
An End-to-End View of IoT Security and Privacy

Zhen Ling∗, Kaizheng Liu∗, Yiling Xu∗, Yier Jin†, Xinwen Fu‡
∗Southeast University, Email: {zhenling, kzliu, ylxu}@seu.edu.cn

†University of Florida, Email: yier.jin@ece.ufl.edu
‡University of Central Florida, Email: xinwenfu@ucf.edu

Abstract—In this paper, we present an end-to-end view of
IoT security and privacy and a case study. Our contribution is
twofold. First, we present our end-to-end view of an IoT system
and this view can guide risk assessment and design of an IoT
system. We identify 10 basic IoT functionalities that are related
to security and privacy. Based on this view, we systematically
present security and privacy requirements in terms of IoT system,
software, networking and big data analytics in the cloud. Second,
using the end-to-end view of IoT security and privacy, we present
a vulnerability analysis of the Edimax IP camera system. We are
the first to exploit this system and have identified various attacks
that can fully control all the cameras from the manufacturer.
Our real-world experiments demonstrate the effectiveness of
the discovered attacks and raise the alarms again for the IoT
manufacturers.

I. INTRODUCTION

IoT can be defined as interconnecting various uniquely

addressable objects through communication protocols. We can

interconnect anything including virtual objects together and

access those things remotely [1], [2]. IoT has broad applica-

tions, including healthcare, life sciences, municipal infrastruc-

ture, smart home, retail, manufacturing, agriculture, education

and automation. Forbes reported that by 2020 annual revenue

of IoT vendors could exceed $470B, Industrial Internet of

Things (IIoT) will exceed 60 trillion in the next 15 years and

IoT market size was about 900M in 2015 [3]. According to

Gartner’s hype cycle of emerging technologies in 2016 [4],

the expectation for IoT is very high and standardization of

IoT platforms will need 5-10 years. The IEEE P2413 Working

Group has been trying to standardize the IoT framework since

2014 while there is no consensus yet [5] .

IoT has attracted hackers. There are two kinds of threats:

threats against IoT and threats from IoT. 1. Threats against

IoT: On Oct. 21, 2016, a huge DDoS attack was deployed

against Dyn DNS servers and shut down many web services

including Twitter [6]. Hackers exploited default passwords and

user names of webcams and other IoT devices, and installed

the Mirai botnet [7] on compromised IoT devices. The huge

botnet was then used to deploy the DDoS attack against Dyn

DNS servers. Various other IoT devices have been hacked.

IP cameras can be hacked through buffer overflow attacks

[8]. Philips Hue lightbulbs were hacked through its ZigBee

link protocol [9]. SQL injection attacks were effective against

Belkin IoT devices [10]. 2. Threats from IoT: Researchers also

find cross-site scripting (XSS) attacks that exploited the Belkin

WeMo app and access data and resources that the app can

access [10].

In this paper, we present an end-to-end view of IoT security

and privacy. Our contribution is twofold. First, we present

our end-to-end view of an IoT system. We identify 10 basic

IoT functionalities related to security and privacy. Based on

this view, we systematically analyze the security and privacy

requirements in terms of five dimensions: hardware, operating

system/firmware, software, networking and big data analytics

in the cloud. Second, using the end-to-end view of IoT security

and privacy, we present an attack against the Edimax IP

camera system. We are the first to exploit this system and

have identified various attacks that can fully control all Edimax

cameras of the model of interest. The exploit of the camera

system demonstrates the usefulness of our view of IoT security

and privacy.

The rest of the paper is organized as follows. We introduce

our end-to-end view of IoT security and privacy in Section

II. In Section III, we introduce the communication protocol

of the Edimax camera system. Then we present our exploit of

the system in Section IV. We evaluate the exploit in Section

V and conclude the paper in Section VI.

II. FRAMEWORK OF IOT SECURITY AND PRIVACY

In this section, we first present our end-to-end view of an

IoT system and then present security and privacy requirements

for an IoT system.

