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ABSTRACT
Logic locking is an attractive defense against a series of hard-
ware security threats. However, oracle guided attacks based on
advanced Boolean reasoning engines such as SAT, ATPG and model-
checking have made it difficult to securely lock chips with low
overhead. While the majority of existing locking schemes focus
on gate-level locking, in this paper we present a layout-inclusive
interconnect locking scheme based on cross-bars of metal-to-metal
programmable-via devices. We demonstrate how this enables con-
figuring a large obfuscation key with a small number of physical
key wires contributing to zero to little substrate area overhead.
Dense interconnect locking based on these circuit level primitives
shows orders of magnitude better SAT attack resiliency compared
to an XOR/XNOR gate-insertion locking with the same key length
which has a much higher overhead.
CCS CONCEPTS
• Security andprivacy→Tamper-proof and tamper-resistant
designs; Hardware reverse engineering;
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1 INTRODUCTION
Logic locking and integrated circuit (IC) camouflaging are two
closely related techniques for hiding the design of an integrated
circuit. These techniques will make it difficult for an attacker to
recover the original netlist of the design. This in turn can hinder var-
ious attacks such as reverse-engineering, intellectual property (IP)
theft, and malicious modification of the design. Recent reports sug-
gest that IP theft is on the rise and concerns about design integrity
through the global IC supply chain remain strong [16]. Hence, logic
locking and camouflaging if made secure with low overhead can
alleviate great concerns in the semiconductor industry.
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Logic locking is based on inserting additional “key inputs” into
the circuit so that the circuit produces incorrect outputs for in-
correct keys. The key bits are programmed post-fabrication by a
trusted entity hiding the original design from the foundry as well
as end-users. IC camouflaging is based on using layout constructs
and special fabrication technologies to hinder reverse-engineering.
In camouflaging, while the foundry knows the true functionality, it
is difficult for an end-user attacker to obtain an accurate netlist of
the camouflaged layout through IC delayering and imaging [24].

The security of a locking/camouflaging scheme versus the over-
head that it incurs to the design is the primary metric of evaluation.
The security of the protection scheme heavily relies on the con-
sidered threat model. The “oracle-guided” threat model which is
widely used, allows the attacker to make arbitrary input-output
queries on a functional/unlocked oracle-circuit. Several attacks are
possible under this threat model, the strongest being the notorious
SAT [5, 21] attack that uses SAT queries to construct and solve a
system of input-output equations to find the correct functionality
of the obfuscated netlist.

Several “SAT-resilient” locking/camouflaging schemes [10, 25,
27–29, 31, 32] have been proposed based on inserting large gate-
level tree-structures that increase exponentially the minimum num-
ber of queries required for the attack. Unfortunately these schemes
cannot satisfy entropy criteria due to a fundamental contention
between entropy and minimum query count. Hence, they are vul-
nerable to approximate attacks such as AppSAT [17] and DDIP [19].
In addition they can be vulnerable to removal attacks [30] due to
the fixed structure of the inserted trees.

In IC camouflaging it is possible to “flood” the design layout
with a prohibitively large number of dummy elements inserted in
the abundant empty spaces in the layout [2]. These approaches
show a high resiliency against SAT attacks [13] simply by creating
very large SAT instances that overwhelm the SAT-solver. These
approaches can overcome the fundamental error versus resiliency
contention, as they result in complex SAT instances rather than
exponentially large minimum query counts. These layout-level
approaches however, have not been applied to logic locking. This
is primarily due to the key-bit programming circuitry needed for
logic locking which not only incurs additional overhead, but also
reveals the location of the ambiguous circuit elements, narrowing
the search for the attacker. This hinders large-scale layout-level
logic locking. As a result, the majority of existing logic locking
schemes are forced to insert large gate-level primitives without the
ability to exploit special transistor structures.

In this paper however, we start with the design of transistor-
level primitives, in particular key bit programming architectures
and then build netlist-level routines upon the primitive. We present
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a layout-inclusive locking scheme based on cross-bar programmable
interconnect architectures. We demonstrate how using cross-bar
circuit architectures a large number of key elements can be pro-
grammed sequentially with a much smaller number of physical key
wires. We show that without adding a single gate to the design, just
by densely obfuscating interconnects, small circuits can withstand
advanced SAT attacks orders of magnitude longer than state-of-art
gate-insertion strategies.

