.

The last potential problem pertaining to netlist partition-
ing covered in this paper is that of multi-membership. Such
a situation occurs when a signal is shared between words.
A simple example could be generated by circuit reduction
using the circuit’s synthesis tool. It is a possibility that in a
large circuit redundant signals could be merged or removed
to improve IC performance. Multiple membership could
also occur when, based on certain control signals, a wire has
different behavior. Probably the worst situation for multi-
membership to appear is when there is a mistake in the
high-level code that somehow gets propagated through to
the resulting gate-level netlist.

In short, the most prevalent problems for researchers
involved in netlist partitioning are:

— Meaningfully evaluating the effectiveness of a partition-
ing scheme such that one method can be compared to
others;

— Handling ground truths where words can overlap;

— Deciding the correct ground truths where multiple
possible outcomes could be considered correct.

4 Methodology

In this section, we formalize our set of methods for
clustering. We also present the chosen method for evaluating
partitioning solutions.

4.1 Logic Identification Metrics for Partitioning -
REWIND

In previous work, a scoring method was leveraged to
distinguish logic verse data by using a recursive comparison
of fan-in trees. The proposed similarity function, f,
generated a score for pairs of signals that estimated
the matching substructures (RELIC) [17]. These resulting
similarity scores fell in the range of O to 1 inclusive, where
higher values meant a more similar structure. Originally,
the score was used to create an overall similarity score
by summing all the scores generated from comparing the
original wire with each other wire from the netlist. Logic
wires, assumed to be outliers, were selected based on the
lowest summations found, since logic should, unlike data
signals, have unique structures, the sum of logic signal score
should be low. There was a claim that these scores could
also be used to find data words as well.

This paper proposes a simple method for retooling the
original scores for netlist partitioning. The method we
see fit for partitioning uses a near pairwise comparison
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of signals, while utilizing a representative signal to seed
words. A pairwise comparison is the most straightforward
and obvious usage, especially since RELIC’s original
paper leveraged a pairwise comparison for detecting logic.
However, direct pairwise comparisons can be quite slow.
The work flow for the proposed partitioning scheme,
which we called Reverse Engineering Word Identification
(REWIND), is as follows. A signal that has not been
grouped to a word yet will be selected at random as a seed
signal. For each signal within some specified threshold of
the seed signal, that has not already been added to a word,
we will add it to a current word. After word seeding and
growth, the current word is added to the set of known words.
Since sometimes a signal might store the negation of the
word and involve the logical complement pin of a register,
we will allow comparison to be within some negation of
the original signal. The described process can be seen in
Algorithm 1.

Algorithm 1 Determine the word sets of a netlist with a set
of signals S, given a similarity score threshold, ¢, a similarity
score depth d, and a similarity score function f.

1: function PAIRWISESIMSCORE(S, t, d)
2 words <

3 seen < ()

4: for Random x € S A x & seen do
5: seen < seen U {x}

6: X <« {x}

7 forye SAy & seen do

8: if (f(x,y,d,T)>tV f(x,y,d,F) > t) then
9: seen < seen U {y}
10: X <~ X U{y}
11: end if

12: end for
13: words < words U X
14: end for

15: return words

16: end function

4.2 Bus Recovery via Similarity Score - REBUS

A direct follow-up to the original logic classification paper
was a method that leveraged data flow to extract the data
bus of a netlist (REBUS) [17]. The method does not
present formal results. The method used the same scores
generated by the logic classification method, and along with
the concept of forward propagation in [13], the follow-up
method tried to extract the data path in a netlist. The method
could, due to the reduced number of comparisons, have a
significantly better runtime than that of the original logic
classification method. This paper compares the results of the
bus-based method by examining both the time and accuracy
of the method on various types of netlists.