A. End-to-End View of IoT

We will focus on a standalone IoT system as shown in

Figure 1. Such a system normally has three basic components:

thing, controller and cloud. The thing is connected to the

Internet. For a smart home system, the thing is normally

behind a wireless router, which adopts NAT to set up a local

network of home systems. The controller can be a program

on a PC or app on a smart device such as a smartphone or

tablet. Without loss of generality, we often use a smartphone as

an example controller in this paper. Within the local network,

the controller can communicate with the thing through the

router. However, if the controller is outside, it will not be

able to contact the thing directly since the thing is behind

NAT (unless port forwarding is enabled on the home router

for the thing). Therefore, most IoT systems use a cloud as an

intermediate relay between the thing and controller. The thing

builds a permanent connection to the cloud. The controller

controls or requests information from the thing through the

cloud.

We have identified 10 basic functionalities in a IoT system.

Fig. 1. End-to-end View of IoT

1) Upgrading: The firmware of the thing can be upgraded

to provide more and better services or a security patch

can be applied. The firmware can be a full-fledged

embedded Linux system. If the thing is a microcontroller

(MCU), the firmware can be a piece of dedicated code

for simple control or sensing. For example, a MCU can

be used to turn on and off an air conditioner.

2) Pairing: Bootstrapping a thing generally involves two

steps, pairing and then binding. A controller like a smart-

phone should be able to communicate with a thing at the

bootstrapping time. Such a communication channel can

be WIFI, Bluetooth, ZigBee, barcode/scanner, and near

field communication. This connecting process is denoted

as pairing. For example, when many smart things on

market are powered on, they behave as a wireless router

and allow the controller to connect to the things in order

to configure the things. Apparently, if a thing is deployed

in public, we have to limit who can access the thing and

configure it.

3) Binding: This is the process of configuring the thing

through the controller once pairing is done. The con-

troller may bind the thing to the Internet, that is, connect

the thing to the Internet. For example, the controller

can require a user to input the WiFi SSID (Service Set

Identifier) and password of a wireless router and send

the information to the thing, which can then connect

to the Internet. Another important binding activity is to

bind the thing and its users. For example, the controller

can learn the identity of the thing (e.g., the MAC

address of the wireless interface on the thing) via the

communication channel used in the pairing process.

Therefore, the user and the thing can be bound together

via an appropriate protocol.

4) Local authentication: Within a local network, the con-

troller may connect to a port open on a thing, which

should authenticate the user and then allow further

actions from the user.

5) Local control: Once a user is authenticated, the con-

troller can send commands to control the thing.

6) Remote authentication. If the controller is on the

Internet and not in the local network, it may not be able

to directly contact the thing, which may be behind NAT,

and has to go through the cloud for authentication.

7) Remote control: If the controller is on the Internet and

not in the local network, it may have to control the thing

through a cloud.

8) Relay by cloud: For remote authentication and control,

the cloud is to relay the authentication and control

messages between the thing and controller. The cloud

may have an authentication server to authenticate both

the thing and controller and connect them together.

9) Big data analytics by cloud: The cloud may collect

the data from things and users, and perform big data

analytics. A cloud may connect to other clouds that serve

other things, share data and request further analytics

capabilities.

10) Sensing and notification: Many things are smart. For

example, a thing may sense the room temperature and

notify the user if the temperature is too low or high. A

thing can also notify the user about abnormal behaviors

such as too many login attempts on the thing.

B. Security and Privacy in IoT

To secure an IoT system, we have to consider five di-

mensions: hardware, operating system/firmware, software, net-

working and data generated and maintained within the system,

as shown in Figure 2. As illustrated in Figure 1, an IoT system

has quite a few components, all of which should be inspected

from these five aspects. The 10 functionalities of IoT identified

in Section II-A span across these five dimensions. We have to

secure any interface that may interact with users (including

attackers) in an IoT system.

Fig. 2. Five Aspects of IoT Security and Privacy

Hardware security: Hardware security is critical when

attackers can physically access the IoT devices. For example,

many IoT devices do not disable their debugging ports after the

testing and validation stage, which give attackers full access

to the internal firmware. In fact, almost all IoT devices have

hardware vulnerabilities which may be exploited by attackers

including the UART/JTAG debugging ports, multiple boot

options, and unencrypted flash memory [11]–[13]. Through the

hardware backdoors, attackers can easily bypass software level

integrity checking by either disabling the checking functional-

ity or booting the system through an injected firmware image.

