
HA2lloc: Hardware-Assisted Secure Allocator
Orlando Arias

University of Central Florida
oarias@knights.ucf.edu

Dean Sullivan
University of Central Florida

dean.sullivan@knights.ucf.edu

Yier Jin
University of Central Florida

yier.jin@eecs.ucf.edu

ABSTRACT
With ever-increasing complexity of software systems, the number
of reported security issues increases as well. Among them, memory
corruption attacks are a prevalent vector used against today’s soft-
ware stacks. These attacks are repeatedly leveraged to compromise
common application software, such as web browsers or document
viewers. However, previous work to mitigate memory corruption
attacks either suffer from high overhead or can be bypassed by a
knowledgeable attacker.

In this work, we introduce HA2lloc, a hardware-assisted allocator
that is capable of leveraging an extended memory management
unit to detect memory errors in the heap. We also perform some
preliminary testing using HA2lloc in a simulation environment and
find that the approach is capable of detecting and preventing common
memory vulnerabilities.

ACM Reference format:
Orlando Arias, Dean Sullivan, and Yier Jin. 2017. HA2lloc: Hardware-
Assisted Secure Allocator. In Proceedings of HASP ’17, Toronto, ON, Canada,
June 25, 2017, 7 pages.
https://doi.org/http://dx.doi.org/10.1145/3092627.3092635

1 INTRODUCTION
As the complexity of modern software increases, the possibility of
encountering vulnerabilities that affect platform security increases.
These vulnerabilities are estimated to cost the industry billions of
dollars every year [1]. For this reason, companies such as Google,
Microsoft, and Mozilla have implemented bug bounty programs,
where white hat hackers are rewarded for finding security issues
with their products [2–4]. Likewise, competitions such as Pwn2Own
reward white hat hackers for their ability to compromise systems.
Most of the vulnerabilities reported as part of bug bounty programs
and used in competitions like Pwn2Own are memory-related. These
vulnerabilities are the result of unsafe usage of languages that allow
manual memory management.

Memory errors are prevalent in programs that are written in lan-
guages that allow direct access and management of memory. Mem-
ory errors can be generalized in two categories: temporal and spatial
[5]. Temporal memory errors occur when the program attempts to
utilize an allocation that has already been freed, whereas a spatial
error occurs when memory is dereferenced outside valid bounds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’17, June 25, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5266-6/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3092627.3092635

At times, memory errors will result in accessing a portion of mem-
ory which has not been mapped to the application, resulting in an
illegal memory access and a runtime exception being thrown to the
application. However, under a sophisticated attacker [6], a memory
error can result in security implications for the system such as the
possibility to perform code reuse attacks [7] or leak sensitive data
[8].

Previous work in academia and industry have used compiler in-
strumentation or software-based runtime analysis to detect memory
errors. However, compiler-based approaches suffer from two issues:
the precondition that source code for the application is available,
and that the instrumentation is as good as the pointer analysis the
compiler performs. Also, software-based runtime analysis intro-
duces large performance penalties and may require a training phase.
In this work, we propose a new type of memory allocator which
combines both software and hardware elements to provide protec-
tion against memory errors while remaining transparent to software
running on a platform. We call our memory allocator HA2lloc, the
hardware-assisted allocator. HA2lloc utilizes the facilities of the
runtime environment and operating system in combination with an
extension to the memory management unit to detect both temporal
and spatial memory errors as they occur without the need for com-
piler instrumentation. We demonstrate the low overhead provided
by HA2lloc and how it can be integrated and used to augment other
compiler and software-based approaches.

At its heart, HA2lloc employs a modified Memory Management
Unit (MMU) in combination with a new memory allocator to detect
temporal and spatial memory errors1. Our approach utilizes bounds
data obtained by the allocator and forwards it to the operating system
in order to populate a new set of structures in the MMU. When the
MMU handles a memory access that is found in violation with the
stored mappings, it triggers a fault which can be handled by the
Operating System and the runtime environment.

The main contributions of this paper are:
• The introduction of a new memory protection scheme,

HA2lloc, that provides hardware-assisted support to de-
tect memory errors which utilizes metadata obtained from
the runtime environment to perform the necessary checks
on memory accesses while remaining transparent to the
application.

• A study and demonstration of the applicability of the ap-
proach as a defense against common attacks, such as virtual
function table hijacking, use after free, and counterfeit ob-
ject oriented programming (COOP).