The paper makes the following contributions:

• We study various programmable device technologies in terms
of attack resiliency and footprint. We focus on metal-to-metal
programmable vias and define a general layout-level locking
scheme based on these devices with minimal programming
structures.
• We analyze the functional level security of the proposed inter-
connect locking scheme based on these primitives, demonstrat-
ing how densely cyclic interconnect locking can result in hard
SAT instances for the attack.
• We demonstrate a custom design flow for inserting cross-bar
primitives in the layout using a 32/28nm technology library
and report design metrics which shows overhead values orders
of magnitude better than gate-insertion strategies.

The paper is organized as follows: Section 2 provides a brief
background. Section 3 discusses circuit-level locking primitives,
and Section 4 discusses netlist-level routines. Section 5 presents
experiments and Section 6 concludes the paper.

2 BACKGROUND
Oracle-guided attacks: In studying locking/camouflaging it is a
basic assumption that the attacker is able to recover the netlist of the
locked/camouflaged IC. Any locked/camouflaged netlist contains
a number of ambiguous elements from the attacker’s view. These
ambiguous parts can be encoded using “key” variables over which
a space of possible functions for the netlist is defined. The original
circuit is co : I → O , I = Fn2 , O = F

m
2 and the locked/camouflaged

function is ce : I × K → O with K = Fl2. The function space C =
{ce (i,k ) |k ∈ K } is defined and ∃k∗ ∈ K∗ s.t. ∀i ∈ I ce (i,k∗) = co (i ).

Oracle-guided attacks assume input-output access to co . The
baseline SAT attack [5] starts by finding an input pattern that can
distinguish between different keys, namely a discriminating input
pattern (DIP), by solving the mitter SAT problem M ≡ (ce (i,k1) ,
ce (i,k2)) with î , k̂1, and k̂2. It then queries the DIP î on the oracle:
ŷ = co (î ), and adds the input-output pair to the SAT problem,
M ← M ∧ (ce (î,k ) = ŷ). It terminates onceM is not satisfiable, i.e.
no more DIPs can be found. At this point any key that satisfies all
DIP-output observations is the correct key.

The CycSAT Attacks: While oracle-guided attacks based on
solving systems of equations in key variables are generally applica-
ble to any keyed Boolean function (including stateful circuits using
model-checking [12]), the baseline SAT attack is only applicable
to acyclic combinational circuits. Shamsi et al. [18] proposed us-
ing cyclic interconnect obfuscation to thwart the attack. However,
Zhou et al. [33] developed an algorithm called CycSAT to add a
condition to the mitter M so that the solver avoids cyclic solution
breaking cyclic obfuscated circuits. We use the structural CycSAT
algorithm as our main attack in this paper.

3 CIRCUIT-LEVEL PRIMITIVES
3.1 Key Storage Element
All locking/camouflaging schemes are built upon a specific physical
element that creates ambiguity for the attacker. The security of
any netlist/chip-level scheme heavily relies on the security of this
physical primitive. For IC camouflaging the main criteria for the
element is that it should resist physical IC reverse-engineering
procedures while allowing the foundry to resolve and fabricate it.
One example for such primitives is vias that have a middle-gap [14]
which falsely appear to be connecting two metal layers. Another is
Mg-based [1] vias, which when exposed to oxygen during reverse-
engineering, all transform into MgO insulating vias hindering the
recovery of an accurate netlist.

In logic locking, the physical primitive in addition to being re-
silient to physical reverse-engineering, should be programmable
post-fabrication resulting in fewer options. The size of the device
and the programming and read circuitry become important metrics.
We study several technologies with respect to these criteria herein.

The first category for logic locking primitives is CMOS based
volatile memory elements such as SRAM cells, and D-flip-flops
which are all based on the cross-coupled inverter pair. These can
store bits as voltage levels on internal wires. In terms of security,
since voltage levels are difficult to read on a large scale in advanced
technology nodes, these primitives are acceptable1. In terms of cell
area, the smallest storage unit which is the SRAM cell requires 6
transistors. In terms of programming circuitry while DFFs can be
chained together for serial programming of key bits, SRAM cells
require memory architectures for programming. The volatility of
these elements is problematic as well, since the key must be stored
on an external tamper-proof nonvolatile memory and transferred
to the device which introduces its own security risks2.

