
Journal of Hardware and Systems Security (2018) 2:142–161
https://doi.org/10.1007/s41635-018-0036-3

Development and Evaluation of Hardware Obfuscation Benchmarks

Sarah Amir1 · Bicky Shakya1 · Xiaolin Xu1 · Yier Jin1 · Swarup Bhunia1 ·Mark Tehranipoor1 ·Domenic Forte1

Received: 8 October 2017 / Accepted: 18 March 2018 / Published online: 4 June 2018
© The Author(s) 2018

Abstract
Obfuscation is a promising solution for securing hardware intellectual property (IP) against various attacks, such as
reverse engineering, piracy, and tampering. Due to the lack of standard benchmarks, proposed techniques by researchers
and practitioners in the community are evaluated by existing benchmark suites such as ISCAS-85, ISCAS-89, and ITC-99.
These open source benchmarks, though widely utilized, are not necessarily suitable for the purpose of evaluating hardware
obfuscation techniques. In this context, we believe that it is important to establish a set of well-defined benchmarks, on
which the effectiveness of new and existing obfuscation techniques and attacks on them can be compared. In this paper,
we describe a set of such benchmarks obfuscated with some popular methods that we created to facilitate this need. These
benchmarks have been made publicly available on Trust-Hub web portal. Moreover, we provide the first evaluation of several
obfuscation approaches based on the metrics and existing attacks using this new suite. Finally, we discuss our observations
and guidance for future work in hardware obfuscation and benchmarking.

Keywords Hardware obfuscation · Benchmark development · Benchmark testing · Hardware security

1 Introduction

With the rising costs of chip fabrication at advanced technol-
ogy nodes and ever-increasing design complexity, today’s
semiconductor industry has shifted to a predominantly fab-
less business model. In this model, a design house typically
sources pre-designed and pre-verified hardware IPs from
different sources including third party IP (3PIP) vendors,
integrates them into a system-on-chip (SoC), and ships the

� Sarah Amir
sarah.amir@ufl.edu

Bicky Shakya
bshakya@ufl.edu

Xiaolin Xu
xiaolinxu@ece.ufl.edu

Yier Jin
yier.jin@ece.ufl.edu

Swarup Bhunia
swarup@ece.ufl.edu

Mark Tehranipoor
tehranipoor@ece.ufl.edu

Domenic Forte
dforte@ece.ufl.edu

1 University of Florida, Gainesville, FL 32611, USA

final layout to an off-shore foundry for fabrication. This
trend has resulted not only in decreased costs and quicker
turnaround times but also in a plethora of security issues.
Most notably, an untrusted off-shore foundry could engage
in IP piracy, overproduction, malicious modifications (hard-
ware Trojan insertion), and cloning. Further, once the chip
enters the supply chain, it is also vulnerable to various
reverse engineering attacks, which aim at extracting the
design or specific secrets from a design.

The most prevalent method of protecting IPs today is IP
encryption [19]. In this approach, electronic design automa-
tion (EDA) tools provide a platform for encrypting IP.
System integrator needs to verify the correct functionality of
the incorporated encrypted IP through functional verifica-
tion and testing. Most EDA tools facilitate such verification
in a secured environment. In a common scenario, EDA tool
decrypts the IP during synthesis and the resultant netlist is
usually unencrypted. Typically, the Design-For-Test (DFT)
team needs unencrypted design of the system to insert addi-
tional test circuitry that would facilitate the post-production
structural tests to verify the integrity of the IC. Previously,
the existence of decrypted IP in design and fabrication cycle
was not considered a security threat, based on the con-
tract and trust between parties who were well-known to
each other. However, as the semiconductor industry became
a horizontal business model distributed across the globe,

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-018-0036-3&domain=pdf
http://orcid.org/0000-0002-1837-1622
mailto:sarah.amir@ufl.edu
mailto:bshakya@ufl.edu
mailto:xiaolinxu@ece.ufl.edu
mailto:yier.jin@ece.ufl.edu
mailto:swarup@ece.ufl.edu
mailto:tehranipoor@ece.ufl.edu
mailto:dforte@ece.ufl.edu

J Hardw Syst Secur (2018) 2:142–161 143

this trust becomes questionable. More severely, any rogue
employee in the design or fabrication facility or any adver-
sary with access to an unencrypted IP may become a
potential security threat. For example, a malicious insider
in the design house may sell the IP to a third party while
claiming it as their own (IP piracy), use the IP in excess
of their contracted limit (IP overuse), and intentionally per-
form malicious modification (hardware Trojans insertion)
to make the IP vulnerable to certain attack or become less
reliable in critical usage [12, 14]. Additionally, reverse engi-
neering can be performed on the IP to understand design
intent and retrieve the higher level of design for malign
intention.

In order to protect hardware IP from these threats, the
design needs to be unintelligible, even in decrypted form.
Hardware obfuscation provides the option to effectively
hide and disable the design, but still facilitate structural
testing and static/dynamic parameter analysis [29, 34].
This convenience makes obfuscation a desirable method
for security and an active field of research. In recent
years, a large number of obfuscation techniques and
attacks on obfuscation have been proposed. In most cases,
researchers evaluate their techniques and attacks on circuits
generated in an ad hoc fashion. Unfortunately, this makes
it difficult to objectively evaluate their merits and compare
their effectiveness against various metrics. Lack of well-
designed benchmarks, which can facilitate objective and
accurate evaluation of important properties of obfuscation
and manifest the merits and limitations of an approach, has
become a major barrier for the research community. To
address this limitation, for the first time, we introduce a suite
of new obfuscation benchmarks that provides the option
to evaluate obfuscation methods and attacks accurately and
establish a baseline for comparison. In this paper, we also
present our experimental results on comparative analysis
of popular methods in the field based on resiliency against
noteworthy attacks. We also introduce a set of metrics
to quantify characteristics of the circuit and obfuscation
technique applied to it.

Our contributions in this paper include:

– Generation of obfuscation benchmarks to evaluate
existing and emerging obfuscation methods and attacks.
This required implementing many of the approaches
found in literature.

– Introducing new obfuscation metrics such as recon-
vergence, differential entropy, verification failure, key
structure, and performing analysis of their relation with
overheads and attack resiliencies using the benchmarks.

– Analyzinghowobfuscationmetrics can indicate resiliency
of an obfuscated circuit and providing future directions
and insight on how to improve, optimize, and utilize
these benchmarks, metrics, and obfuscation methods.

The rest of the paper is organized as follows—Section 2
articulates the motivation behind our work. Section 3
discusses the existing work in hardware obfuscation that
acts as a foundation for our benchmarking initiative.
Section 4 presents details on the benchmark generation
process. Section 5 discusses the metrics used to evaluate the
benchmarks as well as the associated results of overheads
and attack resiliencies. Section 6 provides directions for
future research in this field, and Section 7 concludes the
paper.

2Motivation

Hardware obfuscation emerged in 2007–2008 to protect IP
from threats in the semiconductor supply chain [2, 11, 34].
Since then, it has been gaining popularity among hardware
security researchers, according to Google Scholar. As
shown in Fig. 1, the number of publications on obfuscation
in major conferences and journals was relatively static each
year until 2013. Since 2014, there has been an exponential
increase in obfuscation-related work. Note that while 2017
is not shown in the figure, as of this writing, it already has
22 more publications than 2016.

Unfortunately, even after many publication on numerous
ways of obfuscation and new attacks, there has been no
impartial standardized comparison platform to evaluate the
advancements. Some researchers use ISCAS benchmarks
[8, 9], while others are more comfortable with ITC [17].
For presenting attack models, researchers are forced to
generate their own benchmarks because of the unavailability
of any standard ones [41]. As a result, it is infeasible
for designers to know the scalability or applicability of
these methods, and relative analysis of the effectiveness
of obfuscation or hardware overhead. Thus, it has become
necessary to establish standard benchmarks for obfuscation
with which the research community can evaluate their
methods.

Fig. 1 Trends of publication in hardware obfuscation

144 J Hardw Syst Secur (2018) 2:142–161

3 Background and Preliminaries

In this section, we briefly describe the various threats for IP
designers that hardware obfuscation can prevent. Then, we
will present the obfuscation methods that were considered
to generate our suite of benchmarks. In the last part, we
will describe two attacks on obfuscation that we utilize in
evaluation of attack resiliencies, along with one designated
attack defiant obfuscation.

3.1 Threats

The threats bore by 3PIPs have been analyzed extensively
in literature. Supply chain vulnerabilities and threats are
discussed in detail in [27, 37]. Also, Rostami et. al.
categorized many of these threats in [33]. An overview of
these attacks is enlisted with examples here and also shown
in Fig. 2.

– 3PIP: Any rogue employee in 3PIP design house with
access can sell, modify, overuse, or reverse engineer an
IP as the design is open and visible in this phase.

– SoC and DFT inserter: A malicious entity in SoC or
DFT insertion phase with access to unencrypted IP can
also sell, modify, or reverse engineer the design.

– Untrusted foundry: Any adversary with access to the
final GDSII file of the IC design might overproduce
the design or sell it to a third party. They might reverse
engineer the design to retrieve higher level description
to exploit vulnerabilities.