The rest of this paper is structured as follows. Section 2 provides
background information on buffer overflows and their effects. It then
introduces previous approaches at protecting systems from these
type of vulnerabilities. Section 3 provides a high-level overview of
1At this time, we have only emulated the MMU subsystem as to investigate the feasibility
of the approach.

https://doi.org/http://dx.doi.org/10.1145/3092627.3092635
https://doi.org/http://dx.doi.org/10.1145/3092627.3092635

HASP ’17, June 25, 2017, Toronto, ON, Canada Orlando Arias, Dean Sullivan, and Yier Jin

our proposed approach with section 4 describing our implementation.
Section 5 provides in-depth testing and evaluation of our platform,
including performance metrics and a discussion of its limitations.
We then draw conclusions and present future work in Section 6.

2 BACKGROUND
Memory errors continue to be a trend, as the ten years of data
collected from the Common Vulnerabilities and Exposures (CVE)
database reflect [9]. Figure 1 reflects this data, showing only memory
errors with a rating of high to critical. Software exploitation based
on stack buffer overflows has dwindled over the years, with use
after free vulnerabilities gaining traction and heap buffer overflow
vulnerabilities maintaining steady momentum. We notice that some
of the most powerful attacks are heap based, as we see an increasing
trend in spatial and temporal heap-based vulnerabilities.

2.1 Example Vulnerability
Consider the sample code shown in Listing 1. Here, we demonstrate
both temporal and spatial memory errors. There is a potential use
after free vulnerability, as any of the objects stored in the c array may
actually get deallocated before their member functions are called,
resulting in the temporal memory error. There is also a potential
spatial memory error by calling the load_buffer() function with a
parameter that is larger in size than the buffer contained in the object.
This results in a heap buffer overflow.

Listing 1: A small, vulnerable interpreter
1 #include <cstring>

2
3 class base {

4 public:
5 virtual void function() { ; }

6 virtual void load_buffer(const char* buffer)

7 = 0;

8 };

9
10 class derived : public base {

11 char buffer[128];

12 public:
13 void function() { buffer[0] = '\0'; }

14 void load_buffer(const char* buffer) {

15 strcpy(this->buffer, buffer);

16 }

17 };

18
19 int main(int argc, char* argv[]) {

20 base* c[] = {nullptr, nullptr};

21 char* p = argv[2];

22 char m;

23
24 while(*p) {

25 switch(m = *p++) {

26 case 'n':

27 case 'N':

28 if(!c[m == 'N'])

29 c[m == 'N'] = new derived;

30 break;
31 case 'l':

32 case 'L':

33 c[m == 'L']->load_buffer(argv[1]);

34 break;
35 case 'f':

36 case 'F':

37 c[m == 'F']->function();

38 break;
39 case 'd':

40 case 'D':

41 delete c[m == 'D'];

42 break;
43 }

44 }

45 return 0;

46 }

An attacker can then utilize these vulnerabilities in order to cor-
rupt memory in the heap. If allocation headers are kept near the
allocations, then the buffer overflow vulnerability can be leveraged
to inject a corrupted header. Furthermore, by careful manipulation
of the allocations in the heap, a new vtable pointer can be injected
to gain arbitrary control flow through a COOP-style attack [10].

Spatial memory errors can also result in the disclosure of sensitive
information such as the base address of critical data structures or
code pointers, thereby allowing the attacker to bypass randomization
schemes that attempt to hide the locations of code and data segments
such as ASLR [11]. As seen in the example, spatial memory errors
can be exploited to overwrite these critical data structures or code
pointers, allowing for information flow attacks or control flow at-
tacks. An attacker is able to utilize temporal memory errors as a
way to redirect control flow by injecting control flow data, such as a
vtable pointer, into the reallocated memory region the stale object
used to occupy.