Aside from the standard inputs required from the original
logic classification method, the bus-based method needs a
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set of input words to seed the word set. An extension to
the method could utilize a set of output words to potentially
find correct word pairs starting from the output with the use
of backwards propagation. Regardless the method adds in
the pairs of known word signals to a queue. While there are
unresolved pairs within the queue, the proposed bus-based
partitioning method will try to find new word pairs. For
forward propagation, the fan-outs are examined from the
known word pair. Each pair of fan-out wires is selected, and
if the found fan-out signals do not currently belong to the
same word, the score between the two signals is evaluated.
If the resulting score is above certain threshold, the signals
have their words merged. Any new word signal pairs created
will be added to the queue, and evaluation will continue. The
pseudo-code for the process can be seen in Algorithm 2.

Algorithm 2 Determine the word sets of a netlist with a set
of signals S, given a similarity score threshold, ¢, a similarity
score depth d, a set of input words W, and a similarity score
function f.

1: function BUSBASEDPARTITION(S, ¢, d, W)
2 words < WU {{x}[Vw e W(x € SAx € w)}
3 q <9
4 for w € W do
5: forx,y e wAx # ydo
6: q.append((x,y))
7 end for
8: end for
9: for pair € g do
10: X < pair.first
11: y < pair.second
12: for x, € fanout(x) do
13: for y, € fanout(y) do
14: if (f(x0,50,d,T) >tV f(x0,Y0,d,F) > t) then
15: X <« X U{y}
16: wy < (w € words A x, € w)
17: wy < (w € words Ny, € w)
18: for x| € w, do
19: for y; € wy do
20: q.append((x1, y1))
21: end for
22: end for
23: words < words\{wy}
24: words < words\{wy}
25: words < words U {w, Uw,}
26: end if
27: end for
28: end for
29: end for
30: return words

31: end function

4.3 Principal Component Analysis based
Partitioning - REPCA

A previous approach used for finding possible similarities
between signals within words used comparison of signal
graph information [7]. A major detriment to such methods

is the redundancy of certain graph or structural information.
This redundancy is caused by the fact that synthesization
is typically performed by a deterministic protocol that
optimizes a netlist structure. The synthesis process has a
high chance of incorporating similar structure types due
to a user’s desire to optimize for some design parameters,
because of the described automation process, the variance
in structure across several variables might be poor.

In [7], dimension/information reduction was simply done
by leveraging graph dot products. This reduction could
allow a more accurate matching by eliminating extraneous
information that could lead to a misclassification while
still preserving the potentially distinguishing information.
However, for our work, we plan to use a more commonly
used method. One of the most common statistical method
for dimension reduction is principal component analysis
(PCA). The flexibility of such a technique led to the
development of Reverse Engineering Word sets using PCA
(REPCA)

Each signals’ initial numerical information for the PCA
based netlist partitioner was derived via certain structural
data, examples of which are fan-in set sizes and fan-out set
sizes both at various depths in the gate-level netlist. It is
possible that the same signal can belong to multiple sets
(see Fig. 2 for an example). Other fields consisted of gate
type (OR, AND, XOR), and temporal logic type (Flip-Flop
or not). We also kept information regarding the number of
clock cycles for primary input to affect the gate and the
number of clock cycles for the gate to affect a primary
output. Other netlist distances leveraged include the closest
flip-flop in the fan-in tree and closest flip-flop in the fan-
out tree, both of which are measured by the number of
non-buffer/inverter gates between the signal and selected
flip-flop.

After generation of the principle components, the first
7 peq cOmponents are used for comparison of signals. For the
comparison, a simple distance metric is used to determine
membership, where two points are within the same word,
if the euclidean distance between the two points are less
than pre-determined cutoff. To determine the appropriate
distance used for membership cutoff, a random set of edges
are selected. A ratio of edges that are included within words

AT >
D X

Depth of 1 gate
from X

Depth of 2 gates
from X

Fig. 2 A simple example of the structural information that can be
extracted from a gate-level netlist
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compared to the total number of edges is generated by an
expected number of words in the final partition. Although
it might not be the case, by assuming the inter-word signal
distances are always smaller than the intra-word distances
and that the number of signals per word are constant, then
the ratio can be approximated by the total number of edges
divided by the expected number of words.