– Assembly, distributor, and user: An attacker in assem-
bly and distribution stage or an end user does not
have access to the original design. However, they
might reverse engineer the fabricated IC. Although
IC reverse engineering is a slow and expensive pro-
cess, it has become more practical today with the
advent of advanced imaging and probing techniques
such as focused ion beam (FIB) and scanning electron
microscopy (SEM). In order to reverse engineer the
design, an attacker needs to perform delayering, high-
resolution imaging or X-raying, and image processing
to retrieve the netlist from a fabricated IC. If the adver-
sary is a foreign government or competitive ill-intended
organization, acquiring these expensive imaging equip-
ment is possible.This iswhy sensitivedesigns, like military
grade ICs, need to be kept secure from such threats.

3.2 RelatedWork in IP Protection

In order to protect IP from threats throughout the supply
chain, passive methods such as watermarking [21] and
digital rights management [3, 23] have been proposed
which can be used to authenticate suspect IP or IC or
prove ownership during litigation. However, these passive
methods cannot prevent piracy from happening in the first
place. Active approaches such as metering [2] have been
proposed to authenticate and regulate the unauthorized
usage of the IP or IC. In metering, the number of
keys provided can be limited by the original designer,
thus avoiding IC overproduction and IP overuse. An
essential part of metering is to have logic obfuscation or
encryption techniques implemented to lock the design from
unauthorized access.

Industry has also been looking into the protection of their
designs using these approaches. Syphermedia was recently
acquired by Inside Secure for their “root-of-trust” solutions
in SoCs which is based on camouflaging and for its long
history of IP protection in Pay TV and printer ink cartridge
markets [10, 43]. Mentor Graphics has been developing
platforms for chip life cycle management which rely heavily
on both secure testing and metering. In order to protect from
reverse engineering attacks, improvisation of the platform
has been proposed to include functional locking with logic
obfuscation [40].

3.3 Hardware Obfuscation

Obfuscation is a powerful tool to hide the hardware design
from a potential adversary, even when the IP is in decrypted
form. The underlying protection of obfuscation relies on
hiding and obscuring the functionality and structure of
the original design. Such a goal is also desirable in
software, where the owner of a code might want to make
it unintelligible to users. In fact, software obfuscation has
received quite a bit of attention in the past few decades,
and many techniques have been proposed [7, 15]. In
software obfuscation, there is no notion of “locking”, i.e.,
the obfuscation should make the code indiscernible but not
prevent its usage. Unfortunately, recent theoretical results
have shown that such a notion of “virtual black-box”
obfuscation, in which an obfuscated code does not leak
anything other than what it would through oracle access, is
impossible to achieve [5]. However, hardware obfuscation

Fig. 2 Threats on third party IP in supply chain

J Hardw Syst Secur (2018) 2:142–161 145

necessitates the prevention of black-box usage, due to which
locking (e.g., key gate-based post-synthesis obfuscation) or
design withholding (e.g., split manufacturing) is employed,
and such impossibility results are (generally) avoided.

Though obfuscation has been widely used to protect
software [5, 7, 15], there are however concerns while
applying it to hardware IPs. For example, obscuring
may protect hardware IPs from reverse engineering or
modification, but might not protect them from piracy.
This is also why hardware obfuscation needs to consider
both functional locking and structural modification of the
design. The functional locking mechanismmakes the design
unusable and structural modification makes it unintelligible.

Hardware obfuscation can be both key-based and key-
less. In key-less functional locking, obfuscation does not
depend on external key input. An example of such a
technique is split manufacturing, where a fraction of the
design is manufactured in separate untrusted foundry and
stitched together in a trusted facility [20, 31]. Although
split manufacturing is an operational strategy, the goals are
similar to obfuscation. Without proper knowledge about the
correct connections, the design intent stays obscured. In
a keyed system, an unlocking key or certain input pattern
can be used to retrieve the IC’s original functionality [13,
34, 48]. A correct unlocking pattern can make the IC work
properly, otherwise the IC stays locked and non-functional.

Hardware obfuscation techniques can also be classified
based on whether they are combinational or sequential in
nature. In this work, we focus on combinational obfusca-
tion. This type of hardware obfuscation is realized by adding
combinational components only to the combinational parts
of a hardware design. There have been a good number of
methods proposed based on combinational obfuscation over
the years [30, 34, 44, 48].

Obfuscation techniques can also be classified based
on what representation of the design they are applied
to. Obfuscation performed on Register Transfer Level
(RTL) abstraction is pre-synthesis obfuscation. In this
locking, the functional details, such as state machine of the
circuit, are considered. After, the obfuscation re-synthesis
is necessary. On the other hand, post-synthesis obfuscation,
which is applied to synthesized gate-level netlist designs,
includes techniques such as logic locking where the
functionality is mostly overlooked and structural parameters
such as fanout and number of gates are considered. Often,

re-synthesis is performed after post-synthesis obfuscation.
Layout obfuscation is based on modifying layout design,
utilizing features of placement and multi-layer routing.
It is performed on the geometric representation of the
circuit and depends on the layout design and available
spaces. It can be compared with similar concepts as
split manufacturing, camouflaging, or Chip Editor. Split
manufacturing considers splitting the design to fabricate in
separate untrusted foundry [20, 31]. Camouflaging modifies
some of the standard cells to make them indistinguishable
by physical design inspection to hide the functionality
in order to protect from reverse engineering [31]. The
foundry is considered trusted in this technique. In the Chip
Editor method in [36], obfuscated circuit layout is modified
post fabrication with FIB to unlock it. Figure 3 shows
the integration of these different obfuscation techniques
at different abstraction levels throughout the design flow.
Verification is necessary to be carried out before and after
obfuscation, to ensure the implementation has been properly
done and the original functionality is preserved when
unlocked.

3.3.1 Post-synthesis Obfuscation

Combinational logic locking by placing XOR/XNOR key
gates randomly in the circuit design was proposed by
Roy et. al. in [34]. In their initial approach, one of
the two inputs of these XOR/XNOR gates comes from
external inputs, through a cryptographic module. Often, the
cryptographic part is overlooked for simplicity and the key
gates are considered directly connected to external inputs,
for analysis. This extra external input is referred to as a
“key input”. An XOR gate becomes transparent for key
input 0 and becomes inverter for 1. For an XNOR gate,
the impact is the exact opposite. To hide the identity of the
locking gates, some XOR gates are replaced with serially
connected XNOR and NOT gates; similar techniques can
also be applied to an XNOR gate. This process hinders
the removal of key gates [35]. Since the key gates are
randomly placed without considering any circuit structure,
it is fast to implement the obfuscation even for larger
circuits. However, such randomly placed gates cannot fully
guarantee resiliency against attacks on obfuscation. The
random keys can be placed on nets where they are easily
identifiable (see Section 5.2.2) or can be placed in a critical

Fig. 3 Integration of hardware obfuscation in all levels of abstraction through the design flow [4]

146 J Hardw Syst Secur (2018) 2:142–161

information path causing more vulnerability for information
leakage [16].

To mitigate the possible vulnerability of placing key
gates randomly, one deterministic approach that considers
the circuit structure is secure logic locking (SLL) [48]. In
this method, key gates are integrated in the hardware IP in
a way that it is hard to observe the impact of each single
key gate. To facilitate the key searching and insertion, key
gate interconnection types are assigned specific weights and
placements are made to maximize the summation of these
weights [48]. The selection depends largely on the weight
distribution, but the authors of [48] did not provide a weight
distribution which would make the obfuscation stronger.
Another heuristic to place gates based on the structure of
the circuit is integrating the key gates with other gates that
have the largest fanin or fanout cone or both. The logic
cone size is computed by the equation provided in [28]. The
positions are evaluated and marked with the corresponding
weights. Key gates are placed in positions with the largest
weight.

Because of the confusion it introduces, MUX gates
offer better hiding of internal structures than XOR/XNOR
gates [30, 44]. Inserting XOR gates does not change
the information flow path, as it only adds an additional
input to the path. Using MUX gates instead of XOR
gates changes the information flow paths for wrong key.
In MUX locking, one of the inputs to the MUX is the
original signal, while the other input is another internal
signal from the design that does not form a combinational
loop [30]. Though MUX gate-based obfuscation has higher
overhead than XOR gates,1 it has the benefit of resiliency
against removal attack because it is hard to distinguish
between the intended net in the design and the dummy
net, which the MUX switches between. Also, if the depth
of both inputs of the MUX is kept similar, it is very
hard to figure out the correct key by analyzing timing
overheads.

3.3.2 Pre-synthesis Obfuscation

Obfuscation techniques focus on locking or obfuscating the
design after logic synthesis and technology mapping. This
is similar to DFT techniques, such as insertion of scan
chains and compression logic after synthesis. Therefore,
most of these obfuscation techniques are agnostic to the
underlying function or specification being implemented by
the design, and operate using structural metrics such as
fanout, observability, or fault impact. On the other hand,
pre-synthesis obfuscation techniques aim to obfuscate the

1In complementary CMOS design, a two-input MUX gate requires
more transistors than a two-input XOR/XNOR gate.

design prior to logic synthesis. This could include the
placement of a locking/obfuscation mechanism at:

– Control and data flow graph (CDFG): The authors of
[13] propose a locking mechanism in which the RTL
code is transformed to its control and data flow graph
(CDFG) form, which is locked by the superimposition
of an authentication FSM, and then converted back to
RTL form.