2.2 Previous Work
Baggy Bounds Checking [12] introduces bounds checking for arrays
in a granular fashion. Instead of keeping exact bounds for each array,
it pads the allocation into bounds that are powers of two. This is
done to reduce the overhead of the metadata by storing the exponent
of the allocation only. On a 32 bit system, only 5 bits are needed
to save the data and at storage time, one full byte is used. C library
functions that deal with arrays, such as strcpy() and memcpy(),
are provided with wrappers that check the bounds of the arrays
before executing them. However, the mechanism is unable to prevent
access errors when the buffer is located within an object such as a
struct. Baggy Bounds Checking is a compiler based solution and
thus requires binaries to be instrumented at compile time: source
code is required. Unfortunately, no tools have been released to the
general market. Looseness on the stored metadata also results in
some checks being inaccurate. Performance wise, a 60% overhead
is reported on a modified SPEC2000 suite and a 15% overhead in
some Olden benchmarks.

AddressSanitizer [13] provides a method to instrument bounds
check for software written in C and C++. It is implemented as a
compiler pass and a runtime library. A portion of memory is dedi-
cated as shadow memory, where metadata about arrays are stored.
The memory is mapped into intervals of N bytes, and the mapping
into the shadow area computed as Addr >> Scale+O f f set where
Scale is given by N. If the transformation is applied to the shadow
memory area, the resulting address will point to a portion of mem-
ory which is not mapped into the process’s virtual address space,
thus generating an access violation. AddressSanitizer provides a
runtime library to aid with dynamic allocations, providing new ver-
sions of the malloc() family of functions and free(). The new

HA2lloc: Hardware-Assisted Secure Allocator HASP ’17, June 25, 2017, Toronto, ON, Canada

20162015201420132012201120102009200820072006

20

40

60

80

100

%
vu

ln
er

ab
ili

tie
s

Heap overflows Stack overflows Use after free Null-pointer dereference Integer overflow

Figure 1: Trends in memory errors collected from the CVE database [9]. We show trends in memory errors in the last ten years that
have resulted in a software vulnerability. Observable is how stack exploits have dwindled in favor of heap-based exploits.

allocator functions provide redzones around the returned region.
These redzones are flagged as unaddressable and are used to store
data from the allocator. The new implementation of free() poisons
these redzones and puts them into a quarantine mode. Redzones
are also added to buffers stored in stack frames. AddressSanitizer,
however, presents a few false negatives and false positives, such as
unaligned accesses that are partially out of bounds, accesses that
fall too far away from the object bounds that may land in a different
valid location, and load widening.

Sarbinowski et al propose VTPin in [14] as a way to counter
some use after free exploits that result from temporal memory errors.
VTPin provides a small library that intercepts calls to the allocator.
Specifically, when a deallocation takes place, the VTPin takes control
of the allocation and infers whether the deallocation corresponds to a
C++ object. If it is, VTPin performs an in-place reallocation, leaving
sufficient area to store a new set of virtual function table pointers.
These point to an implementation controlled virtual function table.
The in-place reallocation ensures that the virtual table pointer area
is never reutilized, thus an attacker is unable to overwrite the virtual
table pointer area by means of conventional heap spraying attacks
such as Heap Feng Shui [6].

Watchdog [15] and WatchdogLite [16] propose a mechanism to
store and check bounds data of a pointer or array with some hardware
acceleration by using the SIMD extensions of x86 and x86_64 pro-
cessors. This provides protection against spatial memory errors. Intel
MPX [17] provides functionality similar to that of WatchdogLite,
with the distinction that a dedicated set of registers, instructions
and hardware exceptions were added to the processor. Intel MPX is
available on 6th generation and newer processors. Being ISA-based,
these approaches require compiler instrumentation for them to be of
use.

Woodruff et al introduce Capability Hardware Enhanced RISC
Instructions (CHERI) as a method to add capabilities to memory
accesses in [18]. Capabilities are defined as the right to perform an
action or set of actions to a given object. Furthermore, capabilities
can be transferred between objects. In CHERI’s case, the capabilities
define the right of an instruction to make a memory access. For the
purposes of implementation, CHERI is built as a coprocessor in

a MIPS64 compatible core. Much like the previously mentioned
approaches, compiler support is necessary to issue the necessary
coprocessor instructions in a program. For this purpose, the authors
utilize the LLVM compiler infrastructure in order to instrument
source code.

2.3 Limitations of Previous Work
Compiler-based approaches such as AddressSanitizer [13], Baggy
Bounds Checking [12], Watchdog [15], WatchdogLite [16], and In-
tel’s MPX [17] inherently suffer from the outset as source code is
required in order to instrument applications. Furthermore, the instru-
mentation is only as good as the correctness and completeness of the
pointer analysis the compiler can perform. Unfortunately, pointer
analysis has proven to be undecidable for the general case [19], and
different algorithms suffer from either runtime or spatial consider-
ations [20]. As such, compilers will perform a safe overestimation
which can lead to incorrect instrumentation.