An IoT security vulnerability database is recently constructed,

which presents a large spectrum of different types of vul-

nerabilities including hardware security related vulnerabilities

[14]. Accordingly, countermeasures are recently proposed to

prevent physical attacks such as runtime attestation to prevent

TOCTOU attacks [15]. TPM [16], TrustZone [17] and Intel

SGX [18] can provide hardware-level security.

Operating system (OS)/firmware and software security

and privacy: Given the often limited functionalities of an IoT

device, a trustworthy operating system [19] can be implement-

ed on the device if the cost is permitted. The control app for

a thing is often installed on a smartphone and software secure

measures should be applied in order to prevent the attack

against the app like the attack in [10]. We can also not blindly

trust the cloud for security. For example, servers installed

on Amazon EC2 have to be secured by whoever deploys

the servers. Software security issues are similar to those in

the traditional computer systems. For example, backdoors and

public and private SSL key pairs are discovered by performing

static analysis on a large number of unpacked firmwares

[20]. Chen et al. [21] perform large-scale automated dynamic

analysis of various firmwares to discover potential exploits

using the Metasploit Framework. A case study of a firmware

modification attack is investigated in [22]. A buffer overflow

exploit is found by analyzing Home Network Administration

Protocol (HNAP) [23] so that it can be used to execute any

code on the device. A stack-based buffer overflow of the

general library, glibc [24], is exploited to attack several home

hubs [25].

Network Security and Privacy: An IoT system is a net-

worked system and the whole system has to be secured from

end to end [26]–[32]. Communication should be encrypted to

prevent the leak of sensitive information. Authentication has to

be carefully implemented. We have differentiated pairing from

binding. Recall that in the pairing process, the controller needs

to connect to the IoT device in order to configure the thing.

However, most IoT devices allow any controller in proximity

for pairing. The risk of such practice may be small in a private

setting like a home. However, for a large-scale deployment in

a public environment, anybody with access to the devices can

reconfigure the system and may break into the system. After

pairing, we run the binding process to bind identities to the

thing in order to control it. The authentication has to be set

up in a proper way. For example, weak passwords should be

avoided. An IoT system may be composed of a large number

of nodes with sensing capabilities and security techniques in

sensor networks can be applied accordingly [33]–[36].

Many manufacturers fail to provide necessary protection

for their networked IoT devices, which are under constant

attacks nowadays. The Mirai DDoS attack [7] was possible

because of the weak passwords on various IoT devices. Rouf

et al. [26] exploit the unsecured wireless communication

protocol of automatic meter reading. Dhanjani [27] hacks the

Phillips Hue lightbulb system and finds that the authentication

mechanisms are not strong. Molina [28] exploits the KNX, a

standardized home automation communication protocol, and

finds that the lack of authentication and encryption allows an

attacker to remotely control the appliances in a hotel. Rahman

et al. [29] find the communication protocol vulnerabilities

Camera

Internet

Wireless

Router

Cloud Servers

Wireless

Router

Base Station

Camera

R

Controller

Controller

Fig. 3. Architecture of the camera system

of the wearable device (Fitbit). By automatically analyzing

the applications and forging the authentication messages, Zuo

et al. [32] design an authentication message generator to

perform brute force attacks against the corresponding remote

application server. Obermaier and Hutle [31] investigate the

vulnerabilities of communication protocols of four surveillance

camera systems.

Big Data Analytics: Since the cloud sits between the con-

troller and IoT devices, it can collect all the data. Many of the

systems including Amazon AWS IoT are set up in this way. We

have to question: should the cloud know everything and collect

data about us and our belongings? For example, for remote

authentication, should the cloud serve as the authentication

server to authenticate controllers/things? However, big data

collected by the cloud can help defeat attacks. For example, a

proper intrusion detection system over the cloud can prevent

another round of Mirai attack. Since things are often very

specific, intrusion detection can be made easy.

III. PROTOCOLS OF EDMIAX CAMERAS

In this section, we present a case study of exploiting an IP

camera system manufactured by Edimax under our view of IoT

security and privacy. We first introduce the architecture of the

camera system and then present the detailed communication

protocol.