– High-level synthesis (HLS) level: For some HLS-
level techniques, the obfuscation is implemented at
the behavioral code level (e.g., C/C++ during datapath
and control logic synthesis) and then converted to
RTL code (with subsequent gate-level synthesis) [32].
In this technique, MUXes, which are driven by a
locked controller unit, are implemented to add decoy
connections in the datapath of the design. Therefore,
only the correct control signals can unlock the design to
an authorized party.

– Binary decision diagram (BDD): Another technique
involves the expression of combinational logic in
the form of BDDs and embedding of the locking
mechanism at the BDD level [26, 45]. BDDs are
canonical expressions for Boolean logic, represented in
the form of a directed acyclic graph (DAG) with arcs,
nodes, and leaves. A BDD consists of several nodes
arranged in various levels, with each level representing
a variable (i.e., primary input) of the Boolean function.
Arcs can be either dashed as complemented or solid
as un-complemented. Traversing a path through nodes
and edges to either of the two leaves evaluates the
function to either logic-0 or logic-1. In essence, BDDs
can be thought of as highly compressed binary trees
implementing the entire truth table of the Boolean
function. An example of a BDD is shown in Fig. 4,
where the Boolean expression Y = A ⊕ B is
implemented. BDDs can be converted directly to

0 10 1

0Y

B

A

Fig. 4 BDD for a simple XOR function

J Hardw Syst Secur (2018) 2:142–161 147

combinational logic circuits, by mapping each BDD
node to a MUX. Note that the overall size of the BDD
thus determines the circuit size, which can be controlled
by the order/level in which variables appear in the
diagram. In order to embed a locking mechanism, a new
variable (i.e., key input) can be added to the BDD, along
with if-then-else (ITE) operations to switch between the
correct Boolean function and a wrong one (which could
be a different part of the original function, or new logic
altogether). For example, the ITE operation f ′ = k ·f +
k′ · g embeds a key k, which causes a locked function,
f ′ to evaluate to f (the correct function) when k = 1
and evaluate to g otherwise (the incorrect function).

3.3.3 Attacks

Many attacks have been proposed to break combinational
obfuscation and retrieve the key [22, 38, 41, 45, 48]. Secure
obfuscation techniques should ideally force the attacker to
brute force the key. But in reality, there are other aspects
of the designs that facilitate logical attacks that can retrieve
correct key with far less effort than brute force [22, 38, 41,
45, 48]. There are two popular attacks against logic locking
that run fast and either completely or partially break the
locking scheme.

Key sensitizing attack uses auto test pattern generation
(ATPG) to sensitize the effect of a key gate to a primary
output [48]. Fault analysis of the key input results in an
input pattern that can propagate this fault to a primary output
for observation. Then, the input pattern is applied to the
locked netlist and an unlocked IC and resultant outputs are
compared to determine the right key for that gate. This
approach can be used to find the correct key assignments for
isolated gates (i.e., gates whose fault impact can be observed
directly at the primary outputs). In the case of key gates
which are not isolated, either the ones placed in each other’s
logic cone or whose signals converge in a way that the effect
of key gates is not observable separately, the ATPG tries to
figure out the patterns that can both excite and propagate
the effect of each key to primary output by setting other key
inputs to certain values. This attack is usually able to retrieve
a portion of the keys, after which brute force can be applied
on the remaining keys (which cannot be sensitized). Most
of the popular obfuscation techniques are vulnerable to this
attack.

Boolean satisfiability attack (SAT attack) utilizes con-
ventional SAT tools to break logic locking [41]. It con-
verts the locked netlist to Conjunctive Normal Form (CNF)
on which the Boolean satisfiability test is performed. An
unlocked IC is used to determine Distinguishing Input-
output Patterns (DIPs) that can rule out at least one wrong
key in each iteration. With most logic locking obfuscated
circuit, the SAT tool can rule out multiple wrong keys with a

single DIP in one iteration. The more wrong keys it can rule
out in each iteration, the less number of iteration it needs to
break the entire obfuscation. Thus, this attack compromises
most existing logic locking techniques in seconds. There
have been a few methods proposed against SAT attack that
can deter the attack either by increasing the number of iter-
ations it needs to rule out all incorrect keys or by increasing
the time required in each iteration [44, 47].

AntiSAT technique is one such method that can increase
the number of iteration to the exponential of number of
primary inputs used to implement the AntiSAT block [44].
It decreases number of key patterns to be detected per input
pattern to one. For best case, when all of n primary inputs
are used (as in our forthcoming benchmarks), SAT tool will
need to iterate 2n times.

This is ensured by implementing a particular function
g and the exact compliment of that function g (as in
Fig. 5), both provided with all or some primary inputs
X1, X2, ..., Xn. These inputs are XOR/XNORed with
same or different keys K1, K2, ..., Kn and Kn+1, ..., K2n,
separately. The output of the complimentary function pair
are fed to an AND gate and the output of this gate Y

is XORed with an internal node with high observability
by inserting new XOR gate G. For the right key, the
complimentary pair would cause Y to be always zero, and
XOR gate G would be transparent. On the other hand,
for a wrong key, this is not true and Y can also be one,
causing G to act as an inverter. The author of [44] suggested
to implement any logic locking technique along with the
AntiSAT technique. The logic locking protects the circuit
from unauthorized access and AntiSAT makes the SAT
attack infeasible. However, several papers have found that
such hybrid approaches can still be attacked [38, 39, 45, 49].

4 Obfuscation Benchmarks

The obfuscation benchmarks introduced in this work are
generated by obfuscating existing standard benchmarks

Fig. 5 AntiSAT method proposed in [44]

148 J Hardw Syst Secur (2018) 2:142–161

Fig. 6 Graphical representation of naming convention of generated
benchmarks

with various methods. Since the existing ISCAS 85
benchmarks were mainly made for VLSI-related reasons
(e.g., EDA and other tools evaluation), these benchmarks do
not have any secret to hide from an attacker. To analyze the
security of a system, we need benchmarks that contain some
sensitive assets that need to be protected. In the obfuscation
benchmarks, the unlocking key is that asset. If an attacker
deduces the key, the obfuscation is broken and security is
breached.

To generate the obfuscation benchmarks, a set of
unlocked benchmarks that are widely accepted among
researchers is chosen. These benchmarks are then obfus-
cated with highly cited combinational obfuscation tech-
niques, including a SAT attack-resilient method. A tool
named as Key Insertion Tool (KIT) is developed to automate
the obfuscation process.

We have established a naming convention for the
benchmarks which includes original circuit name, code
for obfuscation method, key length, and version of the
benchmark. The rule is illustrated in Fig. 6. The codes for
obfuscation methods we have implemented are presented in
Table 1 column B. (The markings A, B, and C in Fig. 6
correspond to the respective columns of Table 1).

In the initial obfuscation benchmark suite released
on Trust-Hub [1], we have included 228 obfuscated
combinational benchmarks. As initial unlocked circuits,
ISCAS85 [8] suite has been selected because of its
familiarity to most researchers. Choosing ten benchmarks of
this suite provide the option of different types and sizes of
circuit (that needs to be obfuscated). Then, the obfuscations

are performed by varying the key size between 32 , 64, 128,
and 256 bit. For each case, three different logic locking
techniques: random logic locking, secure logic locking [48],
and logic cone size-based lock placement, are applied, with
and without AntiSAT [44].

The purpose of the benchmarks is evaluation of different
methods and attacks. For this application, it is often required
to observe the effect of variation of key length while keeping
other parameters same, or to observe the effect of different
obfuscation methods, while all other parameters stay same
and so on. Our benchmark suite provides the option to
observe the impact of any one obfuscation parameter on
security. Table 1 enlists the generation parameters and
numbers of resultant benchmarks.

Besides the above mentioned features, we also cate-
gorized the obfuscation benchmarks based on structural
characteristics, such as circuit size in terms of the num-
ber of gates in the synthesized netlist (with SAED90nm
library and with high mapping and area effort), key size,
key gate type, and method of obfuscation. Based on our cat-
egorization, the classification has many subclasses. Obfus-
cation can be sequential or combinational; combinational
obfuscation can be either structural or functional; whether
one or more obfuscation techniques has been applied to
generate the benchmark and so on. The classification tax-
onomy is presented in Fig. 7, which includes the existing
classification presented in [1] and future extensions, such as
key type-based classification.

4.1 Post-synthesis Obfuscation Benchmark
Generation

The process for generation of logic locking-based post-
synthesis obfuscation benchmark that we implemented in
our work has three phases—preparation phase, selection
phase, and insertion phase.