Herein lies the main issue with current compiler-based metadata
approaches. Because we can not determine whether two symbols
alias to the same value, we are unable to properly propagate metadata
on this symbol for the general case. As such, there are instances
where the information needed to perform the check is not available or
inaccurate. Since compilers err on the side of safety, any performed
check with incomplete or inaccurate metadata will pass, allowing
temporal and spatial memory errors to occur.

Other approaches attempt to address either spatial or temporal
memory errors. For example, although VTPin [14] ensures that the
portions of an object that correspond to a virtual function table
pointer can not be overwritten by subsequent allocations, it is un-
able to protect these areas against corruption that happens due to
conventional heap buffer overflows. We were able to demonstrate
this by crafting our own implementation of VTPin and constructing
a vulnerable program that allocates two objects in the heap. We then
free one of the objects and utilize a heap buffer overflow vulnerabil-
ity in the other object to write into the reallocation made by VTPin.
This results in the virtual function table pointer kept by VTPin being
corrupted, resulting in arbitrary code execution from an attacker’s

HASP ’17, June 25, 2017, Toronto, ON, Canada Orlando Arias, Dean Sullivan, and Yier Jin

perspective. We should note that this attack is still possible even if
the object is not deallocated.

3 PROPOSED APPROACH
Although compiled languages such as C and C++ often lose infor-
mation on arrays when the final binary is built, such information
may be reconstructed at runtime. For example, when a program dy-
namically allocates memory, the allocator has knowledge of both the
allocation size and the address at which the allocation was made. We
leverage this runtime information to gather the necessary metadata
to enforce our buffer overflow protection and our temporal memory
safety scheme.

3.1 Dynamic Memory Allocations
Modern computing systems implement process isolation by provid-
ing each process with its own virtual address space. In an AMD64-
based system, each process is given a potential 48bit address space.
However, no application is given a full address space when executing,
as systems do not contain enough physical memory to support this.
As such, applications are given the ability to dynamically request
memory from the system. Enter the malloc() family of functions
from the C library, and the new operator from the C++ language.
With this, an application is able to expand its memory footprint by
adding memory to the heap.

An allocator manages the heap memory for a process. The alloca-
tor is provided by the runtime environment, namely the C library in
combination with the operating system, and it is completely trans-
parent to the program. When a process deallocates memory using
the free() function or the delete keyword, the allocator flags that
portion of memory as unused, and can potentially cache it for future
allocations. If there is not enough unused memory in the heap to
satisfy a request, then the allocator proceeds to request more memory
from the operating system utilizing the system call interface.

Internally, an allocator utilizes a series of data structures to keep
a record of which allocations made by the application are currently
active and which ones are freed. This data structure is called an
allocation header. The way the allocator manages the allocation
headers and the information they contain are specific to the allocator
implementation itself. For example, some allocators, such as dlmal-
loc and derivatives [21], choose to keep allocation headers in front
of the allocated space. This has the benefit of the allocator quickly
being able to access information about the allocation by offsetting
from a pointer to the allocated space. Unfortunately, a heap buffer
overflow can easily corrupt adjacent allocation headers. Other allo-
cators, such as OpenBSD’s allocator, keep the allocation headers
in a separate portion of memory [22]. This portion of memory is
randomly mapped to the application and kept in a different mem-
ory area from the allocation itself. Although this secures allocation
headers from being corrupted, the mechanism requires a search to
be performed looking for the allocation header that matches the
allocation itself. However, there are still common elements found
in allocation headers. The size of of every allocation the application
makes, the area of memory occupied by the allocation, and whether
the allocated area has been freed or not is kept.

3.2 Design Constraints
With HA2lloc, we wish to provide a drop-in mechanism that is
compatible with existing applications without needing to rewrite or
recompile them. For this purpose, we constrain our design to meet
the following points:

• Transparency: The system must be completely transparent
to applications. An application which exhibits legal behav-
ior must not be affected in operation by the buffer overflow
protection mechanism, nor should the application be able
to infer it is running under the mechanism.