A. Architecture of the Camera System

By traffic analysis, we find that the Edimax camera system

has three components, including the camera, controller, and

cloud servers as shown in Figure 3. If the controller and

camera are in the same local network, the controller can

communicate with the camera locally and fetch the live video

through a web server on the camera. In this paper, we

concentrate on remote attacks and will focus on remote com-

munication protocols of the camera system when the controller

and camera are not in the same local network. The camera

connects to the Internet through an ethernet cable or WiFi.

The controller can be an app on a smartphone. The controller

communicates with the camera via the cloud servers, including

the registration server and the command relay server. The

registration server is used for device registration for both the

controller and the camera. The command relay server forwards

command messages between them.

Controller

Registration Server

 Command Relay Server

1

1

2
2

2 2

 Camera

3

1

1

3

4

4

Fig. 4. Registration phase

B. Paring, Binding and Registration

We first investigate the paring process. When the camera

is used for the first time, a user needs to connect it to her

home network using an ethernet cable. The software EdiView

Finder Utility should be installed on a computer in the same

home network. This utility is used to search the home wireless

router and configure the camera to use the home wireless

router. At this point, the wired connection of the camera can

be disconnected.

In the binding process, we can change the password

and other configurations such as the resolution of the

image via a web page of the camera. The link is

http://host/setup.asp?r=20141126, where host is the local IP

address of the camera. Upon connecting to the Internet, the

camera registers with two remote servers, i.e., registration

server and command relay server. The controller also registers

with both servers.

The packets transmitted between the controller, camera, and

remote servers are obfuscated instead of encrypted. The right

shift is performed over all characters but the first character in

packets. The number of positions in the right shift is between

1 and 7, which is the difference between the first original

character and the corresponding obfuscated character. The first

original character is always “<”, since a pair of “<>” is used

to delimit key and value pairs. When the camera or controller

receives a packet, it compares the first character with “<” to

obtain the number of positions and perform the corresponding

left shit to obtain the plaintext.

At the registration phase, all the packets use UDP. The UDP

service ports of both the registration server and the command

relay server are 8760. Figure 4 illustrates the registration

procedure for both the camera and controller. Since the first

three steps of both the camera and controller are similar,

we take the camera as an example to present the detailed

procedure as follows.

STEP 1: In this step, the camera registers with the regis-

tration server. The camera first sends a UDP packet to the

registration server. The packet has a value of “1” in the

“opcode value” field, referred to as command value in this

paper, and a UUID (Universally Unique Identifier) in the

“id value” field. The UUID is used to uniquely identify the

connection.

Controller
Registration Server

 Command Relay Server

 Camera

5
5

5

6
6

7

7

8

8

Fig. 5. Connection establishment phase and data communication phase

Upon receiving the packet with the command value “1”

from the camera, the registration server responds with a UDP

packet with a command value “10”. The response packet

consists of the UUID received from the camera, and the IP

addresses and the ports of both the camera and the command

relay server. Consequently, the camera can learn the IP address

and port of command relay server from this response packet.
STEP 2: In this step, the camera registers with the command

relay server. The camera first sends a UDP packet to the

command relay server with a command value “1” and a new

UUID to uniquely identify this connection. The command

relay server responds with a UDP packet with a command

value “10”. The packet contains the UUID received from the

camera, and the IP addresses and the ports of both the camera

and the command relay server.
STEP 3: Once the camera receives response from the

command relay server, it sends a packet with a command value

“2” back to the registration server. This packet contains a new

UUID. It is used to inform the registration server the fact that

it has registered with the command relay server.
STEP 4: The camera sends two successive UDP packets

to the UDP service port 8765 of the registration server. The

first packet with a code value of “3000” is used to inform the

registration server that the camera is online. The second packet

with a code value of “1010” carries the camera information

such as the camera model, MAC address, type, alias, LAN

IP address and port of this camera, serial number, camera

firmware version, and camera status.
After receiving the messages with the code value of “1010”

from the camera, the registration server responds with a UDP

packet with a code value of “1020”. The packet contains the

MAC address and the status of the camera. The camera repeats

STEP 1 to STEP 4 around every 20 minutes to inform the

registration server that the camera is online.