Embedded Nonvolatile Memory (NVM) technologies such as
Flash, EEPROM, Resistive-RAM (RRAM), and Spin-based NVMs
that use Magnetic-Tunneling Junctions (MTJs) can be used to store
key bits as well. In terms of security, Flash and EEPROMs can
be read out with special laborious chip reverse-engineering pro-
cedures at small scale [4]. The magnetic polarity of spin-based
memory elements such as MTJs can be read with Magnetic Force
Microscopy (MFM) with sub-micron resolution on a small scale
[7]. RRAM cells are particularly difficult to read under scanning
electron microscopy [26]. In terms of area, EEPROM and Flash have
1∼2 transistors in their footprint, whereas RRAM cells and MTJs
are placed on the metal layers with no substrate area and can be as
small as 1F 2. EEPROM and Flash require CMOS read-out circuits
to convert internal charge to digital level voltage. Similarly MTJs
require a sense-amplifier to convert the small resistance difference
to a logic level voltage. The sense-amplifier can have a minimum of
6 transistors. RRAM cells however, can have very high Ron/Rof f

1Non-conventional approaches exist for limited voltage level read-out on integrated
circuits [11]. Most are based on pointing a laser beam at the chip and analyzing the
variations on the reflected beam that are caused by the electric field between two lines
with opposite voltages. A recent study [11] used backside laser imaging which allowed
distinguishing between an oscillating signal and a static one on a 60nm FPGA device.
Note that if the attacker is able to read voltage levels at a large scale, secure hardware
locking/camouflaging is most likely impossible at least with reasonable overhead.
2It is possible to overcome the volatility by using CMOS aging mechanisms to create
bias in the memory element so that it always starts up in the forced state [9]. This
comes at the cost of additional aging circuitry.
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Figure 1: Various PVIA-based locking primtives.
ratios, which allows them to be directly placed on the signal path
[23] removing the need for translation circuitry.

The last category is one-time-programmable (OTP) elements
such as OTP EPROM, fuse [6] and anti-fuse [3] technologies. These
are best suited for logic locking since the locked circuit is typically
not configured more than once. Among OTP technologies metal-to-
metal anti-fuse devices [3] are particularly suited to interconnect
locking. They are a mature technology used in FPGAs and PLAs
based on metal-insulator-metal (MIM) structures that connect two
adjacent metal layers. They start off in an insulating state and can
be made conducting by applying voltage to the two ends. They have
a footprint similar to that of conventional vias, and are reasonably
secure against invasive attacks [3]. We base our schemes in this
paper on this technology, while we do note that any metal-to-metal
configurable connector can be used as long as it is secure against
invasive attacks, and has a small footprint. We refer to this element
as a programmable via (PVIA) in the remainder of the paper.
3.2 PVIA Programming
PVIAs are programmed by applying a programming voltage for a
known period of time to the two ends of the device. The specific
voltage range for programming is dependent on the particular tech-
nology [3]. However, it must remain above the peak AC voltage
and current that the element experiences during normal opera-
tion to avoid inadvertent programming. It also should be below
the gate-oxide breakdown voltage of the logic transistors to avoid
damaging them during programming. The power lines of the logic
should be separate from the programming circuitry to avoid short
circuits. The main approach for PVIA programming is connecting
two complementary (NMOS and PMOS) programming transistors
(PTs) to the two ends that connect the device terminals to program-
ming supplies [26]. This way by configuring the two transistors and
programming supplies, the cell can be programmed and then dis-
connected from the logic. The PTs can also be replaced with larger
multi-level drivers to suppress sneak paths and provide protection.

The key idea that enables area saving is sharing PTs/drivers. If
N PVIAs share one terminal they can share a single PT for that
terminal. PVIA-based logic locking is any logic locking where the
secret values are stored in the PVIAs. It is possible to construct
a minimal programming network using this idea for arbitrarily
inserted PVIAs in between a set of nets.
3.3 PVIA-based Locking Primitive
While it is possible to randomly insert a series of PVIAs in the netlist
and construct a minimal programming structure for them, another
strategy is to first use PVIAs to construct several primitives/modules
and then perform the locking using these pre-designed primitives.