• Portability: Existing applications must work under the sys-
tem without any type of modification to their source code
and/or binaries. Applications are not to be modified at load
time either.

• Integration: The mechanism must be easily integrated in an
existing operating system and runtime environment with
minor modifications. As long as the underlying hardware
platform supports the mechanism, it should work without
triggering any false-positives.

Given these constraints, compiler modifications are not allowed,
as these will reflect a change in the binaries that get deployed on the
system, violating the Portability requirement. Only modifications to
the runtime, the operating system and underlying hardware platform
are allowed. As such, we assume that an application will utilize
the resources provided by the runtime environment and operating
system, and conform to standard architectural and ABI conventions
with special function registers.

In order to design HA2lloc we observe the following:

(1) The internal data structures in the allocator have knowledge
of the place where the allocated memory resides at and their
sizes.

(2) The allocator must communicate with the operating system
to request more memory when needed.

We utilize these observations in the next subsection to introduce the
concepts behind HA2lloc.

3.3 Introduction to HA2lloc
We show a high level overview of HA2lloc in Figure 2. At its heart,
HA2lloc provides a security aware allocator which separates alloca-
tion headers from the actual allocations in the heap. In doing so, we
obtain two benefits. First, allocation headers can not be corrupted by
conventional heap overflows. This aids with the integrity of the allo-
cator. Secondly, it allows us to flag pages that have been specifically
added to a process for the purposes of dynamic allocations.

When an application requests memory from the system using
the malloc() family of functions, HA2lloc’s allocator handles the
request. Besides performing a request to the operating system to
allocate new pages to the application, HA2lloc also forwards alloca-
tion metadata to the operating system itself. The allocation metadata
consists of the size of the allocation and a possible base address in a
page. The operating system records the allocation metadata on the
page table entries used by the memory management unit as well as
flag the associated pages as heap pages.

Furthermore, we randomize the base address of allocations within
the process’s virtual address space. In doing so, we introduce an extra

HA2lloc: Hardware-Assisted Secure Allocator HASP ’17, June 25, 2017, Toronto, ON, Canada

Application

libc

HA2lloc

Operating
System

CPU

MMU

R
A

M

malloc()

printf()

array[2]

free() syscall

verified
access

metadata
metadata

Figure 2: Overview of HA2lloc: HA2lloc provides the facilities required by an application to perform dynamic memory allocations
whilst forwarding allocation metadata to the operating system. The operating system itself stores this information in the page table
for the application. An extended MMU is then capable of utilizing the information to check memory accesses performed by the
application.

layer of unpredictability to the allocator. That is, for two independent
runs of the same program, two very different heap address maps
are generated. This further allows us to mitigate heap-spraying style
attacks, such as heap feng shui [6].

Since HA2lloc only provides the means to perform allocations,
application software can go on to utilize other facilities provided
by the system libraries. The system libraries can utilize HA2lloc’s
facilities to perform any dynamic allocations.

Any access the application performs to heap-mapped pages can
then be verified by the MMU. The validation step remains trans-
parent to the application, as it is performed directly by the MMU
subsystem. Since the page table contains bounds information, the
MMU can utilize this information to check accesses to heap mapped
pages. If the access occurs within the recorded bounds, it is allowed.
Otherwise, a fault is triggered and a signal is sent to the operating
system.

We also need to be able to handle temporal memory errors. In
order to do so, we must be able to handle any deallocations made
by an application. When the process relinquishes an allocation by
either calling the free() function, the realloc() function, or the
delete keyword in C++, HA2lloc signals the operating system,
forwarding information on the ongoing deallocation. The operating
system in turn eliminates the allocation entry from the page table.
If no more allocations reside in that particular table, the operating
system unmaps the page from the process. The unmapped virtual
address space is never reused.

When the process attempts a memory access to a deallocated
area in the heap, one of two things will happen: either the page
is unmapped triggering an illegal memory access, or the MMU
is unable to find the bounds of the accessed address in the page
table, triggering a similar fault. The operating system then is able to
handle the fault accordingly, by either terminating the application or
throwing a signal to the application.

4 IMPLEMENTATION DETAILS
4.1 The HA2lloc Allocator
Linux-based systems that utilize the GNU C Library use a modified
dlmalloc as the base to manage heap allocations [21]. Allocators
based on dlmalloc have the characteristic that they keep allocation
metadata in front of the allocation that is returned to callers. The

allocation metadata, or allocation header contains information on
the size of the allocation, the next allocation bucket, and some other
flags. Having the allocation header in front of the allocation allows
the allocator functions to quickly obtain data from an allocation.