Based on this expectation and on the desired number of
clusters, a distance is selected from the sorted set, which
acts as a good edge length cutoff. A sweep is then performed
over the set of signals. Like REWIND, when a random
signal is found to not be in a word, the signal is used to
start a new word. Any signals found to be within a specified
estimated distance is then joined to the word. Once each
signal has been handled, the word sets are returned. This
process is described in Algorithm 3.

Algorithm 3 Determine the word sets of a netlist with a set
of signals S, given their principle components, pc, a desired
number of words, n,, a scaling factor «, and a distance
metric, d.

1: function GETWORDSET(S, pc, ny, )
2 randDistances < ()
3 i <0
4: while i <« x |S| do
5: a <Random x € §
6: b <Random x € §
7 randDistances < randDistances.append(d(a, b))
8: i<—i+1
9: end while
10: sort(rand Distances)
11:  index « lrandDistances|
12: € «— randDist;rI{ces [lindex]]
13: words < (§
14: seen < {f
15: for Random x € S A x & seen do
16: seen < seen U {x}
17: X <0
18: forye SAy & seen do
19: if d(pc[x], pc[y]) < € then
20: seen < seen U {y}
21: X <~ X U{y}
22: end if
23: end for
24: words < words U X
25: end for
26: return words

27: end function

4.4 Evaluation Metrics

As discussed in Section 3, the technique for evaluation
of partitioning methods used in this paper is NMI. The
method itself is quite simple and has been used frequently
for clustering evaluation, which again makes it an obvious
choice when selecting an evaluation method considering
in some sense netlist partitioning is a form of clustering.
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As in [18] the formulation of NMI of a partition P and
ground-truth T can be expressed as
I(T, P)
H(T)+ H(P)
where I (T, P) is simply the mutual information and H (X)

is a type of entropy that normalizes /. Both of which can be
calculated by the following equations,

Inorm(T’ P) =

C(T) C(P) TN PSIIT
1T Py==23" 3" |10 Pf|log

s . ’ c c

i=1 =1 7] | P}

c(X)
H(X) =) [X{|log (|X])
i=1
where C(X) is the number of classes in partition X, |T| is
the total number of element or nodes in the partition, and X
is the set of the i-th class of partition X.

The value returned by the NMI is a real number in the
range [0, 1]. The closer to 0 the worse off the partition is to
the ground truth, while a NMI of 1 would be an exact match.
As an example if a partition where everything is in the same
cluster is compared against a ground truth with at least two
clusters, then the resulting NMI is 0 as no information is
recovered from the partition.

5 Benchmarking Results

In this section, we examine the various performances for
different partitioning techniques. To show the techniques
generalization, we analyze several different gate-level
netlists, with varying amounts of size and logic signals
versus data signals ratios. For each netlist, we extract the
desired netlist partition based on the register correspondence
to the original words in the RTL level code. The partition
results are collected from the various heuristic-based
method. Finally, the registers within the partition are
analyzed against the ground truth.

5.1 Experimental Setup

All simulations were run on an Xeon CPU ES5-2690 at
2.90 GHz with 128 GB of RAM. Logic classification and
bus-based methods were run with thresholds ranging from
0.75 to 1.00 with a step size of 0.01. A range of depth
was used from 2 to 6 with a step size of 1 on bus based,
logic classification based, and our PCA-based partitioning.
The PCA-based partitioning was run with a varying number
of expected words in the range of 200 down to 4. When
execution took longer than 2 h, the run was ended. For PCA,
the first three components were used for creating the vectors
used in partitioning.
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The baseline was run with a varying number of control
signals from 1 to 400. The NMI for the resulting partition
was collected and can be seen in Fig. 3. The maximum and
the minimum NMI are plotted with respect to the remaining
partitioning methods.

5.2 Normalized Mutual Information

On the results for the AES core, seen in Fig. 4, both
REWIND and REBUS were highly stable and neither
vary much with the given threshold. REBUS had a better
result than the simple classification-based scheme, but both
methods are capable of outperforming the control signal
based partitioning. The classification method on MSP430

Number of Control Signals

in Fig. 5 had results that varied on both the threshold and
the depth parameter. The higher the depth or the higher the
threshold, the better the performance, and although REBUS
had a higher performance on average, REWIND had the
best performance for a certain parameter combination. Also
seen in Fig. 5 both REWIND and REBUS were capable of
outperforming the control signal based method. However,
REWIND only did so with good parameter selection.