These primitives can be evaluated in terms of their PVIA/PT ratio,
sneak-paths and so on.

As seen from Figure 1 PVIAs can be used to implement an ar-
ray of different locking primitives. Per Figure 1a, the single PVIA
implements a tri-state buffer and needs two PTs. The XOR/XNOR
gate which is heavily used in traditional logic locking, can be im-
plemented with an inverter, two PVIAs and 3 PTs as seen in Figure
1b. Multiplexers (MUXs) are particularly suited to PVIA implemen-
tations. A single-level or multi-level tree can be used to implement
an n-to-1 MUX as seen in Figure 1c3.

The n×m cross-bar seen in Figure 1d shows the highest PVIA/PT
ratio. nm PVIAs can be programmed with only n +m PTs with a
sequential write scheme where a horizontal line and a vertical line
are connected to opposing voltages while other signals are left
floating. If there is only one connected node in each column, the
shortest sneak paths will have at least two PVIAs during program-
ming. Otherwise, the non-active lines may need to be configured to
a middle-voltage (VPG2 ) with multi-level drivers. The sequence of
configurations is also important in reducing the risk of inadvertent
programming. This paper focuses on using cross-bar primitives for
interconnect locking which we term cross-lock.

Note that the sharing of programming signals can be furthered
using the banking technique used in memory array designs. Per
Figure 1d, the nki and pki signals of N different cross-bars can be
shared while replicating only the VPB and GPB signals N times
and using them as arbitrators that select the active cross-bar.
4 NETLIST-LEVEL INTERCONNECT LOCKING
We can perform interconnect locking by inserting individual PVIAs
or PVIA-based primitives in the netlist. Security against various
attacks per the amount of overhead added to the design is the main
criteria for netlist level locking which we discuss herein.
4.1 Security Against SAT Attacks
SAT attacks are the strongest oracle-guided attacks against combi-
national locking/camouflaging. The SAT attack and its variants are
based on constructing and solving systems of input-output equa-
tions. The first natural approach towards thwarting these attacks,
which includes the majority of the existing literature, is to increase
the minimum number of queries (equations) required for the attack
to succeed. The second which has seen little progress in literature,
is making the SAT instances for querying and system-solving in-
tractable. Due to the fundamental contention between query count
and error rate, the only way to achieve a high error rate while
maintaining attack resiliency is to ensure that the system of input-
output observations cannot be solved efficiently even if it has very
few equations (queries) in it.

To better understand SAT attack resiliency it is useful to look at
similar problems across other domains. It has been noted in logic
obfuscation literature that the SAT attack is related to the problem
of active-learning [10] and the “query-by-disagreement probably-
approximately-correct (PAC)” learning schemes [17]. While these
relations are interesting, they cannot practically help advance SAT
attack resiliency checking beyond what simple truth-table based
analysis of Boolean functions provides us with.
3Note the difference between n tri-state buffers connecting n inputs to one output,
and an n-to-1 MUX. In the former multiple inputs can be connected to the output
while the latter is a one-hot connection.
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Amuchmore useful connection is to the domain of cryptography.
A cryptographic function f (x ,k ) is said to be Chosen-Plaintext-
Attack (CPA)-secure, if k cannot be found from arbitrary queries
of the form (xi , f (xi ,k )). Researchers have been studying attacks
against cryptographic functions for decades. A major category of
attacks is algebraic attacks in which the main goal is to construct
and solve a system of input-output equations to find the key. Al-
gebraic attacks model deobfuscation attacks very closely, with the
distinction that in practical algebraic attacks the system is typically
pre-compiled and optimized whereas the SAT deobfuscation attack
builds the system itself iteratively. Interestingly, in recent years
SAT-solvers have become a promising tool for algebraic attacks
against various block and stream ciphers [8].

While there are many aspects of this relation that we can ex-
ploited, here we focus on the “transition-phase” in the runtime
behavior of SAT-based algebraic attacks[8], where SAT instances
suddenly becomes intractable when the number of cipher rounds
exceeds a certain limit, while fewer rounds are solved in a matter
of minutes. In experimenting with interconnect locking we have
observed a similar behavior where the SAT queries’ search trees
begin to explode as the obfuscated circuit graph gets closer to a
complete-graph, even though the query count is low and the circuit
is relatively small.