C. Camera Discovery Phase and Authentication

In the camera discovery phase, the controller tries to first

check the online status of the camera via the registration

server as shown in Figure 5 and then sends the authentication

information to it. The UDP service ports of the registration

server for the camera and the controller are 8765 and 8766,

respectively.
STEP 5: In this step, a user sets the configuration of the

controller in order to check the online state of a specified

camera. The user inputs an alias of the camera, the MAC

address of the specified camera, and the password through the

graphic user interface of the controller. The controller then

sends two successive UDP packets to the registration server.

The first packet with a code value of “3000” is to inform the

registration server that the controller wants to check the state

of the camera. The second packet with a code value of “2030”

contains the MAC address of the camera and the information

of the controller, including the LAN IP address and port, the

device firmware version, and a relay ID generated by the

controller. The relay ID is composed of the camera’s MAC

address and a timestamp. It is used in the data communication

phase to correctly interconnect the two TCP connections from

a pair of controller and camera on the command relay server.

After receiving the request from the controller, the registra-

tion server checks the camera status first. If the camera is

offline, the registration server responds with a packet with

a code value of “5000”. Otherwise, the registration server

responds with a packet with a code value of “2040” to the

controller. This packet includes the IP addresses and ports

of both the camera and the command relay server, the relay

ID, camera firmware version, model, type, alias, and camera

status. The registration server also adds extra messages to the

“2030” packet and changes the code value to “2020”, and then

forwards it to the camera. The extra messages of “2020” packet

include the IP addresses and ports of the camera, the controller,

and the command relay server. Therefore, the camera can learn

the relay ID from this packet.

D. Remote Data Communication Phase

There are two ways for the controller to control the camera

remotely. First, the controller and the camera try to directly

communicate with each other using the UDP protocol. Second,

If the attempt of a direct UDP connection fails, the controller

and the camera will communicate with each other via the

command relay server using the TCP protocol. In this paper,

we mainly concentrate on the data communication using TCP.

STEP 6: To communicate with TCP, both the camera and

the controller establish TCP connections to the command

relay server. Recall that the camera and the controller obtain

the IP address and ports of the command relay server from

the registration server. The camera also obtains the relay ID

generated by the controller through the registration server.

Both the camera and the controller send a TCP packet that

contain the MAC address of the camera and the relay ID to

the command relay server. According to the MAC address

of camera and the relay ID, the command relay server can

interconnect these two TCP connections and relay the data

between the camera and the controller. However, the command

relay server does not send any response packets to neither the

camera nor the controller.

STEP 7: To obtain live images from the camera, the

controller sends requests to the camera via the command relay

server. The request packets contain a value of “/mobile.jpg”

in “url value” field, and authentication information in “auth

value” field. The authentication information in the format of

username:password is encoded in the Base64 scheme. The

default username and password are admin and 1234, respec-

tively. Users can change the password through the web page

of the camera. However, they cannot change the username as

it is hardcoded in the camera. Once the command relay server

receives the request packets from controller, it forwards them

to the camera.

STEP 8: After the camera receives the request, the camera

first checks the authentication information. If the authentica-

tion information is correct, the camera sends images back

to the command relay server, which forwards them to the

controller. Otherwise, the camera will send an authorization

failure packet to the controller.

Every time the controller tries to obtain an image, it needs

to send the request packet that contains the authentication

information. Therefore, the controller repeats the STEP 7 and

STEP 8 so as to continuously derive the live images taken by

the camera.

IV. SECURITY VULNERABILITIES OF EDIMAX CAMERAS

In this section, we first present three remote attacks against

the Edimax IP camera of interest: device scanning attack, brute

force attack, and device spoofing attack. Using these attacks,

we can remotely control any camera.

A. Device Scanning Attack

The attacker can find out all online cameras by enumerating

all the possible MAC addresses. Recall the procedure of the

connection establishment phase. After the controller sends a

“2030” packet, the controller receives a “2040” packet if the

camera is online. If the camera is offline, the controller will

receive a packet with a code value of “5000”. Therefore,

the attacker can construct a “2030” packet with the specified

camera MAC address, and check whether the specified camera

is online according to the response packet.

The MAC address space of a manufacturer can be known

from the Internet. A MAC address contains 12 characters.