Although simple in design and fast in execution, a well versed
attacker is able to exploit this allocator behavior to spray the heap
and fool the allocator into thinking regions are allocated when they
are not. Furthermore, heap buffer overflows allow an attacker to
corrupt allocation headers, further enhancing their control over the
application.

4.1.1 Allocating Memory. For this purpose, HA2lloc’s allocator
keeps the allocation metadata separate from the allocations them-
selves. Upon initialization, HA2lloc’s allocator maps a page of
memory where it keeps all allocation headers. Whenever a pro-
gram requests memory through the use of malloc(), calloc(), or
realloc(), HA2lloc requests memory from the operating system
and creates a new allocation header. The allocator header is stored
as part of a hash table. In order to handle collisions in the hash table,
we utilize a red-black tree [23] on each bucket. This allows us to
perform operations on the data structure in Ologn computational
time in contrast to the amortized On computational time that would
result in handling collisions and resizing the hash table. Furthermore,
by performing operations in this fashion in the hash table we can
reduce the number of semaphores used in the allocation data struc-
tures, allowing for better parallelism in multi-threaded applications.
Once the allocation is made and the header is constructed HA2lloc
returns a pointer to the allocation to the user.

Of importance to HA2lloc is how pages are mapped to the ap-
plication. Ideally, we would like to randomize the addresses of the
pages mapped to the application whilst still ensuring that large al-
locations remain continuous in memory. Preliminary testing shows
that Linux’s sys_mmap does not attempt to randomize the addresses
of the pages returned. The first mapped page has a relative random
address. However, subsequent calls to mmap() will return pages at a
fixed offset from the first page. This is detrimental to the security of
our allocator, as all allocations would be in a predictable memory
address. For this purpose, we introduce a new system call in the
Linux kernel which performs a function similar to that of sys_mmap
but it returns pages in a randomized fashion. We forward information
about the desired allocation size to the kernel using this mechanism.

HASP ’17, June 25, 2017, Toronto, ON, Canada Orlando Arias, Dean Sullivan, and Yier Jin

This information is used by the HA2lloc’s hardware subsystem to
transparently perform bounds check in heap accesses (see Section
4.2).

4.1.2 Deallocating Memory. When an application deallocates
memory, HA2lloc removes the allocation header from the hash table,
modifying the red-black tree if necessary. The removed allocation
headers are added to a linked list to be reused by new allocations.
The pages corresponding to these allocations are unmapped from
the program. We ensure that these pages are never mapped to the
program again by keeping a list of pages unmapped by the applica-
tion within the virtual address map kept by the kernel in the process
control block. In doing so, temporal memory errors result in an
illegal memory access, triggering a segmentation fault.

4.2 HA2lloc’s Hardware Subsystem
HA2lloc’s Hardware Subsystem has yet to be implemented and
tested. At its base, we extend the MMU to add one extra bit to flag
heap allocated pages. Since heap pages are allocated using a new
system call, no extra overhead is incurred in this flagging mechanism.
We keep bounds information at the page level by associating a 32bit
word to a heap page table entry. We illustrate the encoding in Figure
3.

page

offset0
size0

offset1
size1

records

Figure 3: Bounds encoding mechanism used in HA2lloc. A 32bit
word is associated with every heap page table entry. This word
contains bounds information used by the MMU to perform
checks on heap accesses.

In order to record information on buffer sizes and offsets into the
pages, we first analyze a few architectural constraints an allocator
must follow. Type information is generally lost when compiling C
code. Furthermore, the malloc() family of functions do not receive
type information regarding the allocation that is being made. As such,
these functions must assume a worse case scenario alignment for the
datatype that is being allocated, both in terms of performance and
ISA limitations. In C++, the new keyword could potentially use type
information and specialize the allocation to better suit the datatype,
but to the best of our knowledge, no C++ allocator performs this
optimization.