Table 1 Obfuscation
benchmarks (A) Source (B) Method (and code) (C) Key length Number of benchmark

c432

c499 Random (RN) Secure Logic Locking (SLL) 32

c880 Logic Cone Size based (CS) 2 × 6 × 3 = 36

c1355 AntiSAT+Random (NR) 64

c1908 AntiSAT+Secure Logic Locking (NS) +

c2670 AntiSAT+Logic Cone Size based (NC) 128

c3540 BDD-Random* (BR) 8 × 6 × 4 = 192

c5315 BDD-AntiSAT* (BS) 256**

c6288 BDD-Entropy* (BE)

c7552

Total number of benchmarks 228

*c432 and c499 are too small for 256 bit key

J Hardw Syst Secur (2018) 2:142–161 149

Fig. 7 Classification of benchmarks in the obfuscation benchmark suite

4.1.1 Preparation Phase

Before we go into details of how the post-synthesis
obfuscation has been automated, we need to mention some
of the concerns that comes with circuit modification. We
solved these concerns in the preparation phase before
performing the obfuscation.

– The source: Though our generation process can operate
on sequential and larger combinational benchmark
circuits, we started with the ISCAS85 benchmarks [8]
for its familiarity.

– Description language: Our implemented obfuscation
tool is capable of working on standard Verilog netlist
files. Working with such versatile formats eases many
limitations like working with memory elements and un-
flattened design and offers great flexibility as the files
are synthesizable with commercial tools.

– Technology library: To make our generation process
work with different libraries, we have developed a

Fig. 8 Module hierarchy and modification sequence

library parser to incorporate the multiple libraries.
Provided with the synthesized file, the tool can
detect the library it is synthesized with and perform
obfuscation in that format. The benchmarks we have
released in our first suite have been obfuscated in
library independent Verilog netlist format, and then
synthesized with SAED90nm library (with high map
and area effort).

– Key bit distribution: When obfuscating a circuit with
multiple modules, each module gets obfuscated with a
number of key bits that are proportional to the size of
the module. So, the larger module is obfuscated with
more locking gates than the smaller ones.

– Hierarchy: As we are working with the unsynthesized
ISCAS benchmarks in Verilog format, the modification
is performed on the lowest level of hierarchy first
and then climbing upward, as depicted in Fig. 8. If a
flattened netlist is used, then this complexity can be
avoided.

– Key gate type: The obfuscation can be performed
with either XOR/XNOR gates or MUX gates. With
XOR/XNOR gates, one input of the locking gate comes
from certain selected internal node and the other input
comes from an external input, termed as key input. In
the case of MUX gates, both inputs of a two-input MUX
gate comes from two separate internal nodes, which
do not form a combinational loop, and the selection
input comes from external key input (Fig. 9). Solely,
employing MUX gates results in higher area overhead
in smaller circuits, so it is often advised to implement a

150 J Hardw Syst Secur (2018) 2:142–161

Fig. 9 Combinational
obfuscation with XOR/XNOR
and MUX key gates

portion of the locks with MUX gates and the rest with
XOR/XNOR gates.

4.1.2 Selection Phase

In this phase, we select the positions where locking
key gates will be inserted. Firstly, the selection is made
randomly or heuristically and then key gates are inserted in
those selected positions. The selection process varies with
different proposed methods, but the main idea is similar.
The methods we implemented for position selection in
generating the obfuscation benchmark suite are described
below.

– Random: The idea of placing locking gates in random
positions is similar to the idea of position selection
proposed in [34]. As described before, the simplest
method of key gates insertion is placing the key gates
randomly in the circuit. The algorithm is presented in
Algorithm 1.

– Logic cone size based (LCSB): The concept behind this
method is to place keys in the largest logic cones so
they will impact more signals. The position with the
largest logic cone has been calculated by measuring
and comparing a weighted normalized metric for all
gates in the module under consideration. This metric
was defined in [28] (as presented in Eq. 1) for similar
purpose. The metric considers both the fanin and fanout

cones of a gate. Gates with higher value of this metric
have larger fanin or fanout cone or both and are chosen
to have locking gate in their inputs.

Pi = 0.5 ∗ (
|FIi |

max(|FIi |) + |FOi |
max(|FOi |)) (1)

The equation is utilized to select the locations for
inserting key gates with Algorithm 2. This method does
not include any randomness in the selection process,
so multiple generation attempts with same parameters
result in consistent outputs.

– Secure logic locking (SLL): To implement SLL, we
have minimally modified the algorithm provided by
the authors of [48] to work with our insertion tool.
In this technique, based on interrelation, the key gates
are assigned with different key type categories and
each category is assigned a specific weight [48]. The
authors provided examples of each type, but did not
mention the rules that can define the exact process of
the gate categorization. Also, this selection is dependent
on the weights that is assigned to each key type, but
the literature did not present any direction for the
weight distribution. Assigning the weights is left to the

J Hardw Syst Secur (2018) 2:142–161 151

imagination of the implementer and varying the weight,
selection varies. In our benchmark generation process,
we have assigned weight of convergent key type to
10, dominant key type to 5, and isolated key type to
0 (key types are described in [48]). Determination of
non-mutable gates and golden pattern requires ATPG
tools, and we avoided those for the present version. The
implemented algorithm is presented in Algorithm 3.

4.1.3 Insertion Phase

In this phase, the netlist is modified to insert the locking
key gates in the selected positions. The Verilog file is
firstly analyzed to determine the technology library, input
and output, number of modules, number of gates in each
module, and hierarchy of modules, and to enlist gates of
each module. If necessary, detailed analysis is performed,
such as determining the fanin and fanout cones of each gate.
Then, the insertion of new gates starts from the module with
highest hierarchy to the module with lowest hierarchy. The
insertion process varies slightly for XOR and MUX key
gates, as for the later, two internal nets must be selected

carefully that do not form a combinational loop. Algorithm
4 contains our implemented key gate insertion process
(where KI stands for key input).

4.1.4 AntiSAT

To protect the combinational obfuscation from SAT attack,
multiple methods have been proposed. AntiSAT [44] is
a well-known technique among those. We developed a
dedicated tool to perform AntiSAT technique on circuits.
It defines a new module with all primary inputs and key
inputs of thrice the number of primary inputs. The new
module is called from the original circuit, specifically from
a selected module. The AntiSAT module implements the
logic presented in Section 3 and generates a single bit output
that goes in the original circuit to be XORed with a primary
output (this is an adaption of the “secure integration”
mode of AntiSAT, proposed in [44]). In our AntiSAT-based
benchmarks, we have performed hybrid obfuscation, where
the circuit is also locked with logic locking techniques.
Algorithm 5 provides the technical details about how we
implemented the AntiSAT technique. In this algorithm, PI
stands for primary input and KI stands for key input.

152 J Hardw Syst Secur (2018) 2:142–161

4.2 Pre-synthesis Obfuscation Benchmark
Generation

Pre-synthesis obfuscation follows entirely different tools
and processes to perform the locking. The circuit represen-
tation and the parameters used are fundamentally different
than those of post-synthesis obfuscation. The pre-synthesis
obfuscation technique we have implemented to generate our
benchmarks is described hereunder.

4.2.1 BDD

BDD-based pre-synthesis obfuscation has been performed
with three variations in the selection techniques: first one is
random permutation based, second one is to implement SAT
resiliency, and the last one is to maximize the entropy of the
circuit.

– SAT inspired: Similar to other SAT-resistant logic
locking techniques such as anti-SAT and SARLock, the
BDD-based SAT-resistant circuits also ensure that only
one wrong key value is ruled out per input pattern. This
forces SAT-based attacks [41] to brute force through all
possible input patterns to extract the correct keys. To
perform the actual locking on a circuit, several output
pins of the circuit (and the gates in their transitive

fanin cone or TFI) are firstly extracted and converted
to their corresponding BDD representation. Iterative
ITE operations (as explained in Section 3.3.2) are then
applied to the BDD to embed key inputs. The wrong
functions implemented on applying the wrong keys
are the same as the original function, except at one
randomly chosen min-term, where the output is flipped.

– Random:We also performed random functional locking
using BDDs. In this technique, applying wrong key
values leads to a cube formed by a random permutation
of a random number of primary inputs. Similar to
SAT-inspired BDD locking, the random locking was
performed on a per-output basis.

– Entropy driven:We also generated BDD-locked bench-
marks where the goal was to increase the overall
entropy of the obfuscated circuit. The entropy is a met-
ric that reflects the amount of information contained in a
vector (see Section 5.3.2). Algorithm 6 shows the steps
performed. The main idea is to selectively lock a few
outputs (and gates in their TFI) using key inputs and
BDD nodes that have a differential entropy greater than
a predefined threshold. Here, differential entropy refers
to the entropy of the circuit that results from XORing
f (BDD representation of an output cone) with b (an
internal BDD node that is part of the BDD B of the
entire circuit). This differential entropy metric helps us
to select sub-functions that are vastly different in terms
of Boolean functionality than the original function f .