The first 6 characters indicate manufacturer and the other 6

characters indicate the namespace given to the manufacturer.

Products of the same model from a manufacturer are usually

assigned consecutive MAC addresses. Thus the attacker can

infer MAC addresses based on the MAC address of his own

purchased camera, enumerate the 12 characters of the MAC

address and can verify the state of the camera with each

potential MAC address.

B. Brute Force Attack

If a user changes the default password of a camera, the

attacker can find the password via a brute force attack. In

the data communication phase, when the controller sends a

TCP request that contains the authentication information, the

camera responds with images if the authentication information

is correct. Therefore, the attacker can enumerate all possible

passwords by repeating the TCP request, and determine if

the password is right or not in terms of the response packet.

Our experiments show that the command relay server does

not block this brute force attack. If a user chooses a 4-digit

password like the default one, the brute force attack works.

Although there is no explicit password policy from the

manufacturer, we find that the camera password can be 63

characters long, and allows digits, special characters, upper-

case, and lower-case alphabetic letters. Therefore, if the user

employs a long and complicate password, the brute force

attack may not work.

C. Device Spoofing Attack

The device spoofing attack can obtain a camera password

of any length and combination. In the device spoofing attack,

the attacker creates a software bot implementing the camera

communication protocol in order to emulate the camera. When

the user opens the control app, the TCP request packet with

the password is sent to the attacker’s software bot. Therefore,

the attacker obtains the password.

The detailed attack process is presented as follows.

1) The attacker chooses an online camera that uses a non-

default password based on the device scanning results

and creates the software bot with the specific MAC

address. Any camera from this manufacturer can be

spoofed this way.

2) The software bot registers with the registration server

and the command relay server by performing STEP 1 to

STEP 4. The software bot sends two UDP packets with

the command value of “1” and “2” to both registration

server and command relay server for registration. It then

sends two successive UDP packets (i.e., code value of

“3000” and code value of “1010”) to the registration

server informing the server that the spoofed camera is

online. Once the software bot receives the packet with

the code value of “1020” from the registration server, the

attacker knows that the spoofed camera is online. The

software bot repeats STEP 1 to STEP 4 as many times

as possible, since the real camera will register itself by

performing STEP 1 to STEP 4.

3) When the user opens the control app, the app sends

two successive UDP packets (i.e., code value of “3000”

and code value of “2030”) to the registration server as

introduced in STEP 5. The registration server forwards

the packets to the software bot spoofing the camera. Si-

multaneously, the registration server informs the control

app that the camera is online.

4) The control app builds a TCP connection to the com-

mand relay server and sends a TCP request to the server

automatically. The command relay server forwards the

TCP request that contains the authentication informa-

tion to the software bot. Recall that the authentication

information is encoded with the Base64 scheme and

the format is username:password. As a result, it is

trivial for the attacker to derive the password from the

authentication information.

5) The spoofed camera should be offline as soon as it

obtains the authentication information. Recall that the

real camera registers with the registration server and the

command relay server every 20 minutes. Accordingly, it

takes at most 20 minutes for the real camera to get online

again after the spoofed camera obtains the authentication

information. After that, the user can see the images

and videos taken by real camera again and may not

realize that the camera has been compromised. Once

the attacker obtains the password, she can fully control

the camera.

V. EVALUATION

In this section, we present our experiment results validating

the three attacks against Edimax IP cameras. All the attacks

were performed over our own purchased cameras.

To verify the feasibility of the device scanning attack, we

first put our Edimax IP camera online. We then send a packet

with a code value of “2030” to the Edimax registration server

and receive a packet with a code value of “2040”. We then

put the camera offline. We resend a packet with a code value

of “2030” to the registration server and receive a packet with

a code value of “5000”. Therefore, we can scan any potential

MAC address to determine if the corresponding camera is

online or not.

To verify the brute force attack, we set a random 4-digit

password for our own camera. We then run the brute force

attack and can identify the right password in a few minutes.