The MC-8051 also showed that both REBUS and
REWIND could outperform the control signal baseline (see
Fig. 6). It should be noted that once again REBUS’ par-
titioning was more consistent, but with certain parameters
REWIND was able to overtake the bus scheme in terms
of NMI. However, in the last netlist, the RSA core, both
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Fig.5 Cluster scores found 1
using REBUS and REWIND
compared to control signal based 0.9
matching on the MSP430 netlist

0.8

0.7

0.6

0.5

0.4

0.3

Normalized Mutual Information

0.2

e REWIND D2
0.1 e REBUS D2
e CONtrol Max

eeee REWIND D3
eees REBUS D3
e e Control Min

REWIND D4
REBUS D4

REWIND D5
REBUS D5

REWIND D6
REBUS D6

0

A2 A\ o @

oF

MSP430

REBUS and REWIND had lower maximum NMIs than the
control signal based method (see Fig. 7). Not only was con-
trol signal based partitioning better, but unlike in the other
three netlists REBUS always achieved a lower NMI than the
REWIND’s simple logic classification method. In short, on
the small RSA, control signal-based partitioning performed
the best. This might be caused in part by a lack of repetitive
structure due to the simplicity/size of the design.
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REPCA was also, with a limited parameter set, capable
of outperforming the control signal based method in terms
of NMI. REPCA, like REWIND and REBUS, was unable to
overtake control signal based partitioning as seen in Fig. 11.
As one would expect REPCA has its highest accuracy when
the expected number of words passed to the program is close
to the ground truths number of words. However, in practice,
guessing the correct number of words might be difficult, and
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Fig.7 Cluster scores found 1
using REBUS and REWIND
compared to control 0.9
signal-based matching on the
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REPCA’s performance suffers when the expected number
is too low, as can be seen by Figs. 8, 9, 10, and 11.
By leveraging the distributions of distances, the expected
number of words might be better inferred, but this is left as
a task for future works (Table 1).

Arguments for control signal-based clustering consist of
the fact that control signal methods might be more effective
on netlists with a higher amount of control logic. It was
mentioned in [12] that strongly connected components were
used to assist in partitioning the netlist, which would only
be useful for netlists that contain large amounts of nets that

Fig.8 Cluster scores found 1
using REPCA compared to

control signal based matching 0.9
on the flattened AES-128 netlist
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have some method of recurrent signal propagation. Hence,
it might not be fair to utilize each register in the comparison,
but to only compare registers that have a feedback signals.
The lack of data partitioning leads into a strong argument
against [12]; in certain flattened netlists that contain no self-
loops (e.g., the flattened AES core used in the experiments).
Strongly connected component methods are incapable of
performing any partitioning. To reiterate the point, this
paper aims to assist in full netlist partitioning, so such
analysis on partial netlist recovery is left as a consideration
for future work.
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Fig.9 Cluster scores found 1
using REPCA compared to
control signal based matching 0.9
on the MSP430 netlist
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5.3 Runtime

By far the fastest method found was to be the control
based signal partitioning (see Table 3). It was capable
of running over 100 times faster than any of the other
methods on certain netlists and no netlist took longer
than a second to execute. While REBUS might not be
as accurate, it is capable of running in a fraction of the

Fig. 10 Cluster scores found 1
using REPCA compared to
control signal based matching 0.9
on the MC-8051 netlist
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time compared to slower methods such as REWIND, in
part due to its limited comparisons (see Table 2). Due to
memory issues among other factors plaguing the scalability
of REWIND, the pairwise comparison-based method had a
very poor performance on the AES core. Conversely, since
the REPCA method has a sizable overhead, its runtime
does not get significantly effected by the depth parameter
(Table 3).
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Fig. 11 Cluster scores found

using REPCA compared to

control signal based matching
on the RSA netlist
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Table 1 Average time taken for various netlist partitioning methods that relied on the similarity score