Hence we gear our netlist locking routines towards increasing
the edge density of parts of the circuit using each cross-bar. These
strategies are based on first finding the smallest candidate wire set
W where |W | > max (n,m) for each n×m cross-bar (nMUXs of size
m wherem ≥ n). Then n wires are randomly selected fromW and
opened and routed through the cross-bar which occupies n inputs
and n outputs of the cross-bar. Then the remaining m − n cross-
bar inputs are also selected fromW and connected. The strategies
that we implement for pickingW include: a) k-cut: we search the
circuit for a logic cone with k inputs and gradually increase k until
a large enough set is found. b) wire-cut: we search for a cone with
a sufficient number of wires by backward breadth-first-searches on
each wire in the circuit. c) diagonal: we start exploring the wires in
the distance d of each wire in the forward and backward directions
while gradually growing d until a sufficiently large candidate set
is found. Figure 2 shows an example of inserting a 3 × 3 cross-bar
whereW = {w1,w2,O }.
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Figure 2: inserting a 3x3 cross-bar in a netlist.

4.2 Security Against Removal Attacks
Removal attacks or oracle-less attacks target special structures
in the obfuscated netlist that can allow removing key possibili-
ties without making queries. As for any MUX-based interconnect
locking, we discuss two possible removal attacks. First is that if a
key-controlled MUX output can reach one of its own inputs without
interfering with any other key bit in the circuit, that MUX input can
be removed if the assumption is that the original circuit is acyclic
(removable backward edge [18]). We check for such edges using a
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Figure 3: a) Different cross-lock insertion strategies and di-
mensions on the c432 benchmark circuit versus SAT attack
runtime. b) Maximally acyclic versus maximally cyclic in-
sertion attack run-times on random 8-input circuits.

simple readability search on the circuit graph starting from the out-
put wires. We avoid creating such edges in cross-lock. Luckily few
such edges arise when density driven selection strategies are used.
Another possible removal attack is proximity based attacks that try
to connect the given edge to the nearest location. These attacks can
be thwarted by avoiding edges between distant nodes in the circuit
which is ensured by the density driven selection strategies.

5 EXPERIMENTS
5.1 Resiliency Testing
We first perform netlist-level resiliency tests. Netlist-level attacks
and defenses are implemented in a C++ framework. The baseline
SAT attack is the structural CycSAT attack with AppSAT intermedi-
ate key extraction and error characterization capabilities included,
using MiniSat as the back-end SAT-solver. Tests were run on a
server machine with 16 Intel Xeon E5 CPUs clocked at 2.6GHz,
running linux with 128GB of memory.

CNF-SAT modeling:When deobfuscating an n ×m cross-bar
the attacker can model the cross-bar in several ways: a) with n
m-input MUXs each of which implemented using a tree of 2-input
MUXs and transformed to conjunctive-normal-form (CNF) formula.
b) n m-input MUXs each implemented with AND/OR/INV gates.
c) nm key-controlled tri-state buffers (TBUF). The CNF formula
for a TBUF depicted in Figure 1a is (k̄ + x + ȳ) (k̄ + x̄ + y). Only
the TBUF-based model implements the “subset-MUX” where any
subset ofm inputs can be connected to the output. When using the
TBUF-based model it is important to include a no-float condition
on the key to ensure that all TBUFs that control a node do not
disconnect at the same time. If the TBUF-based model is used there
will be a quadratic number of key-bits. Surprisingly, the SAT attack
performs better with the much larger TBUF-based model versus
MUX-based models. We suspect that this is related to the system
of equations becoming “over-defined” [8]. We use TBUF models
to favor the attacker in our experiments. We define the equivalent
key-length of the cross-bar as its MUX-based model key-length
n⌈log2 (m)⌉ for comparison with other locking schemes such as
random XOR/XNOR insertion [15].