For HA2lloc, we assume a worst case alignment of 16B, given that
this is the alignment required for common instruction set extensions
such as Intel AVX [24]. As such, in a 4096B page, we can start at
256 different offsets. Consequently, we divide the 32bit word into
8bit subsections. We then group the subsections in pairs, with the
lower byte denoting in which 16B block the allocation into the page
starts, or the offset into the page, and the upper byte the number of

16B blocks covered by the allocation, or the size of the allocation.
This means that we can potentially have up to two allocations per
page. For two small allocations, we are then able to leave unused
space between them, which can serve as a red zone to catch overruns.
Multi-page allocations are handled in a similar fashion. Since the size
field can cover the entire page, we can let the size field encompass
the entire page, indicating that it covers a buffer.

When a memory access occurs to a heap-flagged page, the MMU
utilizes the offset and size information recorded on the associated
word to the page table entry and checks whether the access is within
bounds specified for the allocations in the page. If it is, then virtual
to physical address translation occurs as normal and the memory
access is allowed. On the other hand, if the check fails, it is deemed
to be caused by an illegal access. The MMU triggers a fault at this
point, which must be handled by the operating system.

5 PRELIMINARY EVALUATION
A preliminary evaluation of our prototype implementation shows
that for large allocations, HA2lloc is faster than the dlmalloc imple-
mentation used in glibc. This is because glibc will scan through
a circular list of freed allocations before mapping new heap pages
to the application. For smaller allocations, glibc will expand the
heap using the sbrk system call and perform the smaller allocations
in that area. Since glibc can expand the heap multiple pages at a
time using the sbrk system call, it can cache pages to be used by
subsequent allocations and avoid expensive context switches.

Method Temporal Spatial
Baggy Bounds Checking [12] no yes†

AddressSanitizer [13] no yes†

VTPin [14] yes no
Watchdog [15] no yes†

WatchdogLite [16] no yes†

Intel MPX [17] no yes†

CHERI [18] no yes†

Our approach yes yes‡

†
Requires instrumentation.

‡
In our current prototyping phase, bounds check is performed in a simu-

lated environment and not implemented in a hardware MMU.
Table 1: Comparison between approaches

Table 1 offers a comparison between our protection mechanism
and previous work. When running our sample vulnerable application
on Section 2 we found HA2lloc to be capable of detecting and
preventing both the temporal and spatial memory errors. We also
found that the vulnerabilities in the program were readily exploitable
when testing against glibc’s dlmalloc. We also found that our
reimplementation of VTPin was able to prevent the temporal memory
error as long as the spatial memory error vulnerability was not
triggered.

HA2lloc: Hardware-Assisted Secure Allocator HASP ’17, June 25, 2017, Toronto, ON, Canada

6 CONCLUSIONS AND FUTURE WORK
In this work, we present HA2lloc, a secure memory allocator that
utilizes an extended memory management unit to detect both tempo-
ral and spatial memory errors in the heap. We present the concepts
behind HA2lloc as well as preliminary testing of its implementation.
We also compare HA2lloc to previously proposed mechanisms in
terms of coverage and deployability.

Future work for HA2lloc includes the implementation of the mem-
ory management unit subsystem in order to test the effectiveness
of the spatial memory error detection as well as any incurred over-
head from these checks. Furthermore, we wish to be able to test
reported vulnerabilities against HA2lloc to further validate its useful-
ness. Lastly, we plan to extend HA2lloc to also include stack-based
buffers, as to provide a complete temporal and spatial memory error
detection solution.

7 ACKNOWLEDGEMENTS
This paper is partially supported by the Department of Energy
through the Early Career Award (DE-SC0016180). Mr. Orlando
Arias is also supported by the National Science Foundation Gradu-
ate Research Fellowship Program under Grant No. 1144246. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation and the Department
of Energy.

REFERENCES
[1] R. Telang and S. Wattal, “An empirical analysis of the impact of software vul-

nerability announcements on firm stock price,” IEEE Transactions on Software
Engineering, vol. 33, no. 8, pp. 544–557, 2007.

[2] Mozilla Foundation, “Mozilla security bug bounty program,” https://www.mozilla.
org/en-US/security/bug-bounty/.

[3] Microsoft Corporation, “Microsoft bounty programs,” https://technet.microsoft.
com/en-us/library/dn425036.aspx.

[4] Google, Inc., “Google application security,” https://www.google.com/about/
appsecurity/.

[5] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in
2013 IEEE Symposium on Security and Privacy, May 2013, pp. 48–62.

[6] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe, 2007.
[7] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi,

“Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization,” in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013, pp. 574–588.