J Hardw Syst Secur (2018) 2:142–161 153

5 Evaluation

On all the generated benchmarks, we performed extensive
analysis to calculate the overheads, attack resiliency, and
metrics. We have selected a few benchmarks to represent
the whole set (note that for brevity, we cannot include all
results in this paper). This selection includes 72 benchmarks
generated by varying the circuit while keeping the key-
length fixed, and varying the key length while keeping
the circuit fixed, enabling us to observe both the effect of
changing key size and circuit parameters. Also, to avoid the
effect of randomness of the generation processes on attack
resiliency and metrics, we have taken 10 samples for each
of the 72 benchmarks, making our sample space consisting
of 720 benchmarks. In these samples, we incorporated
three BDD-based obfuscation methods (benchmarks built
on which are yet to be released) along with the six
methods (on which our already released benchmarks are
built).

5.1 Overhead

In order to calculate overhead, we synthesized obfuscation
benchmarks with GSCLib3.0 library with map effort and
area effort set as high in Synopsys Design Compiler. Area,
power, and timing overheads of the selected benchmarks
are presented in Fig. 10. From the result, we made a few
observations:

– Area overhead for structural logic locking techniques
depends more on the key size than on different
obfuscation methods. If the key length is same, different
locking schemes—SLL, random, and logic cone size
-based locking—result in almost same area overhead.
For SAT-resilient techniques, there are extra key inputs
equal to thrice the number of primary inputs [44]. Also,

the block itself occupies extra area. For these reasons,
AntiSAT benchmarks have higher area overhead, but
similar for different logic locking methods like previous
case.

– Power overhead has only static components and
depends largely on each method. The location of the
key gate has a significant impact on power overhead as
it introduces additional loading on adjacent transistors.
If the node where the key gate is inserted has high
fanin or fanout, the power overhead increases. AntiSAT
hybrid benchmarks have large additional logic and
BDD benchmarks contain huge amount of decoy logic
for wrong keys. This additional logic draws large
amount of static power.

– Timing overhead depends on the obfuscation methods
greatly. For example, SLL and LCSB obfuscation
inserts new key gates in the same path as previous ones
to increase correlation between them. This results in
the formation of new critical paths in the design, or
worsening of preexisting ones. As a result, the delay
overhead associated with SLL is usually higher.

Note that BDD overheads are quite high, because BDD
size depends on the order in which variables (primary
inputs) are arranged in the BDD. Since these orders are
obtained via heuristics, circuit to BDD conversion usually
results in a large number of nodes in the BDD (which are
later mapped to MUXes for BDD to Netlist conversion).
Where possible, we also tried to use a BDD-based synthesis
(BDS) tool [46] to perform further logic optimization on
the MUX network. BDD benchmarks generated with c5315
and c7552 (32 and 64 bit key) and all entropy-driven BDD
benchmarks (except for the ones generated with c1908) have
been optimized with BDS tool. We can see in Fig. 10 that
overheads for these benchmarks are less than the ones that
are not optimized. However, for most of the benchmarks, we

Fig. 10 Overheads of selected obfuscation benchmarks

154 J Hardw Syst Secur (2018) 2:142–161

noticed that BDD-based locking almost always results in a
much higher power, area, and delay overhead.

5.2 Attack Resiliency

One of the main usage of the obfuscation benchmarks
is analyzing attack resiliency of different methods and
designs. The existing attacks can be performed to compare
the methods in terms of protection offered. Also, new
attacks can be performed to show the effectiveness of such
over existing ones. In our experiment, we have attacked
the obfuscation benchmarks with two well-cited attacks on
logic locking techniques that we discussed in Section 3.3.3.

5.2.1 SAT Attack

SAT attack is a functional attack on logic locking.
Combinational obfuscation is vulnerable to the attack
unless additional SAT-resilient techniques are implemented
[41]. We have applied the SAT attack (with the tool the
authors provided as open source [42]) on every obfuscation
benchmark of the suite. SAT attack on all the hybrid
benchmarks (combined with anti-SAT) timed out (where
timeout is set as 3 h). The time taken by the attack along
with the number of iterations for a selection of benchmarks
is presented in Table 2. Note that the number of iterations
presented in AntiSAT methods is the expected number of
iteration (calculated by the equation presented in [44]) and

not experimental. For the BDD benchmarks, the number of
SAT iterations will depend on the number of outputs locked
and the key length allocated to each output. For example,
if we locked 4 outputs, each with a key length of 4, we
have in total (24) × 4 = 16 total distinguishing input
patterns. Therefore, the SAT tool should resolve the circuit
in approximately 16 iterations.

Observations from the SAT attack results are quite
clear. Any method without a SAT-resilient technique is
vulnerable to SAT attack, where the AntiSAT implemented
with such circuit is protected from the attack. AntiSAT BDD
obfuscation benchmarks performs better against SAT attack
than logic locking based ones, but not as good as AntiSAT
benchmarks.

5.2.2 Key Sensitization Attack

Key sensitization attack is based on fault analysis with
ATPG tool [25, 48]. The key inputs are set as stuck at
faults and ATPG is used to generate pattern to propagate
the fault (and thus the switching of key value) to primary
outputs. This input pattern can be used to determine the
right value of the key, by comparing the result of the locked
netlist with the result from an unlocked IC. We implemented
the attack partially, with Synopsis TetraMAX [25] and
performed the attack on all obfuscation benchmarks. We
have implemented the first part of the attack in [48] where
the attack only finds out isolated key gates. But we extended

Table 2 SAT attack time (sec) and iterations (shown in square brackets) needed to break the obfuscation

Benchm- Key Random SLL Cone size AntiSAT AntiSAT AntiSAT BDD BDD BDD

ark length random SLL cone size random AntiSAT entropy

C432 32 0.072 0.056 0.116 4407 Timeout Timeout 0.184 4.896 0.348

[14] [8] [9] [4408] [5.9 × 106]* [5.9 × 106]* [4] [84] [3]

C880 32 0.06 0.16 0.136 0.072 0.048 0.12 105.9 147.1 0.136

[10] [12] [11] [10] [5] [12] [6] [93] [5]

C1908 32 0.06 0.144 0.136 Timeout Timeout Timeout 5621 7221.8 22.356

[7] [13] [12] [2.1 × 106]* [2.1 × 106]* [2.1 × 106]* [9] [106] [6]

C3540 32 0.216 0.476 0.516 Timeout Timeout Timeout 163.2 284.3 17.508

[14] [10] [8] [3.0 × 109]* [3.0 × 109]* [3.0 × 109]* [5] [107] [8]

C5315 32 0.196 0.52 0.348 Timeout Timeout Timeout 0.184 0.372 0.272

[11] [15] [8] [3.7 × 1033]* [3.7 × 1033]* [3.7 × 1033]* [3] [15] [6]

C7552 32 0.44 0.5 0.156 0.18 0.28 0.34 0.364 13.8 0.392

[21] [14] [3] [8] [12] [7] [4] [83] [10]

64 0.652 0.34 0.316 Timeout 0.772 Timeout 0.504 66.75 12.748

[19] [9] [12] [9.6 × 1038]* [29] [9.6 × 1038]* [2] [172] [6]

128 2.108 0.6 0.932 1.352 4.344 0.612 5.672 Out of 16.716

[43] [17] [22] [29] [77] [12] [4] memory [14]

∗The timeout is set as 3 h. Also, for AntiSAT benchmarks for which the attack timed out, numbers of iterations are theoretically calculated as the
expected value, not experimental

J Hardw Syst Secur (2018) 2:142–161 155

the attack by making it iterative. The isolated gate that
gets broken in the first iteration is fixed to the correct key
value and attack is performed again. Faults on some key
gates that could not be propagated to the outputs in the first
iteration become vulnerable in the next as the controllability
of internal nodes changes. The iterative attack runs until
there are no new key gates. We have presented the result of
this attack on selected benchmarks in Fig. 11 as percentage
of key bits that got deduced correctly. In the best case, we
could determine 84% of the keys accurately. We validated
the determined key by equivalence checking with the
original netlist with ABC tool [6].

We can see in Fig. 11 that BDD obfuscation benchmarks
are the only ones that are immune to this attack. In
generating these benchmarks, each output is obfuscated
with predefined number of keys. For these benchmarks, it
is impossible to isolate and observe the effect of each gate
separately, making the attack ineffective. Both secure logic
locking and cone size-based obfuscation place key gates
in a way that makes larger network of locks, resulting in
moderate resiliency against key sensitization attack.

Another observation of the results is that, though the
percentile looks better for AntiSAT-coupled benchmarks,
the number of detected key is similar to the circuit without
AntiSAT. Even though the AntiSAT block introduces
additional key inputs, it only affects one output bit. So, in
the best case, AntiSAT can hamper a single key detection
of the original circuit. The fact that all the keys in AntiSAT
module are nested together and convergent to a single
output port also makes them impossible to isolate. But the
percentile appears better because of the increase in total
number of keys over which the percentage is calculated.

5.3 Metrics

Hardware metrics are set of deterministic parameters that
can represent aspects of the circuit in numeric value. For
obfuscation, we have introduced a few metrics that can
represent features of obfuscation. Some of those metrics
refer to the structural features that cause the obfuscated
circuit to behave in certain way, like reconvergence and
key structure metric. Other metrics quantify the effect of
obfuscation on the functional behavior of the design, like

Hamming distance, entropy, and verification failure metric.
The metrics can be combined in different ways to derive
a global quality metric. The composition of such a metric
will be user specific as the weights of each component will
vary with design intent and application. We have analyzed
these metrics thoroughly and observed the relation of these
with other quantifiable aspects of the obfuscated circuit like
overhead or attack resiliency. In this section, we present
some key findings along with the details of new metrics we
have proposed.