Density versus Resiliency: Figure 3a shows the running time
of the attack for one cross-bar inserted in the c432 benchmarkwhich
has 160 primitive gateswith different insertion strategies. The attack
was run 3 times on each netlist. With high error-rate schemes it
is important to rerun the attack several times with different SAT-
search seeds and report the shortest time. As can be seen from
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(a) (b)

Figure 4: c432 circuit. a) original layout. b) 10 × 10 cross-bar
inserted in the middle.

edge-density 0.05 0.1 0.2 0.3 0.4
#ins #gates #DI t(s) #DI t(s) #DI t(s) #DI t(s) #DI t(s)
4 9.2 3.2 <0.0 5.0 <0.0 8.6 0.01 10.2 0.3 12.2 5.5
5 20.6 13.4 0.04 16.0 0.09 14.2 1895 3.8 44.3 TO TO
6 39.1 20.6 1106 30.0 2697 TO TO TO TO TO TO

Table 1: Runtime and query count average for random cir-
cuits versus edge density.

Figure 3a, the high density cone-based selection strategies, k-cut
and wire-cut, surpass random cross-lock insertion by an order of
magnitude exceeding the 1 hours deadline at smaller dimensions.
Diagonal selection performs better than random selection, but is not
as formidable as the cone-based strategies. This is while none of the
circuits locked with random XOR/XNOR locking of the equivalent
key-length resist the attack longer than 5s over various dimensions.

The relationship between density and SAT attack complexity
becomes clearer when we try to create a complete-graph in the
netlist. That is when every wire can be potentially connected to
every other wire from the attacker’s point of veiw. This is the
case when a fully configurable interconnect similar to an FPGA is
used. We generated 10 random circuits for small input widths by
synthesizing random truth-tables using ABC [22]. We then began
adding dummy edges to each netlist to achieve a certain graph
density (d = 2 |E |

|E |( |E |−1) ). As can be seen from Table 1 beyond a
certain density a small circuit with 5-inputs cannot be resolved
within the 3 hour deadline. This is an interesting result, since it
takes less than a second for the SAT attack to resolve a 5-input
look-up-table that implements all 232 different 5-input Boolean
functions! Hence, clearly a transition in the nature of the SAT
problems is occurring as density increases. None of the existing
logic locking schemes, even SAT-resilient schemes can last hours
under the attack on a circuit with such a small number of inputs.

Cyclicness versus Resiliency: Another important question is
whether cyclicness of the locked circuit improves resiliency. Figure
3b shows attack runtimes on 50 8-input random circuits with ran-
dom cross-lock insertion with different dimensions when all added
edges are forward edges, versus when most edges are feedback
edges. This is done by topologically sorting the wires, and in the
acyclic selection connecting wires late in the order to wires earlier
in the order, while doing the opposite for the cyclic selection. It
can be seen that cyclic insertion results in higher attack runtimes
compared to acyclic locked circuits. The non-cyclic condition in the
CycSAT attack can also result in a significant number of additional
clauses for densely cyclic circuits.

bench #g #I/O CL dim eq-klen XOR t(s) CL t(s)
apex2 610 39/3 2 × 30 × 36 310 93.2 TO
apex4 5360 10/19 11 × 30 × 36 1706 1072 TO
c1355 546 41/32 2 × 30 × 36 310 3715 TO
c1908 880 33/25 2 × 30 × 36 310 624 TO
c2670 1193 157/64 3 × 30 × 36 465 TO TO
c3540 1669 50/22 4 × 30 × 36 620 109 TO
c432 160 36/7 1 × 30 × 36 155 1.84 TO
c499 202 41/32 1 × 30 × 36 155 5.96 TO
c5315 2307 178/123 5 × 30 × 36 775 1011 TO
c7552 3512 206/107 8 × 30 × 36 1240 TO TO
c880 386 60/26 1 × 30 × 36 155 0.82 TO
dalu 2298 75/16 5 × 30 × 36 775 308 TO
des 6473 256/245 13 × 30 × 36 2016 427 TO
i4 338 192/6 1 × 30 × 36 155 18.1 TO
i7 1315 199/67 3 × 30 × 36 465 7.08 TO
i8 2464 133/81 5 × 30 × 36 775 20.2 TO
seq 3519 41/35 8 × 30 × 36 1240 335 TO

Table 2: ISCAS and MCNC benchmark circuits locked with
cross-lock and XOR/XNOR obfuscation under the CycSAT
attack.