[8] P. Ducklin, “Anatomy of a data leakage bug – the OpenSSL “heart-
bleed” buffer oveflow,” 2014, https://nakedsecurity.sophos.com/2014/04/08/
anatomy-of-a-data-leak-bug-openssl-heartbleed/.

[9] The MITRE Corporation, “Common vulnerabilities and exposures,” https://cve.
mitre.org/.

[10] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing code
reuse attacks in c++ applications,” in 2015 IEEE Symposium on Security and
Privacy, May 2015, pp. 745–762.

[11] P. Team, “Pax address space layout randomization (aslr),” 2003.
[12] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking: An

efficient and backwards-compatible defense against out-of-bounds errors.” in
USENIX Security Symposium, 2009, pp. 51–66.

[13] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A
fast address sanity checker.” in USENIX Annual Technical Conference, 2012, pp.
309–318.

[14] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos, “Vtpin:
Practical vtable hijacking protection for binaries,” in Proceedings of the
32Nd Annual Conference on Computer Security Applications, ser. ACSAC
’16. New York, NY, USA: ACM, 2016, pp. 448–459. [Online]. Available:
http://doi.acm.org/10.1145/2991079.2991121

[15] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog: Hardware for
safe and secure manual memory management and full memory safety,” in 2012

39th Annual International Symposium on Computer Architecture (ISCA), June
2012, pp. 189–200.

[16] ——, “Watchdoglite: Hardware-accelerated compiler-based pointer checking,” in
Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’14. New York, NY, USA: ACM, 2014, pp. 175:175–
175:184. [Online]. Available: http://doi.acm.org/10.1145/2544137.2544147

[17] P. Guide, “Intel® 64 and ia-32 architectures software developerâĂŹs manual,”
Volume 3B: System programming Guide, Part, vol. 2, 2011.

[18] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis,
B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri capability
model: Revisiting risc in an age of risk,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ser. ISCA ’14.
Piscataway, NJ, USA: IEEE Press, 2014, pp. 457–468. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665740

[19] W. Landi, “Undecidability of static analysis,” ACM Letters on Programming
Languages and Systems (LOPLAS), vol. 1, no. 4, pp. 323–337, 1992.

[20] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, ser. PASTE ’01. New York, NY, USA: ACM,
2001, pp. 54–61. [Online]. Available: http://doi.acm.org/10.1145/379605.379665

[21] D. Lea and W. Gloger, “glibc malloc(),” http://malloc.de/en/.
[22] P.-H. Kamp, D. Miller, M. Dempsky, and O. Moerbeek, “Openbsd malloc(),”

http://bxr.su/OpenBSD/lib/libc/stdlib/malloc.c.
[23] R. Sedgewick and L. J. Guibas, “A dichromatic framework for balanced trees,”

2013 IEEE 54th Annual Symposium on Foundations of Computer Science, vol. 00,
pp. 8–21, 1978.

[24] Intel Corporation, “Intel Architecture Instruction Set Extensions Programming
Reference,” December 2016, document Number: 319433-028.

https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://technet.microsoft.com/en-us/library/dn425036.aspx
https://technet.microsoft.com/en-us/library/dn425036.aspx
https://www.google.com/about/appsecurity/
https://www.google.com/about/appsecurity/
https://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
https://nakedsecurity.sophos.com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/
https://cve.mitre.org/
https://cve.mitre.org/
http://doi.acm.org/10.1145/2991079.2991121
http://doi.acm.org/10.1145/2544137.2544147
http://dl.acm.org/citation.cfm?id=2665671.2665740
http://doi.acm.org/10.1145/379605.379665
http://malloc.de/en/
http://bxr.su/OpenBSD/lib/libc/stdlib/malloc.c

	Abstract
	1 Introduction
	2 Background
	2.1 Example Vulnerability
	2.2 Previous Work
	2.3 Limitations of Previous Work

	3 Proposed Approach
	3.1 Dynamic Memory Allocations
	3.2 Design Constraints
	3.3 Introduction to HA0.5ex2lloc

	4 Implementation Details
	4.1 The HA0.5ex2lloc Allocator
	4.2 HA0.5ex2lloc's Hardware Subsystem

	5 Preliminary Evaluation
	6 Conclusions and Future Work
	7 Acknowledgements
	References