5.3.1 Verification Failure

In order to study the impact of logic obfuscation techniques
on the corruptibility of designs in more detail than with
Hamming distance, we have implemented a verification
failure metric. This metric utilizes Synopsys Formality, an
industrial-strength equivalence checking tool, to evaluate
the functional difference between an unlocked and a locked
netlist. The output ports of both netlists are set as “compare
points” and the following metric is computed. Similar
equivalence checking tools such as Cadence Conformal or
Mentor Questa can also be used for the computation.

n(Fail)

n(Fail) + n(Pass)
·
n(Fail)∑

i=0

n(Failing Patterns)

n(Total Patterns)
(2)

The first portion of expression (2) (the ratio between
number of output ports failing to the total number of
output ports undergoing equivalence checking) tells us
what proportion of the outputs is being affected by
the obfuscation technique. The second portion of the
expression (the summation) counts the number of failing
patterns produced by Formality for each failed output port.
The denominator of 1000 indicates a maximum of 1000
failing points that need to be produced during equivalence
checking for each compare point. Thus, with the two
portions combined, the metric captures the number of
outputs affected as well as the extent to which they are
affected by the obfuscation technique. Also, in contrast to
differential entropy (discussed in Section 5.3.2) which relies
on simulations, the metric uses failing patterns produced
as counter-examples by Formality. This guarantees higher

Fig. 11 Percentage of keys successfully retrieved by key sensitizing attack

156 J Hardw Syst Secur (2018) 2:142–161

coverage, i.e., the failing patterns are more likely to be
“discovered”, which is clearly not the case for simulation
unless an inordinate number of input vectors is used.

5.3.2 Entropy and Differential Entropy

Entropy, as it specifically relates to Shannon Entropy,
measures the amount of information present in a source
of data. For a combinational circuit (or equivalently, a
Boolean function), entropy relates to the number of distinct
outputs that can be produced by the function [24]. For a
single output, Boolean function with a probability of logic-1
denoted by Pi , the entropy is given by Eq. 3, where the first
term stands for entropy of logic-1 and second term stands
for entropy of logic-0.

H = Pi · log 1

Pi

+ (1 − Pi) · log 1

1 − Pi

(3)

For a multiple output function, the exact entropy is
computed by calculating entropy for each possible output
vector and summing up the entropies [24]. If probability of
an output vector Oj is Pj , then the entropy H is calculated
with Eq. 4, where M is the total number of possible output
vectors, for N output function, usually M ≤ 2N .

H =
M∑

j=1

Pj · log 1

Pj

(4)

Since such a calculation is usually prohibitive in terms
of computation time (due to the large number of possible
output vectorsM), a good estimate of entropy for aN output
function is given in [24] as:

H =
N∑

i=1

(
Pi · log 1

Pi

+ (1 − Pi) · log 1

1 − Pi

)
(5)

The entropy expression in Eq. 5 tells us about two aspects
of the function:

– Power: A function with high entropy necessarily has
many output values that are possible. This then implies
that many transitions between logic-0 and logic-1, or
between different output vectors, are also possible. This
directly increases the dynamic power consumption of
the resulting circuit as a result of the switching.

– Implications for obfuscation: An obfuscated combi-
national circuit with maximum entropy (i.e., 1) most
resembles a random function, where all output values
are equally likely across all possible input values.

The major difficulty in computing entropy comes from
accurately computing probability Pi . In our experiments,
Pi is estimated by random vector simulation. We have
used Nvect = 10, 000 random vectors to (i) perform logic
simulation on the circuit, (ii) count the number of logic-1

outputs resulting from the Nvect random vectors for each
output, and (iii) divide the output-1 count by Nvect.

In addition, we have also computed a metric we term
as differential entropy. In order to compute this metric, a
miter circuit is formed by XORing each of the outputs
of the unlocked netlists with the corresponding outputs in
the locked netlist. After forming the miter circuit, random
patterns are applied to the miter circuit (i.e., random primary
input patterns as well as random key inputs), and the entropy
of the miter circuit is evaluated using Eq. 5. This metric
thus captures, on a per-output basis, the proportion of bits
that differ between the original and locked netlists, and is
useful for quantifying “output corruptibility” induced by the
locking technique. It has close similarity with Hamming
distance in the miter part, but the logarithmic calculation
makes entropy calculation more about the amount of
information contained than the amount of differing bits.

In our experiment, we have found a close relation
between differential entropy and power overhead (as
presented in Fig. 12). The proportionality found is well
expected as entropy corresponds to the amount of switching
in a circuit and power overhead increases with the
switching.

5.3.3 Reconvergence

Reconvergence is a structural metric that represents the
rate of internal signals converging in other nodes. For a
particular gate, it is defined as the number of times signals
starting from this gate converges at some other gate, divided
by the number of total gates in fanout of that particular gate.
It was proposed as a metric for VLSI benchmark evaluation
in [18]. For the purpose of using the concept for evaluating
obfuscation, we have slightly redefined the reconvergence
metric. Instead of finding the nodes where signals may
converge, we search if the inputs to a certain gate started
from a same origin, thereby making it a convergent node.
For example, in Fig. 13, let GX be the gate under test whose
inputs In1 has fanin A and In2 has fanin B. The 2 common

0 0.2 0.4 0.6 0.8

D.Entropy

0

50

100

150

200

%
 P

o
w

e
r
 O

v
e
r
h
e
a
d

D.Entropy vs Power Overhead

Fig. 12 Plot of differential entropy vs power overhead

J Hardw Syst Secur (2018) 2:142–161 157

Fig. 13 Reconvergence calculation of a gate

gates in A and B are G1 and G2. Also, GX has fanin C

with 5 gates. So, the reconvergence for GX is 2/5. It is a
normalized value between 0 to 1.

A = Fanin (IN1) = [G1, G2, G3]
B = Fanin (IN2) = [G1, G2, G5, G6]
ReconvergenceGX

= n(A∩B)
n(A∪B)

= n[G1,G2]
n[G1,G2,G3,G5,G6]

= 2
5

(6)

Reconvergence is calculated for each gate of the circuit.
We have found that the percentage of gates that are highly
reconvergent has direct relation with attack resiliencies. So
we defined circuit reconvergence as the percentage of gates
that have reconvergence between 0.9 and 1.0.

Figure 14 shows the relation between attack resiliency
and circuit reconvergence. In Fig. 14a, percentage of keys
detected by our implementation of key sensitizing attack is
plotted against reconvergence. As lower percentage of keys
getting detected refers to more resilient obfuscation, the
inversely proportional relation indicates that more resilient
circuits have higher reconvergence and vice versa. High
reconvergence means large portion of the signals converge
at reconvergent gates, and it is obvious that key gates placed
on those converging logic cones would be harder to isolate
and detect by key sensitization attack (see Section 5.2.2).
Figure 14b shows the plot of verification failure metrics vs
reconvergence. The inverse proportionality is because of key
distribution and key effect masking. For lower percentage
of gates being highly reconvergent, the circuit is more
loosely connected, and the keys inserted are spread across
the design, each perturbing more signals. Conversely, a
higher value of the parameter would indicate large number
of gates having high convergence; hence, effect keys placed

in those logic cones would have less spread ability, causing
the wrong key to alter only a portion of circuit (and hence,
less corruptibility).

Plots c and d in Fig. 14 display the relation between
reconvergence and SAT attack resiliency in terms of attack
time and number of iterations, respectively. According to the
plots, high reconvergence relates to low SAT attack iteration
and time. This phenomena can be explained as SAT attack
rules out wrong keys by detecting the effect of the wrong
key bit in the primary outputs. Gates close to the outputs
are highly reconvergent than gates close to the inputs (as per
our computed metric). When key gates are placed in logic
cones that converge to a gate close to the outputs, there is
more chance that the key’s effect can be observable through
the primary outputs. This allows the SAT attack to rule out
more keys with less iterations.

5.3.4 Key Structure Metric

Key structure metric is a normalized metric that indicated
the structural interconnection between key gates. The
connection between key gate pairs is categorized and
assigned weights, similar to the assessment in [48], but
with extra categories included. The arithmetic mean of
these weights is termed as the key structure metric. The
categories of key pairs based on the structure of their relative
position and the weights we assigned on those to calculate
the metric are presented in Fig. 15. In this figure, the fanin
cone is shown in blue and fanout in orange. The weights
of corresponding type are included in the caption. A key
gate is labeled “non-mutable” (with maximum weight) if its
value cannot be determined by our implementation of key
sensitization attack.