Benchmark Circuit Tests: We performed cross-lock on a set
of ISCAS and MCNC benchmarks from [20] as seen in Table 2. We
used one 30 × 36 cross-bar for every 500 gates in the circuit. Hence,
the des benchmark ends up with 13 cross-bars inserted. Note that
with banking, the final chip needs 30 + 36 + 13 physical wires to
configure the 30.36.13 PVIAs sequentially for this benchmark. We
used the equivalent key-length times the number of cross-bars for
XOR/XNOR obfuscation. As can be seen from Table 2 none of the
cross-locked netlist are deobfuscated within the 3 hour deadline,
while almost all XOR/XNOR lockings were defeated with the excep-
tion of the c2670 benchmark which has an internal AND-tree and
the c7552 which overwhelms the attack with 1240 XOR/XNOR key
bits. As for AppSAT resiliency, both schemes go through a rapid
drop in error value after a certain number of iterations. However,
the densely locked circuits that resist the exact attack, do not reach
this many iterations within the given deadline.

5.2 Physcial Design
We also performed a proof-of-concept physical design flow. The
Synopsys generic 32/28nm library and design kit was used for
synthesis and place-and-route. Synopsys Design-Compiler (DC)
was used for synthesis and IC-Compiler (ICC) was used for place-
and-route.We designed the PVIA cells in Custom-Designer between
theM2 andM3 layers and added them to the design as physical-only
cells. Existing EDA tools lack a standard flow for automatic best-
possible placement and routing of a large number of PVIAs. Hence
we manually insert the PVIAs in a grid and try to push standard
cells away from under this PVIA grid and perform placement. Then
the automatic routing was successful in routing the cross-bar with
a grid-like network as seen in Figure 4 without DRC violations. If
DRC violations occur the utilization rate can be lowered until they
are resolved which was not needed for the single cross-bar layouts
reported in Table 3.

For power and delay characterization since the locked circuits
are cyclic and can create issues for power/delay calculation rou-
tines, we take the acyclic netlist and manually add the additional
capacitance due to the PVIAs (chosen as 0.3ff which is half of the
minimum inverter capacitance in our technology) and nets to the
netlist and calculate power/delay which is reported in Table 3. We
compare these results with post-route XOR/XNOR locking with
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n × n CL original 15 25 35
circuit a(µm2) p(µW) d(ns) aX pX pCL dX dCL aX pX pCL dX dCL aX pX pCL dX dCL
c432 176.9 12.9 1.2 172.7 102.2 3.2 91.9 0.0 288.6 209.1 6.7 120.3 5.7 421.1 308.2 34.1 135.0 39.0
c499 526.6 50.9 0.9 40.0 13.5 2.1 58.9 2.2 76.7 47.3 4.8 67.8 4.4 119.7 88.0 11.7 93.3 6.7
c880 390.1 27.1 1.2 62.1 24.4 1.3 47.9 0.0 125.9 75.9 11.3 74.4 3.4 197.9 154.6 7.0 81.2 6.0
c1355 541.6 60.3 0.9 46.6 13.8 0.6 114.8 2.3 97.1 26.1 4.0 137.5 4.5 152.4 56.6 7.7 225.0 6.8
c1908 499.4 47.6 1.3 59.0 8.0 0.3 65.4 0.0 110.8 43.0 10.1 81.1 2.4 165.3 81.0 12.5 103.9 3.1
c2670 664.6 48.7 1.4 49.4 10.7 1.7 37.1 0.0 95.3 43.7 3.2 60.1 0.0 135.0 74.3 22.3 90.9 0.0

Table 3: Place and route results. (a, p, d)X/CL: area, power and delay overhead percentage for XOR/XNOR / cross-lock.

the equivalent key-length. While cross-lock inserts no additional
gates to the design it incurs overhead to the entire chip through
the programming circuitry that is shared among several cross-bars.
An XOR/XNOR locking also requires external key-programming
circuitry which is typically a scan-chain of DFFs as long as the
key-length not included in Table 3. A detailed comparison of these
two key-programming approaches and multi-crossbar layouts is left
for future work. However, it is clear that scan-chains will be much
larger for such large key-lengths compared to a banked cross-lock
implementation.

6 CONCLUSION
In this paper we presented a layout-level dense interconnect lock-
ing scheme based on cross-bar architectures that has the potential
to create high error rate and SAT resiliency simultaneously while
suppressing overhead with layout and circuit level techniques. Chip-
level overhead analysis, programming architecture optimization,
reliability analysis, and interconnect locking schemes with the high-
est algebraic complexity are important topics of future research.
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