We now present the results of evaluating the device spoofing

attack. The device spoofing attack may fail if the real camera

registers with the registration server and this kicks our spoofed

camera offline. In such a scenario, the controller will connect

to the real camera, and the spoofed camera cannot receive

the request packet with the authentication information from

the controller. However, our software bot spoofing the camera

can send out the registration packet continuously in order

to increase the attack success rate. To verify our attack, we

connect the real camera to the Internet, and the spoofed camera

registers with the registration server every 10 seconds. A user

opens the controller randomly during the attack. If the spoofed

camera receives the authentication information, the attack

succeeds; otherwise, it fails. We perform the experiments for

50 times and the spoofed camera receives the authentication

information 49 times.The success rate of the device spoofing

attack is up to 98%.

VI. CONCLUSION

In this paper, we first present our view of an IoT system

that includes the thing, cloud and controller from an end-to-

end perspective. 10 basic functionalities have been identified

for such a system. Those functionalities have to be secured

properly according to our risk analysis of different components

of the IoT system. We then present our exploit of an IP camera

system and discovered three attacks including device scanning

attack, brute force attack and device spoofing attack that can

fully control all of the IP cameras from the manufacturer.

We performed real-world experiments to validate the attacks

and find that the device spoofing attack can obtain a user’s

password at a probability of 98% whatever the password is.

Our end-to-end view of IoT Security and privacy can serve

as the guide to design a secure and privacy preserving IoT

system.

ACKNOWLEDGMENTS

This work was supported in part by National Natu-

ral Science Foundation of China under grants 61502100,

61532013, 61402104, 61572130, 61602111, 61632008, and

61320106007, by US NSF grants 1642124, 1461060, 1547428,

1723587, and Cisco, by Jiangsu Provincial Natural Science

Foundation of China under grants BK20150637 and BK20

140648, by Jiangsu Provincial Key Technology R&D Pro-

gram under grants BE2014603, by Jiangsu Provincial Key

Laboratory of Network and Information Security under grants

BM2003201, by Key Laboratory of Computer Network and

Information Integration of Ministry of Education of China

under grants 93K-9 and by Collaborative Innovation Center

of Novel Software Technology and Industrialization. Any

opinions, findings, conclusions, and recommendations in this

paper are those of the authors and do not necessarily reflect

the views of the funding agencies.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] J. Gubbia, R. Buyyab, S. Marusic, and M. Palaniswami, “Internet of
things (iot): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 9
2013.

[3] L. Columbus, “Roundup of internet of things forecasts and market
estimates,” https://www.forbes.com/sites/louiscolumbus/2016/11/
27/roundup-of-internet-of-things-forecasts-and-market-estimates-
2016/#27232e3d292d, 2016.

[4] Gartner, Inc., “Gartner’s 2016 hype cycle for emerging technologies
identifies three key trends that organizations must track to gain compet-
itive advantage,” http://www.gartner.com/newsroom/id/3412017, August
2016.

[5] The IEEE P2413 Working Group, “Standard for an architectural frame-
work for the internet of things (iot),” https://standards.ieee.org/develop/
project/2413.html, 2016.

[6] S. Hilton, “Dyn analysis summary of friday october 21 attack,” http://
dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/, Oc-
tober 2016.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in Proceedings of the 26th USENIX Security Symposium (Security),
2017.

[8] R. Chirgwin, “Get pwned: Web cctv cams can be hijacked by single
http request - server buffer overflow equals remote control,” http://www.
theregister.co.uk/2016/11/30/iot cameras compromised by long url,
November 2016.

[9] G. Rabinowitz, “Israeli hackers show light bulbs can take down
the internet,” http://www.timesofisrael.com/israeli-hackers-show-light-
bulbs-can-take-down-the-internet/, November 2016.

[10] E. Kovacs, “Belkin wemo devices expose smartphones to
attacks,” http://www.securityweek.com/belkin-wemo-devices-expose-
smartphones-attacks, November 2016.

[11] O. Arias, J. Wurm, K. Hoang, and Y. Jin, “Privacy and security in
internet of things and wearable devices,” IEEE Transactions on Multi-

Scale Computing Systems, vol. 1, no. 2, pp. 99–109, 2015.
[12] J. Wurm, O. Arias, K. Hoang, A.-R. Sadeghi, and Y. Jin, “Security

analysis on consumer and industrial iot devices,” in Proceedings of the

21st Asia and South Pacific Design Automation Conference (ASP-DAC),
2016.