Fig. 14 Plot of reconvergence vs attack resiliencies and verification failure metric

158 J Hardw Syst Secur (2018) 2:142–161

Fig. 15 Key categories used in
calculating key structure metric.
a Isolated, weight = 0. b
Convergent, weight = 10. c
Partly convergent, weight = 1. d
Dominant, weight = 5. e Partly
dominant, weight = 1

5.4 Comparative Analysis

We evaluated existing and proposed metrics for all of the
selected 720 samples. Averaging over each obfuscation
method provides a deeper insight into the structural
changes that occur because of the obfuscation. Comparative
representation of these metrics for the methods we have
implemented is visualized in Fig. 16. The well-known
metric in evaluation of obfuscation, Hamming distance,
is found not distinguishable for different methods, which
indicates its limitation in relative analysis. On the contrary,
proposed metrics (verification failure, differential entropy,
reconvergence, and key structure) are found to be more
sensitive to variation of methods. This property makes
these metrics suitable for comparative analysis of different
methods.

We have summarized our findings from the analysis in
Table 3. The first three rows shows the comparison of over-
heads between different methods of obfuscation. AntiSAT
benchmarks have high overhead because these benchmarks
contain SAT resiliency logic which is quite large compared
to the small original circuit. BDD obfuscation benchmarks
incur higher area and power overhead because we did not
performed the optimization with BDS tool on most of the
benchmarks (see Section 5.1).

The fourth and fifth rows in Table 3 represent the com-
parative attack resiliencies of the methods. For SAT attack,
all benchmarks without any SAT-resilient technique are
vulnerable. AntiSAT benchmarks are completely resilient
against the attack. AntiSAT BDD benchmarks show mod-
erate resiliency against SAT attack (see Section 5.2 for
details). For key sensitization attack, only BDD benchmarks
are found to be completely resilient.

The last five rows of the table present the comparison of
metrics that we propose. The assessment has been done by
comparing the average metrics of all benchmarks for each
method. Though these metrics vary largely for any specific
method, the ranges of value that the metrics can have differ
for methods. The table contains relative variation of metrics
for different obfuscation methods.

6 Future Directions

While the paper presents a well-chosen set of benchmarks,
several different metrics for quantitative comparison of
the quality of obfuscation, and extensive analysis of the
benchmarks using these metrics, there remain many new
opportunities for contribution by the peer researchers. Next,
we describe several possible areas where future research can
be directed.

– Metrics: In our analysis, we have seen trends that show
how the obfuscation metrics relate to attack resiliencies
and other features. But these were drawn from 720
samples (72 different benchmarks, 10 samples each).
We need to look deeper into the relations with large
number of samples from more benchmarks and inspect
relations among multiple metrics simultaneously. In
our ongoing work, we plan to perform large-scale
characterization of the metrics, optimize, find a global
quality metric from multiple qualitative metrics to
compare different methods, and utilize the metrics in
strengthening obfuscation.

– Larger circuits: We have worked with ISCAS85 since
they are the most widely used benchmark in several

Fig. 16 Variation of metrics for different methods

J Hardw Syst Secur (2018) 2:142–161 159

Table 3 Summary of comparative analysis

Random SLL Cone size AntiSAT AntiSAT AntiSAT BDD BDD BDD

Random SLL Cone size Random AntiSAT Entropy

Area Overhead Low Low Low Medium Medium Medium High High Medium

Power Overhead Low Low Low Medium Medium Medium High High Medium

Timing Overhead Low Low Medium Low Low Medium Medium Medium Low

SAT attack resiliency Low Low Low High High High Low Medium Low

Key sens. attack resiliency Low Medium Medium Low Medium Medium High High High

Verification failure metric High Medium Low High Medium Low High Low High

Entropy Medium Medium Medium Medium Medium Medium Low Medium High

Differential entropy High High High High High High Medium Low Medium

Reconvergence Medium Medium Medium Low Low Low Medium High Low

Key structure metric Low Low Medium Medium Medium Medium High High High

Green stands for desirable, red for undesirable, and yellow for in between

VLSI fields. In our future work, we plan to construct
large benchmarks tailored particularly for hardware
obfuscation. We also plan to work on industrial designs
and on how we can make obfuscation feasible for those.

– BDD benchmarks: The method of modifying BDD
for obfuscation appears to be strong against attacks
[45]. But because of implementing the BDD in circuit
with network of MUXs, the method suffers from high
overhead. Future work can focus on optimizing the
technique to limit the overhead in acceptable range.

– Sequential obfuscation: Along with the combinational
benchmarks, we are working on benchmarking sequen-
tial obfuscation. A new suite of such benchmarks will
be published in the near future.

– Behavioral obfuscation:Most of the proposed obfusca-
tion techniques are based on modification of structural
description of a design. Until now, we have worked
in netlist representation. We are planning to design an
algorithm to perform the obfuscation at the behavioral
level. This is more challenging because the represen-
tation can include many style and patterns in coding.
Also, the effect of obfuscation after synthesis still needs
to be evaluated.

– Combination of multiple techniques: We have imple-
mented each technique individually, as was proposed in
corresponding literatures. In our future work, we plan
to mix-and-match different techniques and evaluate the
effect. It is desirable to find the optimum ratio of mix-
ing more techniques that would give the best resiliency
against known and future attacks. By mixing, we refer
to choose a portion of the key size to be implemented
with one technique and another portion with some other
technique and so on, and the ratio of the key sizes is
the ratio of mixing. AntiSAT technique is such a system

that we have worked on already. We want to simi-
larly combine other methods and observe the resultant
resiliency.

– New obfuscation techniques: Since hardware obfusca-
tion is an active area of research, many different tech-
niques are being regularly proposed. We are working
to incorporate as many of those as we can to generate
obfuscation benchmarks and evaluate their resiliency
against existing and new attacks.

– Trust-Hub: We welcome researchers to upload their
obfuscation benchmarks on Trust-Hub [1] with our
suite of benchmarks. It is recommended to include
supporting documentation and to follow our naming
convention. More benchmarks with different methods
will benefit researchers with wider selection and more
features to evaluate methods and attacks.

7 Conclusion

With growing interest in hardware obfuscation, it is
necessary to have standard obfuscation benchmarks to
evaluate and compare various obfuscation techniques and
attacks. We have developed the first of such benchmarks.
The benchmarks are available on trust-hub.org, and we
encourage researchers to use these benchmarks in lieu of
arbitrarily generated benchmarks. We have also performed
detailed analysis of the benchmarks and developed a
few obfuscation metrics in process. These metrics have
close relation with attack resiliencies and also, in some
cases, overheads. For example, our proposed reconvergence
metric is found to be proportional to key sensitization
attack resiliency and inversely proportional to SAT attack
resiliency. These conclusions will lead our future work to

160 J Hardw Syst Secur (2018) 2:142–161

improve the proposed metrics, develop new ones, and utilize
the metrics in security assessment.

Funding Information This work is supported by Cisco Systems, Inc.,
NSF under grant CNS 1651701, and AFOSR under award number
FA9550-14-1-0351.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Forte D, Tehranipoor M (2017) Obfuscation Benchmarks.
Trust-HUB.org, Trust-HUB. http://www.trust-hub.org/OBFbench
marks.php

2. Alkabani Y, Koushanfar F (2007) Active hardware metering for
intellectual property protection and security. In: USENIX security
symposium, pp 291–306

3. Alkabani Y, Koushanfar F, Potkonjak M (2007) Remote activation
of ICs for piracy prevention and digital right management. In:
IEEE/ACM International conference on computer-aided design,
2007. ICCAD 2007. IEEE, pp 674–677

4. Amir S, Shakya B, Forte D, Tehranipoor M, Bhunia S (2017)
Comparative analysis of hardware obfuscation for IP protection.
In: Proceedings of the on great lakes symposium on VLSI 2017.
ACM, GLSVLSI ’17, pp 363–368

5. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan
S, Yang K (2012) On the (im)possibility of obfuscating programs.
J ACM 59(2):6,1–6,48

6. Berkeley Logic Synthesis and Verification Group (2004) ABC: a
system for sequential synthesis and verification. http://www.eecs.
berkeley.edu/alanmi/abc/

7. Bhatkar S, DuVarney DC, Sekar R (2003) Address obfuscation:
an efficient approach to combat a broad range of memory error
exploits. In: USENIX Security symposium, vol 12, pp 291–301

8. Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational
benchmark circuits and a target translator in fortran. In:
Proceedings of IEEE Int’l symposium circuits and systems
(ISCAS 85). IEEE Press, Piscataway, pp 677–692

9. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of
sequential benchmark circuits. In: IEEE International symposium
on circuits and systems, 1989, vol 3, pp 1929–1934. https://doi.
org/10.1109/ISCAS.1989.100747

10. Business Wire (2017) Inside secure unveils industry’s first
root-of-trust solution based on RISC-V processor. https://
www.businesswire.com/news/home/20171114006581/en/
Secure-Unveils-Industry

11. Chakraborty RS, Bhunia S (2008) Hardware protection and
authentication through netlist level obfuscation. In: Proceedings of
the 2008 IEEE/ACM international conference on computer-aided
design. IEEE Press, pp 674–677

12. Chakraborty RS, Bhunia S (2009) Security against hardware
trojan through a novel application of design obfuscation. In:
Proceedings of the 2009 international conference on computer-
aided design. ACM, pp 113–116