Depth 2 3 4 5 6 FF Pins Ground truth entropy Ground truth words

AES Logic 146s 385s 1291s 4578s - 6720 5.36 405

AES Bus 11.4s 9.88s 11.5s 15.1s 19.6s 6720 5.36 405

AES PCA 23.9s 23.8s 23.9s 23.8s 23.9s 6720 5.36 405

MSP430 Logic 4.16s 5.49s 6.82s 7.91s 8.98s 734 433 133

MSP430 Bus 0.30s 0.39s 0.48s 0.56s 0.65s 734 433 133

MSP430 PCA 0.90s 0.91s 0.89s 0.88s 0.93s 734 433 133

MC8051 Logic 1.30s 1.97s 2.65s 3.19s 3.82s 578 447 121

MC8051 Bus 0.33s 0.38s 0.42s 0.54s 0.68s 578 4.47 121

MC8051 PCA 1.44s 1.40s 1.53s 1.49s 1.50s 578 447 121

RSA Logic 1.29s 1.88s 2.45s 2.64s 2.84s 295 2.53 16

RSA Bus 0.63s 0.70s 0.70s 0.63s 0.68s 295 2.53 16

RSA PCA 0.83s 0.86s 0.87s 0.88s 0.83s 295 2.53 16

Table2 Average NMI for

various netlist partitioning Depth 2 3 4 5 6

methods that relied on the

similarity score AES Logic 0.45 0.48 0.49 0.48 -
AES Bus 0.76 0.76 0.76 0.76 0.76
AES PCA 0.42 0.42 0.42 0.42 0.42
MSP430 Logic 0.41 0.55 0.62 0.67 0.69
MSP430 Bus 0.78 0.79 0.79 0.80 0.80
MSP430 PCA 0.62 0.62 0.62 0.62 0.62
MC8051 Logic 0.57 0.71 0.78 0.81 0.82
MC8051 Bus 0.81 0.83 0.83 0.84 0.84
MC8051 PCA 0.62 0.62 0.62 0.62 0.62
RSA Logic 0.76 0.78 0.77 0.75 0.72
RSA Bus 0.69 0.68 0.66 0.64 0.63
RSA PCA 0.63 0.63 0.63 0.63 0.63

Italic values represent the highest average score for the benchmark
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Table 3 Time taken and

average NMI for various Minimum Maximum Average time Average NMI
control signal based
partitioning AES 0.09s 0.46s 0.21s 0.19
MSP430 0.18s 0.71s 0.53s 0.59
MC8051 0.28s 0.89s 0.49s 0.47
RSA 0.06s 0.17s 0.15s 0.90

Italic values represent the highest average NMI for the benchmark

6 Conclusion and Future Work

The proposed methods were evaluated and shown to have,
for the most part, comparable runtimes. The results lead us
to believe that bus-based extraction method using forward
propagation are capable of consistently partitioning a netlist
with a modest accuracy. While REWIND had a higher
accuracy on part of the benchmarks, REBUS was able to
outperform REWIND in terms of runtime, and although the
control signal baseline method had a higher NMI on smaller
netlists, REBUS had a more consistent and on average a
higher NMI. Truthfully, the results show that there is a need
for more accurate methods. Based on the benchmarking
results, we can suggest that:

—  For small netlists, the resulting NMI implies that control
signal based partitioning will have the best results.

— PCA-based methods work best on larger netlists, when
the number of words can be accurately guessed.

— Finally, with no high-level information regarding the
circuit, a large netlist can best be recovered by existing
netlist reverse engineering methods [19-21].

Further, an efficient netlist partition method opens
up opportunities to address many subsequent challenges
such as RTL reconstruction, functionality determination,
and hardware Trojan detection. After the high-level
functionality, often in the format of RTL representation, is
reconstructed, the next step is to screen the RTL code for
any inserted hardware Trojans or malicious backdoors.
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