[13] Y. Jin, G. Hernandez, and D. Buentello, “Smart nest thermostat: A smart
spy in your home,” in Proceedings of the Black Hat USA, 2014.

[14] S. in Silicon Lab, “Iot security vulnerability database,” http://www.
hardwaresecurity.org/iot/database, August 2017.

[15] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under memory
attacks,” in Proceedings of the International Conference On Computer

Aided Design (ICCAD), 2017.
[16] A. Tomlinson, Introduction to the TPM, Smart Cards, Tokens, Security

and Applications. Springer, 2008.
[17] “Arm security technology, building a secure system using trustzone

technology,” 2009.
[18] “Intel software guard extensions (intel sgx),” https://software.intel.com/

en-us/sgx, 2017.
[19] B. Parno, J. M. McCune, and A. Perrig, Bootstrapping Trust in Modern

Computers, 1st ed. Springer Publishing Company, Incorporated, 2011.
[20] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale

analysis of the security of embedded firmwares,” in Proceedings of the

23rd USENIX Security Symposium (Security), 2014.
[21] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards automated

dynamic analysis for linux-based embedded firmware,” in Proceedings

of the Network and Distributed System Security Symposium (NDSS),
2016.

[22] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in Proceedings of the

Network and Distributed System Security Symposium (NDSS), 2013.
[23] /DEV/TTYS0, “Hacking the d-link dsp-w215 smart plug,” http://www.

devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/, 2014.
[24] “Critical security flaw: glibc stack-based buffer overflow in getaddrinfo()

(cve-2015-7547),” https://access.redhat.com/articles/2161461, 2015.
[25] M. Smith, “Security holes in the 3 most popular smart home hubs

and honeywell tuxedo touch,” http://www.networkworld.com/article/
2952718/microsoftsubnet/security-holes-in-the-3-most-popular-smart-
home-hubsand-honeywell-tuxedo-touch.html, 2015.

[26] I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser,
“Neighborhood watch: Security and privacy analysis of automatic meter
reading systems,” in Proceedings of the 19th ACM Conference on

Computer and Communications Security (CCS), 2012.
[27] N. Dhanjani, “Security evaluation of the philips hue person-

al wireless lighting system,” http://www.dhanjani.com/docs/Hacking%
20Lighbulbs%20Hue%20Dhanjani%202013.pdf, 2013.

[28] J. Molina, “Learn how to control every room at a luxury hotel remotely,”
https://www.defcon.org/images/defcon-22/dc-22-presentations/Molina/
DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room-WP.pdf,
2014.

[29] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks
and defenses for a health monitoring device,” in Proceedings of the 34th

IEEE Symposium on Security and Privacy (S&P), 2013.
[30] Mario Ballano Barcena and Candid Wueest, “Insecurity in the inter-

net of things,” https://www.symantec.com/content/dam/symantec/docs/
white-papers/insecurity-in-the-internet-of-things-en.pdf, 2015.

[31] J. Obermaier and M. Hutle, “Analyzing the security and privacy of
cloud-based video surveillance systems,” in Proceedings of the 2nd ACM

International Workshop on IoT Privacy, Trust, and Security (IoTPTS),
2016.

[32] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryp-
tographically consistent messages to identify security vulnerabilities in
mobile services,” in Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2016.
[33] X. Yao, X. Han, X. Du, and X. Zhou, “A lightweight multicast

authentication mechanism for small scale iot applications,” IEEE Sensors

Journal, vol. 13, no. 10, pp. 3693–3701, Oct. 2013.
[34] Y. Xiao, V. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey

of key management schemes in wireless sensor networks,” Journal of

Computer Communications, vol. 30, no. 11, pp. 2314–2341, Sep. 2007.
[35] X. Du, Y. Xiao, M. Guizani, and H. H. Chen, “An effective key man-

agement scheme for heterogeneous sensor networks,” Ad Hoc Networks,

Elsevier, vol. 5, no. 1, pp. 24–34, Jan. 2007.
[36] X. Du and H. H. Chen, “Security in wireless sensor networks,” IEEE

Wireless Communications Magazine, vol. 15, no. 4, pp. 60–66, Aug.
2008.