13. Chakraborty RS, Bhunia S (2010) RTL hardware IP protection
using key-based control and data flow obfuscation. In: 23rd

International conference on VLSI design, 2010. VLSID’10. IEEE,
pp 405–410

14. Chakraborty RS, Bhunia S (2011) Security against hardware
trojan attacks using key-based design obfuscation. J Electron Test
27(6):767–785

15. Collberg C, Thomborson C, Low D (1997) A taxonomy of
obfuscating transformations. Tech. rep. Department of Computer
Science. The University of Auckland, New Zealand

16. Contreras GK, Nahiyan A, Bhunia S, Forte D, Tehranipoor M
(2017) Security vulnerability analysis of design-for-test exploits
for asset protection in SoCs. In: 2017 22nd Asia and South
Pacific design automation conference (ASP-DAC). IEEE, pp 617–
622

17. Corno F, Reorda M, Squillero G (2000) RT-level ITC’99
benchmarks and first ATPG results. Des Test Comput IEEE
17(3):44–53. https://doi.org/10.1109/54.867894

18. Hutton M, Grossman JP, Rose J, Corneil D (1996) Characteri-
zation and parameterized random generation of digital circuits.
In: Proceedings of the 33rd annual design automation conference.
ACM, pp 94–99

19. IEEE Std 1735-2014 (Incorporates IEEE Std 1735-2014/Cor 1-
2015) (2015) IEEE Recommended Practice for Encryption and
Management of Electronic Design Intellectual Property (IP), 1–
90. https://doi.org/10.1109/IEEESTD.2015.7274481

20. Imeson F, Emtenan A, Garg S, Tripunitara MV (2013) Securing
computer hardware using 3d integrated circuit (IC) technology and
split manufacturing for obfuscation. In: Proceedings of the 22th
USENIX security symposium. Washington, pp 495–510

21. Kahng AB, Lach J, Mangione-Smith WH, Mantik S, Markov
IL, Potkonjak M, Tucker P, Wang H, Wolfe G (1998) Water-
marking techniques for intellectual property protection. In: De-
sign Automation conference, 1998. Proceedings. IEEE, pp 776–
781

22. Kocher P, Jaffe J, Jun B (1999) Differential power analysis. In:
Advances in cryptology—CRYPTO’99. Springer, pp 789–789

23. Koushanfar F, Potkonjak M (2007) CAD-based security, cryptog-
raphy, and digital rights management. In: Proceedings of the 44th
annual design automation conference. ACM, pp 268–269

24. Macii E, Poncino M (1996) Exact computation of the entropy of
a logic circuit. In: Sixth Great lakes symposium on VLSI, 1996.
Proceedings. IEEE, pp 162–167

25. Manual SU (2005) TetraMAX ATPG user guide. Version X-
200509, pp 249–264

26. Massad ME, Zhang J, Garg S, Tripunitara MV (2017) Logic
locking for secure outsourced chip fabrication: a new attack and
provably secure defense mechanism. arXiv:170310187

27. Mishra P, Tehranipoor M, Bhunia S (2017) Security and trust
vulnerabilities in third-party IPs. In: Hardware IP security and
trust. Springer, pp 3–14

28. Narasimhan S, Chakraborty RS, Chakraborty S (2012) Hardware
ip protection during evaluation using embedded sequential Trojan.
IEEE Des Test Comput 29(3):70–79

29. Rahman MT, Forte D, Shi Q, Contreras GK, Tehranipoor M
(2014) CSST: an efficient secure split-test for preventing IC
piracy. In: IEEE 23rd NATW 2014. Johnson City, pp 43–47

30. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Logic
encryption: a fault analysis perspective. In: DATE 2012. Dresden,
pp 953–958

31. Rajendran J, Sinanoglu O, Karri R (2013) Is split manufacturing
secure? In: DATE 13. Grenoble, pp 1259–1264

32. Rajendran J, Ali A, Sinanoglu O, Karri R (2015) Belling the
CAD: toward security-centric electronic system design. IEEE
Trans Comput-Aided Des Integr Circ Syst 34(11):1756–1769

33. Rostami M, Koushanfar F, Rajendran J, Karri R (2013) Hardware
security: threat models and metrics. In: Proceedings of the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.trust-hub.org/OBFbenchmarks.php
http://www.trust-hub.org/OBFbenchmarks.php
http://www.eecs.berkeley.edu/ alanmi/abc/
http://www.eecs.berkeley.edu/ alanmi/abc/
https://doi.org/10.1109/ISCAS.1989.100747
https://doi.org/10.1109/ISCAS.1989.100747
https://www.businesswire.com/news/home/20171114006581/en/Secure-Unveils-Industry
https://www.businesswire.com/news/home/20171114006581/en/Secure-Unveils-Industry
https://www.businesswire.com/news/home/20171114006581/en/Secure-Unveils-Industry
https://doi.org/10.1109/54.867894
https://doi.org/10.1109/IEEESTD.2015.7274481
http://arXiv.org/abs/170310187

J Hardw Syst Secur (2018) 2:142–161 161

international conference on computer-aided design. IEEE Press,
pp 819–823

34. Roy JA, Koushanfar F, Markov IL (2008) EPIC: ending piracy
of integrated circuits. In: Design, Automation and test in Europe,
DATE 2008. Munich, pp 1069–1074

35. Roy JA, Koushanfar F, Markov IL (2010) Ending piracy of
integrated circuits. Computer 43(10):30–38

36. Shakya B, Asadizanjani N, Forte D, Tehranipoor MM (2016) Chip
editor: leveraging circuit edit for logic obfuscation and trusted
fabrication. In: Proceedings of the 35th ICCAD 2016. Austin, p 30

37. Shakya B, Tehranipoor M, Bhunia S, Forte D (2017) Introduction
to hardware obfuscation: motivation, methods and evaluation.
hardware protection through obfuscation. Springer, chap 1, pp
3–32

38. Shamsi K, Li M,Meade T, Zhao Z, Pan DZ, Jin Y (2017) AppSAT:
approximately deobfuscating integrated circuits. In: 2017 IEEE
International symposium on hardware oriented security and trust
(HOST). IEEE, pp 95–100

39. Shen Y, Zhou H (2017) Double DIP: re-evaluating security of
logic encryption algorithms. In: Proceedings of the on great lakes
symposium on VLSI 2017. ACM, pp 179–184

40. Skudlarek JP, Katsioulas T, Chen M (2016) A platform
solution for secure supply-chain and chip life-cycle management.
Computer 49(8):28–34

41. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of
logic encryption algorithms. In: IEEE Intl. symposium on HOST
2015. Washington, pp 137–143

42. Subramanyan P, Ray S, Malik S (2015) SAT attack tool. https://
bitbucket.org/spramod/host15-logic-encryption

43. Syphermedia (2018) Syphermedia. http://www.smi.tv/
44. Xie Y, Srivastava A (2016) Mitigating sat attack on logic locking.

IACR Cryptology ePrint Archive 2016:590
45. Xu X, Shakya B, Tehranipoor MM, Forte D (2017) Novel bypass

attack and BDD-based tradeoff analysis against all known logic
locking attacks. In: International conference on cryptographic
hardware and embedded systems. Springer, pp 189–210

46. Yang C, Ciesielski M (2002) BDS: a BDD-based logic
optimization system. IEEE Trans Comput-Aided Des Integr Circ
Syst 21(7):866–876

47. Yasin M, Mazumdar B, Rajendran JJV, Sinanoglu O (2016)
Sarlock: SAT attack resistant logic locking. In: IEEE Intl.
symposium on HOST 2016. McLean, pp 236–241

48. Yasin M, Rajendran JJV, Sinanoglu O, Karri R (2016) On
improving the security of logic locking. IEEE Trans CAD of Integr
Circ Syst 35(9):1411–1424

49. Yasin M, Mazumdar B, Sinanoglu O, Rajendran J (2017) Security
analysis of anti-sat. In: 2017 22nd Asia and South Pacific on
design automation conference (ASP-DAC). IEEE, pp 342–347

https://bitbucket.org/spramod/host15-logic-encryption
https://bitbucket.org/spramod/host15-logic-encryption
http://www.smi.tv/

	Development and Evaluation of Hardware Obfuscation Benchmarks
	Abstract
	Abstract
	Introduction
	Motivation
	Background and Preliminaries
	Threats
	Related Work in IP Protection
	Hardware Obfuscation
	Post-synthesis Obfuscation
	Pre-synthesis Obfuscation
	Attacks

	Obfuscation Benchmarks
	Post-synthesis Obfuscation Benchmark Generation
	Preparation Phase
	Selection Phase
	Insertion Phase
	AntiSAT

	Pre-synthesis Obfuscation Benchmark Generation
	BDD

	Evaluation
	Overhead
	Attack Resiliency
	SAT Attack
	Key Sensitization Attack

	Metrics
	Verification Failure
	Entropy and Differential Entropy
	Reconvergence
	Key Structure Metric

	Comparative Analysis

	Future Directions
	Conclusion
	Funding Information
	Open Access
	References

